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Abstract
The present research focuses on fractional nonlinear evolution equations and their opti-
cal soliton solutions, which have become the inquisitive context to study their significant 
attributes in understanding natural kernels ascending in the field of science and technol-
ogy. This article has been dedicated to searching out the analytical soliton solution of an 
important fractional nonlinear evolution equation, named the time-fractional Kundu–Eck-
haus equation in the sense of beta fractional derivative through the ( G�∕G, 1∕G)-expan-
sion approach. This equation was originated to search out the transmission of data through 
the optical fiber. By exerting the stated method, abundant novel soliton solutions, like 
kink soliton, compacton, periodic soliton, singular periodic, singular bell-shaped soliton, 
and others have been established. In accordance with the trail solutions generated in this 
method, the solutions contain arbitrary parameters and hyperbolic, rational, and trigo-
nometric functions. Soliton solutions are extracted from analytical solutions for apposite 
values of the parameters. Contour, three- and two-dimensional graphs are plotted to dem-
onstrate the physical structure and characteristics of the attained solitons. The obtained 
results imply that the concerned method can be used to attain diverse, improved, useful, 
and compatible solutions for other significant fractional nonlinear evolution equations.

Keywords  (G�∕G, 1∕G)-expansion method · Fractional derivative · Time-fractional 
Kundu–Eckhaus equation · Soliton solutions

1  Introduction

The advent of fractional calculus had brought about a revolution in the research field by 
opening a new avenue of investigating analytical soliton solutions of the significant mod-
els. It is a wide branch of analysis, applied mathematics, and engineering that was initiated 
more than 300  years ago with a question, “Can the meaning of derivatives with integer 
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order be generalized to derivatives with non-integer order?”. This question was queried 
by Leibniz to L’ Hospital in a correspondence between them in the seventeenth century. 
Any number (complex or real) may be taken into account as the order of differentiation in 
fractional nonlinear evolution equations (FNLEEs). As a result, numerous possible solu-
tions are being resulted from any certain equation. FNLEEs are now used to model various 
constraints that occur in various scientific and technological fields, such as optics, fluid 
mechanics, control theory, bio-engineering, robotics, electrical engineering, and so on. 
Since its introduction, it has attracted diverse academics and has become a burning theme 
of research. So far, different academics have provided different definitions of fractional 
derivative, such as Riemann–Liouville (R–L) fractional derivative (FD) (Miller and Ross 
1993), Conformable FD (Khalil et al. 2014), beta derivative (Atangana and Baleanu 2016), 
Caputo FD (Almeida 2017), etc. The newly defined beta fractional derivative is more reli-
able than the others, and that’s why the beta derivative has been taken into consideration in 
this article.

Kundu (1984) proposed a model describing the spread of ultra-short light pulse trough 
the dispersive medium such as optical fiber, ultrasonic devices, etc. which was named 
Kundu equation. The Kundu equation can be altered to nonlinear Schrödinger (NLS) equa-
tion and several integrable equations. Later, Eckhaus (1986) introduced a model which 
was obtained from the Kundu equation for the general case. This mathematical model is 
familiar as the nonlinear Kundu–Eckhaus (KE) equation. Another model known as Rad-
hakrishnan–Kundu–Lakshmanan (RKL) was introduce by Radhakrishnan et  al. (1999) 
from the Kundu equation. The time-fractional nonlinear Kundu–Eckhaus (KE) equation 
(Unal 2014) is of the form:

In Eq. (1), p = p(x, t) describes the wave function, D�
t p exhibits the fractional temporal 

evolution of the wave function, second term stands for the spacial dispersion, third and 
fourth term describe the nonlinear steeping.

