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Abstract

In this paper, some analytical solutions for a model of dual-core optical fibers governed
by a system of coupled non-linear Schrodinger equations (NLSEs) and the effect of the
coefficient of the group velocity dispersion term on the considered model are investigated.
The group velocity dispersion (GVD) has a important role in the optical wave propaga-
tion. The enhanced modified extended tanh expansion method (eMETEM) is successfully
implemented to the governing model. The NLSE system is turned into a nonlinear ordi-
nary differential equation (NLODE) via appropriate wave transformations. Supposing that
the NLODE has solutions in the form suggested by the method and utilizing the enhanced
solutions of the Riccati equation, we gain a nonlinear system of algebraic equations. The
solutions of the governing model are obtained after solving the system of algebraic equa-
tions. 2D, 3D and contour illustrative figures for the physical interpretation of the attained
solutions are presented. Besides, the result of the investigation, which is related to the
effect of the coefficient of the group velocity dispersion term, is presented by supporting
the various graphical scheme.

Keywords Group velocity dispersion - Dual-core optical fibers - Soliton propagation -
Modified extended tanh expansion method - Enhanced Riccati solutions

1 Introduction

Partial differential equations, especially NLSEs, can widely be used to model optical

phenomena as used for phenomena in various areas. Generating the model for a physical
event and obtaining exact, analytical or numerical solutions for the model are the main
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research subjects for many researchers. One of these models is optical modeling, which has
come to the fore in recent years. There are some examples of optical modeling like opti-
cal image denoising (Qiao and Zou 2013), shock waves (Guner 2017), optical fiber pulses
(Kudryashov 2020; Samir et al. 2021), light rays (Ren et al. 2019), electromagnetic analy-
sis of dispersive media (Li et al. 2019), magneto-optic wave guides with different non-line-
arity (Ekici et al. 2017), thirring optical solitons (Bakodah et al. 2017), phase-shift control-
ling of solitons (Liu et al. 2019), 1-soliton solutions Biswas (2009), soliton transmission of
optical fibers (Biswas and Arshed 2018).

Besides these models, with the help of computer-aided mathematical calculation pro-
grams, a wide variety of analytical and very efficient numerical methods have been devel-
oped in the recent years. For example, modified extended tanh method (Cinar et al. 2021),
Sardar sub-equation method (Esen et al. 2021), extended rational sin-cos and sinh-cosh
methods (Mahak and Akram 2019; Cinar et al. (2021; Mahak and Akram 2019; Cinar
et al. 2021), Riccati Bernoulli sub-ODE method (Ozdemir et al. 2021), generated expo-
nential function method (Srivastava et al. 2019), wavelet metods (Secer and Cinar 2020;
Cinar et al. 2021), modified Kudryashov method (Srivastava et al. 2020) and the extended
sinh-Gordon method (Dutta et al. 2020).Laplace-Adomian Decomposition (Gonzalez-
Gaxiola 2022), the improved Adomian decomposition scheme (Al Qarni et al. 2022), Lie
symmetry analysis (Bansal et al. 2018), analytic soliton solution (Liu et al. 2019), station-
ary soliton (Adem et al. 2021), sine-Gordon equation approach (Yildirim et al. 2021a, b),
Modified Kudryashov’s method (Biswas et al. 2018), improved modified extended tanh-
function method (Mirzazadeh et al. 2017), extended trial equation and extended i—expan—
sion scheme (Ekici et al. 2016), unified Riccati equation, new mappig scheme (Zayed et al.
2021), semi-inverse variational principle (Zayed et al. 2021), the extended auxiliary equa-
tion approach and Jacobi’s elliptic function method (Bansal et al. 2018); Yildirim et al.
2022), the Kudryashov’s integration scheme (Arnous et al. 2022; Ozisik et al. 2022).

In this work, we deal with the system of coupled NLSEs defined as Agrawal and Liao
(1995); Baskonus et al. (2018).