However, looking into exact soliton solutions of FNLEEs is highly required with a view 
to understanding any phenomenon thoroughly. Solitary waves can travel a long distance with 
unaltered shape and constant intensity or energy. In optics, there are mainly three types of 
solitons such as bright, dark, and mixed bright-dark solitons. Bright solitons are seen in nega-
tive and anomalous group velocity dispersion (GVD) region in optical fiber whereas dark soli-
tons occur in positive and normal GVD region. There are several well-functioned approaches 
to search out soliton solutions of the FNLPDEs. Several academics made their best attempt 
to develop a unique approach; yet, every technique has some particular drawbacks. Never-
theless, a good number of methods had been evolved like the sine–cosine method (Wazwaz 
2004; Alquran 2012; Liang et al. 2022), the exp ( −�(�))-expansion method (Rahman 2014; 
Arshed et al. 2018; Elboree 2021), the generalized Kudryashov method (Demiray and Bay-
rakci 2020), the extended tanh-function method (Fan 2000; Ni and Dai 2015), the modified 
extended tanh-function method (Elwakil et  al. 2002; Zahran and Khater 2016; Alam et  al. 
2021), the improved modified extended tanh-function method (Yang and Hon 2006; Ahmed 
et al. 2022a), the sine–Gordon expansion scheme (Baskonus et al. 2019; Kundu et al. 2021; 
Mamun et al. 2022), the Jacobi elliptic function expansion method (Liu et al. 2001; Kumar 
et al. 2019; Ahmed et al. 2021), the (G∕G�)-expansion method (Bian et al. 2010; Aniqa and 
Ahmad 2022), the simple equation approach (Nofal 2016), the modified simple equation 
method (Jawad et al. 2010; Biswas et al. 2018), the improved (G�∕G)-expansion method (Liu 
and Zeng 2015; Khater et al. 2021), the generalized (G�∕G)-expansion method (Zhang et al. 

(1)iD
�
t p + pxx + |p|4p + 2

(|p|2)
x
p = 0.
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2008), the auxiliary equation process (Akbulut and Kaplan 2018), the modified auxiliary 
equation technique (Mahak and Akram 2020; Akram et al. 2022), the (G�∕G, 1∕G)-expansion 
method (Li et al. 2010; Miah et al. 2017; Duran 2021), the conformable Adomian decompo-
sition method (Acan and Baleanu 2017), the modified variation iteration algorithm (Ahmed 
et al. 2022b), the generalized exponential rational function method (Ghanbari and Inc 2018), 
the (G�∕G2)-expansion method (Bilal and Ahmad 2022; Bilal et al. 2022), and so on.

A straight-forward technique named the (G�∕G)-expansion method was introduced by 
Wang et al. (2008) with a view to find out soliton solutions of nonlinear equations. In this 
method, trial solution is generated as q(�) =

∑n

j=0
bj
�
G�∕G

�j and G(�) satisfies the equation 
G�� + �G� + �G = 0 , where � , � , bj are arbitrary constants. Since the introduction of this 
approach, several researchers have made some modifications and improvements to this 
technique. As for example, extended (G�∕G)-expansion method was suggested by Guo and 
Zhou (2010), where the trial solution has the form q(�) =

∑n

j=0
bj
�
G�∕G

�j
+
∑n

j=1
cj
�
G�∕G

�−j 
and G(�) satisfies the same auxiliary equation as mentioned above. The improved (G�∕G)

-expansion method was presented by Zhang et al. (2010), where trial solution is generated in 
the form q(�) =

∑n

j=0
bj
�
G�∕G

�j and G(�) satisfies the equation 
GG�� = LG2 +MGG� + N

(
G�

)2 . The generalized (G�∕G)-expansion method was introduced 
by Zhang et  al. (2008), where the trial solution is formulated in the form 
q(�) =

∑n

j=0
bj
�
G�∕G

�j and G(�) satisfies the equation 
(
G�

)2
= L +MG2 + NG4∕2 , the 

generalized and improved (G�∕G)-expansion approach was offered by Akbar et  al. (2012), 
where trial solution is expressed in the form q(�) =

∑n

j=−n

c−j

(b+(G�∕G))j
 and G(�) satisfies the 

subsidiary equation G�� + �G� + �G = 0 , etc. The two variables ( G�∕G,1∕G)-expansion 
method is one of the modifications of the (G�∕G)-expansion method which was proposed and 
implemented to resolve the Zakharov equations by Li et al. (2010).

To search out the exact soliton solution of an equation, several techniques are taken into 
consideration by several academics. The concerned KE equation plays a significant role in 
nonlinear optical fibres communication. Many researchers have used several methods to visu-
alize the soliton solutions of this equation like Smadi et al. (2020), Rezazadeh et al. (2019), 
Bekir and Zahran (2020), Kaplan (2021), Biswas et  al. (2019), Manafian and Lakestani 
(2016), Ekici et al. (2016), and so on.

Since the Kundu–Eckhaus equation has yet not been studied using the (G�∕G, 1∕G)-expan-
sion approach, in this article, the new and wide-spectral soliton solutions of the stated equa-
tion are established using the above mentioned two variables (G�∕G, 1∕G)-expansion method. 
Consequently, this article establishes several novel solutions that are comprised of hyperbolic, 
trigonometric, rational functions, and some arbitrary constants. In order to check the novelty 
of the solutions, the obtained solutions are compared with the existing results in the compari-
son section.