ﬂlu,,+i(ux+n2v,) +i13|u|2u+r/4v=0, e))

nlv,,+i(vx+;12u[) +n3v*v +nu =0, )

where i = \/—_1 ,u = u(x,t) and v = v(x, ) are envelopes of the field, x is the co-ordinate of
propagation, i is the group-velocity mismatch, #, is the group-velocity dispersion, 7, is the
linear coupling coefficient and #; is defined as n; = %, where m, is the nonlinear refrac-
tive index, k is the wavelength and B, denotes effective mode area of each wavelength. To
obtain the solution of the equation systems in this study, we used the computer algebra
system as in previous studies (Guzel and Bayram 2006; Cinar et al. 2021; Akinlar et al.
2014).

Here, eMETEM has been applied to the dual-core optical equations in order to gain
novel solutions. Some related researches on the method are the space-time fractional equal
width and modified equal width equation (Raslan et al. 2017), modified Benjamin-Bona-
Mahony and Zakharov-Kuznetsov equations (Taghizadeh and Mirzazadeh 2012).

The organization of the paper is as follows: Sect. 2 explains the algorithm of eMETEM
(Ozisik et al. 2022). The application of the method to the dual-core optical fiber equations
is added to the Sect. 3. The obtained results and illustrative figures are given in Sect. 4 and
the conclusion of the study is included in the final section.
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2 Method

Step 1: Consider the following NLPDE (Nonlinear Partial Differential Equation) and the
traveling wave transformations, respectively:

oM oM 9*M *M 9*M _
(v S T T ) = ®
M, 1) =€’M©E), 0=px—pt, &=px+pt, €]

where f,, f,, p; and p, are real constants. Substituting Eq. (4) into Eq. (3), we obtain the
following NLODE:

P(M(©),M'©),M"©),...) =0, §))

where ’ denotes the derivative of M (&) with respect to &.
Step 2: Suppose that Eq. (5) admits the following equation as solution:

M(E) =4+ Y AxK(E)+ Y Bx7(@), ©6)
i=1 i=1
where Ay, A, ..., A, B, ..., B, are real constants to be computed later (A,, and B,, should

not be zero, simultaneously). We can find m € Z* by applying the balancing rule in Eq.
(5). The k(&) satisfies the following Riccati differential equation:

d
';(;) = o F [k, 7)

where  is a real constant.

Step 3: Utilize the solutions of Eq. (7) are given in Table 1.

Step 4: Substituting Eq. (6) and its related derivatives into Eq. (5) and considering Eq.
(7), one can get a polynomial in «x(£). Gathering the coefficients of «x(£) with the same
power and equating each coefficient to zero, we get a system of algebraic equations.

Step 5: The unknowns Aj,A,,...,A,,,B,,B,, ..., B,,, B, B, P;,P, and @ can be found
by solving the set of algebraic equations in Step 4. Substituting the x;(£) funtions given in
the Table 1. into Eq. (6) and considering Eq. (4), the solutions of the NLPDE in Eq. (3) are
found.

3 Application of the method

Let us consider Eq. (1) and the following wave transformations:
u(x, t) = ei9 U(g)’ V(-x’ t) = ei@v(&), 5 =06x — At’ 0= ﬁl'x - ﬂ2t’ (8)

where 6, A, f; and f, are non-zero real values. 8, §;, f,,6 and A stand for the phase compo-
nent, the frequency, the wave number and the velocity of the wave, respectively.

Substituting the wave transformations in Eq. (8) into Eq. (1), we obtain the following
equations from the real and the imaginary parts, respectively:
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Table 1 The analytical solutions of Riccati Eq. (7)

k(@) ==+ iwtanh(@(§+§o)>,
K E) =% iwcoth(@(é+§g)),
K7€) ==+ ia)(tanh (2 1(0(5 + 60)) ¥ Msech(Z iw(f + fo))),

(w—\/gtanh (\/iTH(erfo)))
(1¢@tanh (\/;(f‘ffu))) '

\/g(s—umh (2\/17;(@:”)))

K& =7F

K@ =7F (3+4sinh (2y/Z0(2+4)) )
+ A/ xo(a?+p2)—ar/xwcosh (2\@(5*‘5‘)))
ke =g :
a sinh (2@(5+50)>+ﬁ
F _ _ 2a
7 (é) = Ao [1 a+cosh (2@(5*‘5‘)))11 sinh (2\/170(5%5(,)) :| ’

KF© = FvFoun (VFa(E+&)).

K5 = xy/Focot (VFa(E+&) ),

KO =7F ico(tan (2 Fo(&+ 50)) F sec <2 Fo(&+ .*:0))),
VFo(1-un (vFa(e+)))

Krl (5) ==+ (1+lan(\/5(f+5n)))
- o \/;70)(475 cos (2\/170)(5*50)))
K12(§) =+ (3+5 sin (2\/5(5*50)))
o T )

asin (2\/5(5"’50))'*%

2a

a+cos (2\/¥7w(C+§0))tM sin (2\/;0(5+§0)) ’
K5O = 1/E+ &) 0 =0,

KT (&) = idy/Fo |1 -

where &, is a free real parameter and A = F1

2
(B + my) V) — (Bo7ny + By ) UE) + 5 (U©E) + Azf—?U(@ =0, 9)
(241, +6) UG ~ A VO = 0. 10

Similarly, substituting Eq. (8) into Eq. (2), we obtain the following equations from the real
and the imaginary parts, respectively:

2
(Botty + 1) UE) = (B my + By ) VIE) + ms(V(©) + 1y A2dd—§2w§> =0, )
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(248,m + 5)%‘/(5) - nzi%U(f) =0. (12)

By considering the imaginary parts equations in eqs. (10) and (12), it can be seen that the
system has a non-trivial solution U(¢) = V(£). So, from Egs. (10) or (12), we get:
6
A=—r—m. 1
2Bn —mp (13)

Taking Eqgs. (9) or (11) into consideration, one can get:
dZ
(<o + oty = By + ) U +my(U@) +m & 35 U = 0. (14)

Balancing the terms U” and U? in Mahak and Akram (2019), we get m = 1. So, Eq. (6)
turns into following form:
1

U©) =4, +A1K(§)+B1T§)a 5)

where A, and B, should not be zero, simultaneously. Substituting the Eq. (15) and its neces-
sary derivatives into Eq. (14), we get a polynomial form in x(&). Gathering the each term
according to same power of /(&) and equating each coefficients to zero, we get the follow-
ing system as:

K@ B2 (- (1/2m,) B+ 8me? ) =0,

K2(&) 1 mAB,Y =0,

=28"n> + 48, °n, ",

=2 (((=3A¢" = 3AB, )13 + By = ny)my + (5/4)m,%) o
+ 2(((—31402 - 3A1B1)’73 +p - 774)’71 + (1/4)’122)’72ﬁz
+8%mw — (1/2)((=3Ay> = 3A,B) )3 + By — ny)°
k&) 1 Ag(—mBl +mby + (Ag® +6AB, s+ 1, — ) =0, (16)
= 28" + 48, °n, %,

- 2n (((—3A02 —3AB))n; + ) — ’14)’71 + (5/4)ﬂ22)ﬂ22
+2(((=340> = 3A,B) )13 + By — ny)m + (1/4m,° )y,
+ 8% mw — (1/2)((=34¢% = 3A,B) )13 + By — ny)my”
X&) 1 mAAr =0,

@ 1 (242870 m + (<24, Bymyny + 87 )ny + (1/DA*n, 03 ) A, = 0.

k() : B, =0,

1 =0,

k(&) :

By solving this system, we get many solution sets. But we present some of the sets as
follows:

@ Springer



162 Page60f18 M. Ozisik et al.

(ﬂlﬁz —1m B+ B ’74)(2’71,37 Vlz) A _0

852y
D = !
Sety = 3 _ _Ov2mny _ \[(’llﬂz ~mby+hi—n) 2mpr-m) [’

= ’13(2’71/32_'12)’ = 86/—nin3

B, = =48 3 +(88, 3 m+482n )+ Qo +1y* (m Byt
1=
(2'71172 '12)
64/-2 64/ 2
A() — O,Al — M 13 ,B, = W M 13
n3 (2’11 ﬂz_”lz) N3 (2’71 b _’lz)