The structure of this article is organized as follows: In Sect.  2, the methodology of the 
stated approach has been described. Application of the method to the concerned equation is 
accomplished in Sect. 3. In Sect. 4, a comparison is made between the obtained results and 
previous results. Graphical visualization and description of the attained solitons have been 
presented in Sect. 5. In Sect. 6, we reach the conclusion.
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2 � Methodology

According to the procedure of the concerned method, a second order nonlinear equation in 
G(�) have to be resolved at first. The associated equation is

We consider � = G�∕G , � = 1∕G and � , � are arbitrary constants.
In addition

Now, there ascends three forms of general solution of Eq. (2) with the variation of the 
values of �.

When 𝜆 < 0 : In this case, the general solution is comprised with hyperbolic functions as 
given below,

Together with

In Eq. (5), � = n2
1
− n2

2
 and n1, n2 are arbitrary parameters.

When 𝜆 > 0 : In this case, the general solution is generated with the help of trigonomet-
ric functions as follows:

Along with

Here, � = n2
1
+ n2

2
 and n1, n2 are free parameters.

When � = 0 : In this case, the general solution contains rational functions as follows:

Let us assume the equation which is to be solved contains the wave function 
p(x1, x2,… t) and its partial and fractional derivatives as given below:

(2)G��(�) + �G(�) = �.

(3)�� = −�2 + �� − �,� � = −�� .

(4)G(�) = n1sinh
�√

−��
�
+ n2cosh

�√
−��

�
+

�

�
.

(5)�2 = −
�
(
�2 − 2�� + �

)
�2� + μ2

.

(6)G(�) = n1sin
�√

��

�
+ n2cos

�√
��

�
+

�

�
.

(7)�2 =
�
(
�2 − 2�� + �

)
�2� − μ2

.

(8)G(�) =
�

2
�2 + n1� + n2.

(9)Along with �2 =
1

n2
1
− 2�n2

(
�2 − 2��

)
, n1 and n2 are arbitrary parameters.

(10)L
(
p, p, pt, px1x2 , ptx1 , ptt,… ,D

𝛽
t p,D

𝛽
x1
p,D

𝛽𝛽
tt p,D

𝛽𝛽
x1x2

p,…
)
= 0, 0 < 𝛽 ≤ 1.



Optical soliton solutions to the time‑fractional Kundu–Eckhaus…

1 3

Page 5 of 17  291

Here, D�
t p , D�

x1
p ,… and pt , px1 ,… denote the fractional and partial derivatives of the 

wave function p with respect to spatial and temporal variables.
To look for the analytical exact soliton solution of the Eq. (10) through the mentioned 

method, the following steps have to be gone through.
1st step Direct approaches to investigating FNLEEs are rare. Equation (10) can be trans-

formed using the beta wave transform into an ordinary differential equation:

with

Moreover, for complex equation, the transformation takes the form:

with

and

In these transformations, r(�) and �
(
t, x1, x2,…

)
 describe amplitude and the phase 

functions respectively. In addition, v is the velocity and � is the wave number. Here, v , 
� , �1 , �1 , … are arbitrary parameters which are to be ascertained.

By means of the above transformation, it leads to an ODE as follows:

2nd step In consistent with the strategy of the mentioned method, the trial solution of 
Eq. (13) may be put forth in the subsequent form:

In Eq. (14), mn , hn , and n are unknown constants which we are to be calculated. The 
value of n is resulted from the implication of the homogeneous principle of balance. If 
the outcome becomes negative or fractional, we will impose the subsequent formulae.

Application of this transformation leads us to a new ODE which delivers a balanced 
variable with positive integer value.

3rd step Employing the trial solution from Eq.  (14) in Eq.  (13), a new polynomial, 
comprising �i , � i(i = 0, 1,… z) , their derivatives, and the arbitrary parameters mn and 

p
(
t, x1, x2,…

)
= r(�),

(11)� =
�

�

(
t +

1

Γ�

)�

+
�1

�

(
x1 +

1

Γ�

)�

+
�2

�

(
x2 +

1

Γ�

)�

+⋯ .

(12)p
(
t, x1, x2,…

)
= r(�)ei�

� =
v

�

(
t +

1

Γ�

)�

+
�1

�

(
x1 +

1

Γ�

)�

+
�2

�

(
x2 +

1

Γ�

)�

+⋯ ,

�
(
t, x1, x2,…

)
=

�

�

(
t +

1

Γ�

)�

+
�1

�

(
x1 +

1

Γ�

)�

+
�2

�

(
x2 +

1

Γ�

)�

+⋯ .

(13)U
(
r, r�, r��, r���,…

)
= 0.

(14)r(�) =

Z∑
n=0

hn�
h +

Z∑
n=1

mh�
n−1� ,� = G

�

∕G,� = 1∕G.

(15)r(�) = wn(�).
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hn , is generated. The derivatives of � , � , and higher order of � is annihilated with the 
assistance of the values of �′ , � ′ , �2 . Furthermore, a system of algebraic equations is 
introduced by computing the components of φj� l (j = 0, 1,… z, l = 0, 1) to zero.

4th step In conclusion, by solving the acquired equations, the required values of the 
arbitrary parameters mn , hn , v , � , �1 , �1 , … , will be ascertained. Setting these attained 
values in trial solution, the desired soliton solutions will be formed.

3 � Optical soliton solutions

Proceeding with the steps comprehended in methodology, governing Eq.  (1) is alter-
nated to a differential equation via the transformation:

Consequently, we attain

Here, � = kx −
v

�

(
t +

1

Γ�

)�

 and � = �x +
�

�

(
t +

1

Γβ

)�

.

Equating complex and real part of Eq.  (17) to zero, the subsequent outcomes are 
offered.

Equation (18) provides the velocity of the wave function. However, Eq. (19) has been 
taken into consideration to be unraveled.

Therefore, from the homogeneous balancing principle it can be concluded that, 
+2 = 5n i.e. , n = 1∕2 . The balanced value being fractional, we have to exert Eq. (15) in 
Eq. (19). Thus, it becomes

Hence, Eq. (19) will be transformed to another equation in w(�) having the following 
form:

Equation  (21) delivers the balanced value n = 1 . Therefore, the trail solution of 
Eq. (21) is expressed as:

Setting Eqs. (22) in (21) and proceeding with the steps depicted in methodology, sev-
eral solutions have been acquired for the varied values of �.

For 𝜆 < 0 In this case, there are two sets of solutions, which have been expounded 
below:

Set 1 h0 = ±
1

2
k
√
−� , h1 =

k

2
 , m1 = 0 , � = 0 , � = −�2 − k2�,v = 2k�.

(16)p(x, t) = r(�)ei�.

(17)−
(
�2 + �

)
r(�) + r(�)5 − i(v − 2k�)r�(�) + 4kr(�)2r�(�) + k2r

� �

(�) = 0.

(18)v = 2k�.

(19)−
(
�2 + �

)
r(�) + r(�)5 + 4kr(�)2r�(�) + k2r

� �

(�) = 0.

(20)r(�) =
√
w(�).

(21)4w(�)4 − k2w�(�)
2
− 4w(�)2

(
�2 + � − 2kw�(�)

)
+ 2k2w(�)w

� �

(�) = 0.

(22)w(�) = h0 + h1�(�) + m1�(�).
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Substitution of the above solution set in Eq. (22) provides

Thus, the required exact solution of Eq. (1), which is generated from Eq. (16), can be 
expressed as

Here, �(x, t) = �x +
(−�2−k2�)

(
t+

1

Γ�

)�

�
 , � = kx −

2k�(t+
1

Γ�
)
�

�
.

If we take n1 = 0 , solution (23) will be altered to

Similarly, for n2 = 0 , the solution (23) takes the form

Set 2 h0 = ±
1

4
k
√
−� , h1 =

k

4
 , m1 = ±

k
√
(�2+�2�)

4
√
−�

 , � =
1

4
(−4�2 − k2�) , v = 2k�.

Introducing the above-mentioned solution set 2 in Eq. (22), the acquisition solution is

Therefore, Eq. (16) allowed us to develop the exact solution of Eq. (1) in the following 
form:

with �(x, t) = �x +
(−4�2−k2�)(t+

1

Γ�
)
�

4�
 , � = kx −

2k�(t+
1

Γ�
)
�

�
.

Here, k , � , � and � are arbitrary parameters. If we impose zero value for � and n1 , 
solution (26) will be transformed into

w(�) = ±
1

2
k
√
−� +

k
√
−�{n1cosh

�√
−��

�
+ n2sinh

�√
−��

�
}

2{n1sinh
�
�
√
−�

�
+ n2cosh

�
�
√
−�

�
}

.