( 16wn, 262 2, +4/20,-20; )
Ay =0,A, = = Mty EE

= , By ,
Vs (Q—Q)w(y—-Q;) ad \

s

DS€t2 =1

DSet; = <
B — A/ mns(=Q)w
L 1 4nyny J
fAO —0,A, = 16820, 2w _ V29,420,421,

=y, = P ﬁz B
DSet, = 1 Y (R +) (42 "o
B = V mmsw(Q+Q3)
=t

L 4myn3 J

where

Q) = (=58, n,> — 48°w — 4p,mymy),
Q) = (—648%w + 1647 = 32y + 1603)1, Qo = 4Bimy — 4 =13 (47,

Q; = \/Ql +811§(n4 —ﬁ1)’11 +i1§,94 = (4’14 _4/31)”/1 +’7§’

Substituting the ;(¢) in Table 1 into Eq. (15) and using the Eq. (8), the following solution
functions u; (x H=v; (x t) for the NLSE system in eqs. (1) and (2) are obtained in the gen-
eral form for ji=1, 2 ,15:

B,
x,t) = Ay—A\/—wtanh (P, ) - ——— |, 18
i X( 0 : @i ( ) Htanh (Pam)> (1%

Bl
,t — A _A \— th Pa)xt T T s \ /) 19
w60 = 1 < o AnEeeon(u) \/—wcoth(waz)) "

Ay —A/-o tanh (2P, ) + iusech(2P,,,))
uz(x,t) = y ’
\/—w(lanh (2P, »,)+1M93Lh(2P( 1))

(20)

—y/—wtanh (P, 1+ +/—wtanh (P,,
u4(X,t)=)( A0+A1w @ tan ( th) +Bl wlan ( um) , (21)
1 + y/—wtanh (wa,) w — y/—wtanh (wat)

V- (5 —4cosh (2P,,,)) .\ 3 +4sinh (2P,,,) )

( ,t) = Ay +A /
MS § X( ’ I 3 + 4sinh (2wal) 1 —CO(S - 4COSh (Zwat))

(22)
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A+ A uy\/—(a+b*)w—a\/-wcosh (2P,,,)
0 ! asinh (2\/—cm1(x—vt))+h

us(x, 1) = x asinh (2P, )+b ’ @3)
+B o ‘wxt
! uz/ —(a2+b2)w7a\/$cosh (2P,.)
A +A u /— par/—w
(%, 1) = +0 ( 2 : 24)
ug(X, t) = }((AO +Al ﬁtan (Qcoxt) + W:%(Q))’ (25)
@ wxt

x,1) (A Aocot Q) d (26)

UgX,t) =y 0o~ A Vo O =N

\wcot (Quwt)

B

(X, ) = ;{<A0 + Ao (tan (20,,,) + usec (20,,,)) + G—1> 27
0
where GO = ﬁtan (zwat) + M sec (zwat)
1-t 1+t
u11(X, t) =X Ao _A1 @( o (Q(M)) - Bl - (QOM) ’ (28)
1 + tan (wa,) \/5(1 — tan (wat))
up(x,t) =y Ag+A Vo4 = 5cos (20,,)) +B 3+ 55 (20u) (29)
2% CT T 345600 (20,,) ' Voo (4—5cos (20,,)) )
in (2 b
upx,t) = y[Ag+A,— s +B, 251 (2e) + ’
asin (Zmer) +b u (a2 - bz)a) — ay/wcos (2Qm,)
(30)
where G, = (a2 - bz)a) —ay/wcos (2wa,).
AO +A l'u\/_ a+cos 2lWI\t/»sm
w0 =4, ! .o | G1)
(inv/e —ﬁ)
1

u5(x,t) = oAt (32)
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where  y=e(htP) j = 0 p = \/—w(dx — M), 0y = \J@(6x— )  and

m=2m5,° nt

vi(x, 1) = u(x, t), G=12,...,15).

4 Results and discussion

In this section, we have presented various graphical illustrations of selected
some of the solution functions obtained in the study. In Fig. 1, we give
the some graphical illustrations of us(x,f) in Eq. (20) for the parameters
n =-0251n,=03,7,=0.75,7,=0.15,0, =0.85,,=125,6 =2 and pu=1 with
DSet,. The Fig. la—c give the representation of anti-peaked soliton. The Fig. lc also
reflects traveling wave property. The Fig. 1d—f belong to the imaginary part of u5(x, ), and
a periodic bright-dark soliton with different amplitudes is formed for the investigated case.