(23)p(x, t) = ei�(x,t)

⎧
⎪⎨⎪⎩
±
1

2
k
√
−� +

k
√
−�

�
n1cosh

�√
−��

�
+ n2sinh

�√
−��

��

2
�
n1sinh

�
�
√
−�

�
+ n2cosh

�
�
√
−�

��
⎫
⎪⎬⎪⎭

1

2

.

(24)p(x, t) = ei�(x,t)

�
±
1

2
k
√
−� +

k
√
−�

2
tanh

�√
−��

�
.

(25)p(x, t) = ei�(x,t)

�
±
1

2
k
√
−� +

k
√
−�

2
coth

�√
−��

�
.

w(�) = ±
1

4
k

√
−� ±

k

√
(�2 + �2�)

4
√
−�

�
�

�
+ n1sinh(�

√
−�) + n2cosh(�

√
−�)

�

+
k

√
−�(n1cosh(�

√
−�) + n2sinh(�

√
−�))

4(
�

�
+ n1sinh(�

√
−�) + n2cosh(�

√
−�))

.

(26)p(x, t) = ei�(x,t)

⎛⎜⎜⎜⎜⎝

±
1

4
k
√
−� ±

k

√
(�2+�2�)

4
√
−�

�
�

�
+n1sinh

�
�
√
−�

�
+n2cosh

�
�
√
−�

��

+
k
√
−�

�
n1cosh

�
�
√
−�

�
+n2sinh

�
�
√
−�

��

4
�

�

�
+n1sinh

�
�
√
−�

�
+n2cosh

�
�
√
−�

��

⎞⎟⎟⎟⎟⎠

1

2

,
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Another form of solution (23) may be originated in the same way for � , n2 = 0:

When 𝜆 > 0 For this condition, two different kinds of solution sets are attained which 
have been explained minutely in the subsequent context.

Set 1 h0 = ±
1

4
k
√
−� , h1 =

k

4
 , m1 = ±

k
√
−�2+�2�

4
√
�

 , � =
1

4
(−4�2 − k2�) , v = 2k�.

Setting the values of parameters referred above, the pursuit result may be 
demonstrated from Eq. (22) as:

Hence, the desired solution of Eq. (1) is derived as:

together with � = kx −
2k�(t+

1

Γ�
)
�

�
 , �(x, t) = �x +

(−4�2−k2�)(t+
1

Γ�
)
�

4�
.

By replacing n1 and � with zero value, solution (29) can be written in the subsequent 
form:

Similarly, the successive form of solution (29) can be attained for n2 , � = 0:

Set 2 h0 = ±
1

2
k
√
−� , h1 =

k

2
 , m1 = 0 , � = 0 , � = −�2 − k2� , v = 2k�.

Substituting these values in Eq. (22), it is derived

Now, setting value of w(�) in transformation (20) and exerting transformation (16) we 
attain exact soliton solution of Eq. (1).

(27)p(x, t) = ei�(x,t)

�
±
1

4
k
√
−� ±

k�
√
�

4
√
−�n2

sech(�
√
−�) +

k
√
−�

4
tanh(�

√
−�)

� 1

2

.

(28)p(x, t) = ei�(x,t)

�
±
1

4
k
√
−� ±

k�
√
�

4
√
−�n1

csch(�
√
−�) +

k
√
−�

4
coth(�

√
−�)

� 1

2

.

w(�) = ±
1

4
k
√
−� ±

k
√
−�2 + �2�

4
√
�(

�

�
+ n1sin(�

√
�) + n2cos(�

√
�))

+
k
√
�(n1cos(�

√
�) − n2sin(�

√
�))

4(
�

�
+ n1sin(�

√
�) + n2cos(�

√
�))

.

(29)

p(x, t) = ei�

⎧⎪⎨⎪⎩
±
1

4
k
√
−� ±

k
√
−�2 + �2�

4
√
�

�
�

�
+ n1sin

�
�
√
�

�
+ n2cos

�
�
√
�

�� +
k
√
�

�
n1cos

�
�
√
�

�
− n2sin

�
�
√
�

��

4

�
�

�
+ n1sin

�
�
√
�

�
+ n2cos

�
�
√
�

��
⎫⎪⎬⎪⎭

1∕2

,

(30)p(x, t) = ei�

�
±
1

4
k
√
−� ±

k�
√
�

4
√
�n2

sec
�
�
√
�

�
−

k
√
�

4
tan

�
�
√
�

�� 1

2

.

(31)p(x, t) = ei�

�
±
1

4
k
√
−� ±

k�
√
�

4
√
�n1

csc
�
�
√
�

�
+

k
√
�

4
cot

�
�
√
�

�� 1

2

.

w(�) = ±
1

2
k
√
−� +

k
√
�

�
n1cos

�
�
√
�

�
− n2sin

�
�
√
�

��

2
�
n1sin

�
�
√
�

�
+ n2cos

�
�
√
�

�� .
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Including � = kx −
2k�(t+

1

Γ�
)
�

�
 , �(x, t) = �x +

(−�2−k2�)(t+
1

Γ�
)
�

�
.

Now, putting n1 = 0 , solution (32) yields

Moreover, for n2 = 0 , the solution (32) takes the form,

When � = 0 Similarly, two sets of solution have been attained in this regard which have 
been brought out below:

Set 1 h0 = 0 , h1 =
lk

4
 , m1 = ±

l

4
k

√
n2
1
− 2�n2 , � = −�2,v = 2k�,

Where l = 1 and 3.
Equation  (22) permits us to generate a solution of Eq.  (21) with the aid of the stated 

values of parameters.

which bring out the travelling wave solution of Eq. (1) as:

with � = kx −
2k�(t+

1

Γ�
)
�

�
 , �(x, t) = �x −

�2(t+
1

Γ�
)
�

�
 , n1 , n2 , � is arbitrary constants.

Set 2 h0 = 0 , h1 = k , m1 = −
kn1

2
 , � = 0 , � = −�2 , v = 2k�.

Setting solution set 2 in Eq. (22), we attain

which provides the required solution of Eq. (1).

with � = kx −
2k�(t+

1

Γβ
)
�

�
,�(x, t) = �x −

�2(t+
1

Γ�
)
�

�
.

(32)p(x, t) = ei�(x,t)

⎛
⎜⎜⎜⎝
±
1

2
k
√
−� +

k
√
�

�
n1cos

�
�
√
�

�
− n2sin

�
�
√
�

��

2
�
n1sin

�
�
√
�

�
+ n2cos

�
�
√
�

��
⎞
⎟⎟⎟⎠

1

2

,

(33)
p(x, t) = ei�(x,t)

����
±
1

2
k
√
−� −

k
√
�tan

�
�
√
�

�

2
.

(34)p(x, t) = ei�(x,t)

�
±
1

2
k
√
−� +

k
√
�cot(�

√
�)

2
.

w(�) =
lk
(
�� + n1

)

4
(

�2�

2
+ �n1 + n2

) ±
lk

√
n2
1
− 2�n2

4
(

�2�

2
+ �n1 + n2

) ,

(35)q(x, t) =
ei�(x,t)

√
lk

2

�
(
�2�

2
+ �n1 + n2)

��
�� + n1

�
±

�
n2
1
− 2�n2,

w(�) =
kn1

2
(
�n1 + n2

) ,

(36)p(x, t) = ei�(x,t)

√
kn1

2(�n1 + n2)
,
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4 � Comparison

In this section, we focus on the comparison between the results obtained in previous arti-
cles carried out by Kadkhoda and Jafari (2019) and Razazadeh et al. (2019) and the results 
attained in this study, which have been provided in Tables 1 and 2.

Therefore, from Tables 1 and 2 it is observed that the stated solutions in the Tables are 
similar because of choosing zero value for several parameters. However, the original forms 
of solutions are novel and have yet to be achieved in any preceding article. Thus, it has 
been notified that the rest of the attained solutions are novel.

Table 1   Comparison between the results by Kadkhoda and Jafari (2019) and the results attained in this 
study

Results of Kadkhoda and Jafari (2019) Results attained in this article

Solutions (29) and (30) of this article may be writ-
ten in general form as:

�1(x, t) =
�
Γ1

�
±1 + tanh

�
�
√
−�

��
± Γ2sech

�
�
√
−�

�� 1

2

ei�(x,t)

Here, Γ1 , Γ2 are arbitrary constants

Solution (27) in this article is expressed in the general 
form as:
p(x, t) = ei�(x,t)

�
Δ1(±1 + tanh

�
�
√
−�

�
) ± Δ2sech(�

√
−�)

� 1

2

Here, Δ1 , Δ2 are arbitrary constants

Table 2   Comparison between the results by Razazadeh et al. (2019) and the results attained in this study