In Fig. 2, the some plots of u;(x,#) in Eq. (20) are demonstrated for the parameters
w=-04,7,=0.65n,=0.15,1,=0.25,1,=05,0,=06,6 =085 and u=1 with
DSet,. The Fig. 2a—c represents a bright soliton. The Fig. 2¢ also reflects the traveling wave
feature. The Fig. 2d—f belong to the imaginary part of u;(x, ¢), producing a lump-shaped
soliton for the case under consideration.

In Fig. 3, the some views of ug(x,t) in Eq. (23) are illustrated for the parameters
w=-04,n=1,n =1.65n,=155n=225n, =25, =0256=02 and pu=1
with DSet;. When the Fig. 3a—c are viewed from the x-axis direction, they demonstrate a
bright soliton without traveling wave feature. The Fig. 3d—f belong to the imaginary part of
ug(x, 1), and a degenerate dark-bright-like image is formed for the examined situation.

In Fig. 4, we present some portraits of u;,(x,?) in Eq. (31) by selecting the parameters
o =0.04,n, =0.65,17, =0.15,13, =0.25,7, = 0.5,6, =0.6,6 =085, a =12, b = 0.6
and y = 1 with DSet,. The Fig. 4a—c have a periodic bright soliton behavior. The Fig. 4c
shows the traveling wave feature. The Fig. 4d—f belong to the imaginary part of u,(x, f) and
produce a rogue wave style soliton for the case under consideration.

In Fig. 5, the some silhouettes of u,4(x,f) in Eq. (31) are given for the parameters
o = 0.00004,n, = 0.65,n, = 0.15,#;, =0.25,#, =0.5,5,=0.6,6 =0.85,a=12,b=0.6
and y = 1 with DSet,. The Fig. Sa—c illustrate a compacton-style soliton without a traveling
wave image. In a sense, it can also be called a parabolic soliton. The Fig. 5d—f belong to the
imaginary part of u,,(x, ), producing periodic bright-dark solitons of variable amplitude.

In Fig. 6, the some depictions of u4(x,?) in Eq. (31) are presented for the parameters
w=04,n =165mn=155n=225n =250 =0.256=02,a=12,b=0.6 and
u = 1 with DSet,. The Fig. 6a—c represent a periodic bright soliton. The Fig. 6d—f belong
to the imaginary part of u,,(x, t) and show variable types of degenerate lump-like soliton.

In Fig. 7, we investigate the effect of the group velocity dispersion on the u;(x,?)
in Eq. (20) for the parameters #, =0.3,73=0.75,6,=0.85p0,=1256=2
and wu=1 with DSet;. In Fig. 7a, taking #n,=-0.15 and choos-
ing #n, <0, the chromatic dispersion term coefficient 7, are selected as
—0.0025, —0.050, —0.075, —0.100, —0.125, —0.150, —0.175, —0.200, —0.225and — 0.250 ,
respectively. When the obtained figures are examined, if #; < O and #, increase, the lower
peak of the wave remains on the horizontal x-axis, but the soliton moves to the right. At the
same time, there is an increase in the vertical amplitude of the soliton.

In Fig. 7b the same examination is made for #;, > 0 and 5, = 0.95, the lower peak of the
soliton stays on the horizontal axis due to the increase in #; > 0 and #,, and the peak moves
horizontally depending on the changing #, values. However, this movement is not just a
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0.25

02
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0.1
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Im(ug(x, 1))
Im(uy(x, 2))
Im(u, (x,3))

X

(f)

Fig.1 The some graphical illustrations of u;(x,?) given in Eq. (20) a 3D view of |u;(x, 1)|, b the contour
view of |u;(x, 1)|, ¢ 2D view of |u;(x, )|, d 3D view of Im(u;(x, t)), e the contour of Im(u;(x, t)), f the 2D
view of Im(u3 (x, t))

movement to the right or the left, as we obtained in our previous examination, the move-
ment varies. The reason for this variability can be explained by the difficulty in control-
ling chromatic dispersion in optical wave propagation. Moreover, the increase in #; values
causes a decrease in the vertical amplitude of the soliton and also affects the shape of the

soliton. For example, when #; = 0.135, the soliton often refers to a V-type soliton.