Results of Razazadeh et al. (2019) Results attained in this article

If we let �� = Δ and � = 2 , � = 1 , the solution for 
� = 0 may be written in general form as, q(x, t)

=
��

±
k

2

√
−Δ + Γ1tanh

�
�
√
−Δ

��� 1

2

ei�(x,t)

Here, Γ1 = arbitrary constants and Δ < 0

Solution (24) in this article may be expressed in the 
general form as,

p(x, t) = ei�(x,t)

�
±

1

2
k
√
−� +

k
√
−�

2
tanh

�√
−��

�
,

where, 𝜆 < 0

Similarly, another solution had been attained for 
� = 0 , q(x, t)

=
��

±
k

2

√
−Δ + Γ1coth

�
�
√
−Δ

��� 1

2

ei�(x,t)

Here, Γ1 is arbitrary constant and Δ < 0

Solution (25) in this article may be 
expressed in the general form as, 

p(x, t) = ei�(x,t)

�
±

1

2
k
√
−� +

k
√
−�

2
coth

�√
−��

�
,

where 𝜆 < 0

For � = 0 and Δ > 0 , the attained solution may be 
represented as, q(x, t)

=
��

±
k

2

√
−Δ + Γ1tan

�
�
√
Δ
��� 1

2

ei�(x,t)

Here, Γ1 is arbitrary constant

Solution (33) in this article may be 
expressed in the general form as, 

p(x, t) = ei�(x,t)

�
±

1

2
k
√
−� −

k
√
�tan(�

√
�)

2 ,
where, 𝜆 > 0

Similarly, another solution had been attained for � = 0 
and Δ > 0 , q(x, t)

=
��

±
k

2

√
−Δ − Γ1cot

�
�
√
Δ
��� 1

2

ei�(x,t)

Here, Γ1 is arbitrary constant

Solution (34) in this article may be 
expressed in the general form as, 

p(x, t) = ei�(x,t)

�
±

1

2
k
√
−� +

k
√
�cot(�

√
�)

2 ,
where, 𝜆 > 0



Optical soliton solutions to the time‑fractional Kundu–Eckhaus…

1 3

Page 11 of 17  291

5 � Visualization of the solitons and their descriptions

The characteristics and physical significance of the graphs plotted for the suitable values 
of parameters involving in attained solutions have been explained minutely in this section. 
Figure 1 disclose the feature of imaginary part of solution (23) which have been plotted for 
the values � = 0.774 , � = −2 , k = −0.708 , � = −4.67 , n1 = 0.89 , n2 = −0.88 . Imaginary 
part of solution (23) exhibits a periodic soliton solution with velocity v = 2.832 . From the 
contour plot it can be observed that the peak of the periodic soliton is occurred after a 
constant period. Periodic soliton can travel a long distance with the unaltered shape and 
velocity. Because of its significant characteristics, this type of soliton is used to trans-
fer datum in remote area. This type of soliton is a potential and long-lasted soliton trav-
elling a great distance with unchanged property. Figure 2 imparts the graphical attribute 
of real part of solution (23) while Fig.  3 is illustrated for the modulus of solution (23). 

Type of solution: Periodic soliton

(a) 3D plot (b) 2D plot
 

(c) Contour plot

Fig. 1   Graphical exhibition of imaginary part of solution (23)

Type of solution: Periodic soliton

(a) 3D plot (b) 2D plot (c) Contour plot

Fig. 2   Graphical exhibition of real part of solution (23)

Type of solution: Kink soliton

(a) 3D plot (b) 2D plot (c) Contour plot

Fig. 3   Graphical exhibition of modulus of solution (23)
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Real part of solution (23) represents a periodic soliton for the values � = 0.99 , � = −1.03 , 
k = −0.926 , � = −0.23 , n1 = 0.53 , n2 = 1.715 with velocity v = 1.91 and modulus of 
solution (23) represents a kink soliton for the values � = 0.99 , � = −0.025 , k = −0.926 , 
� = −5 , n1 = 1.136 , n2 = 1.445 with velocity v = 0.0463 . Solitons which alter from one 
asymptotic state to another and become stable in further propagation are acquainted as 
kink solitons. Hence, kink soliton provides constant value for t → ∞ . In optical fiber study, 
kink soliton is also acquainted as dark soliton and it is used to transfer datum in long dis-
tance. Imaginary part of solution (26) presents a periodic soliton with velocity v = 0.76 
which have been illustrated in Fig. 4 for the apt values � = 0.368 , � = −1.45 , k = −0.264 , 
� = −3.81 , n1 = −3 , n2 = 1.36 , � = −5 . Moreover, modulus of solution (26) demonstrated 
a kink soliton with velocity v = 0.19 for the chosen values � = 0.312 , � = −0.095 , k = −1 , 
� = −5 , n1 = 0.53 , n2 = −2 , � = −5 , which have been attached to Fig. 5. Figure 6 includes 