In Fig. 8, the effect of the chromatic dispersion on the u;(x,#) in Eq. (20) is inves-
tigated for the parameters w = —0.4,5, =0.15,13 =0.25,n, = 0.95, , = 0.6,6 = 0.85
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35
;
1
;
5
s %

ug(x, 1)1
ugx 21| |
lu,x3) | |

Im(ug(x.t))

Im(ugx, 1)
im(ug(c,2) | |
Im(uy(x:3)

Im(us(x,t'))
o

o

(e) (f)

Fig.2 The some graphical illustrations of u;(x,?) given in Eq. (20) a 3D view of |u;(x, )|, b the contour

view of [u3(x, )], ¢ 2D view of |uz(x,1)|, d3D view of Im(u3(x, 1)), d the contour of Im(uz(x,1)), d the 2D
view of Im(u;(x, 1))

and pu =1 with DSet,. In Fig. 8a, an examination is made for #; < 0. As a result of
the examination, when 7, < 0 and #, increase, the soliton maintains its general shape in
terms of species, that is, the bright soliton character continues, the skirts of the soliton
remain on the horizontal axis, but the soliton moves to the right. At the same time, there
is a change in the vertical amplitude of the soliton. It is not possible to characterize this
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Fig.3 The some views of u4(x, #) given in Eq. (23) a 3D view of |u4(x, 7)|, b the contour view of |ug(x, )|, ¢
2D view of |ug(x, )], d 3D view of Im(ug(x, 1)), e the contour of Im (ug(x, 1)), f the 2D view of Im (ug(x, t))

change as a regular increase or decrease. As can be seen from the Fig. 8a, there is an
increase for some values and a decrease for some values.

In Fig. 8b, while 5, > 0 and #, increase, an examination is made. As a result of the
examination, the soliton still maintains its bright soliton feature, and the skirts of the
soliton remain on the x-axis. However, there are dramatic changes in the position and
amplitude of the soliton. When the Fig. 8b is examined in detail, it is observed that
the change in the position and amplitude (pulse beats) of the soliton is random. The
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Fig.4 The some portraits of u,,(x,#) given in Eq. (31) a 3D view of |u,(x,7)|, b the contour view of
l1414(x, 2)], € 2D view of |uy4(x, )|, d 3D view of Im(u,4(x, 1)), e the contour of Jm(u,(x, 1)), f the 2D view of
Im(uy,(x, 1))

randomness can also be explained as the difficulty in controlling the GVD. For exam-
ple, although #, = —0.125 in Fig. 8a, it is chosen as 0.135 instead of 0.125 in Fig. 8b.
Moreover, in this case, the n, value is taken as 0.95 instead of 0.15. The reason for
this is that if #; = 0.125,n, = 0.15 are taken, the soliton turns into a completely dif-
ferent shape. Thus, in a sense, the GVD is controlled by the nonlinear term within the
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Fig.5 The some silhouettes of u,,(x,?) given in Eq. (31) a 3D view of |u,,(x,?)|, b the contour view of
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perturbation term. This situation alone shows how difficult it is to control the terms
group velocity dispersion, chromatic dispersion, and inter-modal dispersion in optical
fibers. Therefore, studies on these situations are important and a great need.
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5 Conclusion

In this study, the nonlinear Schrodinger equation, which has an important place in mod-
eling soliton transmission in optical fibers, has been discussed and successfully inves-
tigated. As a result of the examination, many soliton solutions and graphics have been
obtained and interpreted in detail, and the comments made with 3D, contour and 2D
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graphics have been demonstrated. The study is not only about obtaining the soliton
solutions of the NLSE equation, but also the eMETEM method has been successfully
applied. As a more important contribution of this paper, the effect of the coefficient of
the GVD dispersion term on the soliton propagation has been investigated. Considering
the effect of the term coefficient of the GVD dispersion on soliton transmission in opti-
cal fibers and the difficulty in controlling this effect, the obtained results in the study
might contribute to future studies in this field.
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