Type of solution: Periodic Soliton

(a) 3D plot (b) 2D plot (c) Contour plot

Fig. 4   Graphical exhibition of imaginary part of solution (26)

Type of solution: Kink soliton

(a) 3D plot (b) 2D plot (c) Contour plot

Fig. 5   Graphical exhibition of modulus of solution (26)

Type of soliton: Periodic soliton

(a) 3D plot (b) 2D plot
(c) Contour plot

Fig. 6   Graphical exhibition of modulus of solution (29)
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the graphical feather of imaginary part of solution (29) drawn for the values � = 0.1 , 
� = 3.64 , k = −0.1 , � = 4.838 , n1 = 5 , n2 = 1.975 , � = 4.307 . Figure 6 exhibits physical 
characteristics of modulus of solution (29) which presents a periodic soliton with v = 0.95 . 
Figure 6 is drawn for � = 0.99 , � = 2.07 , k = 0.23 , � = 4.856 , n1 = −0.05 , n2 = −0.792 , 
� = 4.429 . Figure 7 is illustrated for the real part of solution (32) with the aid of chosen 
values � = 0.774 , � = 1.5 , k = −0.02 , � = 4..404 , n1 = 0.17 , n2 = 0.75 . From Fig. 7 it is 
demonstrated that real part of solution (32) exhibits a periodic soliton of velocity v = 0.06 . 
Though the imaginary as well as real parts of solution (35) present periodic soliton with 
velocities v = 3.01 and v = 3.232 respectively, they have the varied physical structure as 
shown in Figs. 8 and 9 respectively. Figure 8 is plotted for� = 0.1 , � = −1.97 , k = 0.764 , 
� = 1.73 , n1 = −3 , n2 = 2 whereas Fig.  9 is plotted for � = 0.729 , � = −2 , k = −0.808 , 
� = 5 , n1 = −3 , n2 = 0.41 . Figure 10 describes the graphical behavior of modulus of solu-
tion (35) for � = 0.889 , � = −0.65 , k = −0.15 , � = −5 , n1 = −4.71 , n2 = −4 . From Fig. 10 
we observe that modulus of solution (35) presents a compacton with v = 0.195 . From the 

Type of solution: Periodic soliton

(a) 3D plot (b) 2D plot
(c) Contour plot

Fig. 7   Graphical exhibition of real part of solution (32)

Type of solution: Periodic soliton

(a) 3D plot
(b) 2D plot

(c) Contour plot

Fig. 8   Graphical exhibition of imaginary part of solution (35)

Type of solution: Periodic soliton

(a) 3D plot (b) 2D plot
(c) Contour plot

Fig. 9   Graphical exhibition of real part of solution (35)
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figure, it can be noted that it will be vanished after a short time of travel. As a result, com-
pacton is a type of soliton where data propagate in compact area and is used to transfer 
datum in a nearby area.

In this module, we exhibit the acquired solutions through the graphical representations. 
The exact soliton solutions have been picked out for the apposite values of arbitrary 
parameters comprising in attained analytical solutions and have been plotted within the 
ranges −5 ≤ x ≤ 5 and 0 ≤ t ≤ 10.

6 � Conclusion

In this article, we have established analytical soliton solution of the time-fractional Kundu-
Eckhaus equation concerning beta derivative through the two variables (G�∕G, 1∕G)

-expansion approach. This method permits us to formulate soliton solutions comprising 
trigonometric, hyperbolic, rational functions with arbitrary parameters. Consequently, sev-
eral kinds of soliton, like the periodic soliton, the kink, the singular periodic soliton, the 
compacton, the singular bell-shaped soliton, etc. have been formed for the suitable values 
of arbitrary parameters. Moreover, some consistent solutions of the concerned equation 
have been come out in this research work. The contour plot, two- and three-dimensional 
graphs illustrate the physical configuration of the attained results. The results of this article 
assure us about the reliability of the implemented method to investigate FNLEEs. There-
fore, it is elucidated that this method can be considered for use in determining the useful 
and optimal soliton solutions to other significant FNLEEs.
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