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Abstract
In this work we will extract new private types of impressive soliton solutions for two dis-
tinct models that describe propagation of waves in nonlinear optics. The first one is the 
perturbed Gerdjikov-Ivanov equation (PGIE) which act for the dynamics of solitons propa-
gation that carry quantic nonlinearity of Schrödinger’s equation while Schrödinger’s equa-
tion is classically explored with cubic nonlinearity. In fact, it describes the solitons that 
carry quartic nonlinearity of Schrödinger’s equation, specially the propagations of elec-
tromagnetic waves in nonlinear optical fibers. The second one is the perturbed nonlinear 
Schrödinger equation with Kerr-Law nonlinearity (PNSEWKL) that describes the behavior 
of wave propagation in nonlinear optical fibers. The study of these two models will con-
tribute to high quality to long-distance communications, hence improve the telecommuni-
cations processes. The soliton solutions will be implemented to these two models for the 
first time in the framework of the Paul-Painleve approach method (PPAM). Furthermore, 
we will hold a comparison between our achieved results with that achieved previously by 
other authors.

Keywords The Paul-Painleve approach method · The perturbed Gerdjikov-Ivanov 
equation · The perturbed nonlinear Schrödinger equation with Kerr law nonlinearity, the 
soliton solutions

1 Introduction

The main idea of this paper splits into two parts:
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(i) The first part concentrates on how we can enforce the PPAM (Kudryashov 2019; Bekir 
and Zahran 2021a, 2020, 2021b; Bekir et al. 2020) to construct the lump solutions of 
the PGIE (Gerdjikov and Ivanov 1983) which act for the dynamics of the propagation of 
solitons that carry quantic nonlinearity of Schrödinger’s equation while Schrödinger’s 
equation is classically explored with cubic nonlinearity. For this purpose, we will 
propose the dimensionless GI-equation

 With q∗(x, t) denotes the complex conjugation of the complex valued wave structure 
q(x, t) with x and t as spatial and temporal variables sequentially. The first and last 
dimensionless terms of the PGIE represent the linear and the nonlinear dispersion 
stands for soliton temporal evolution respectively. All the involved parameters S a, b 
and h(ξ)c are real-valued constants. For example, a gives dispersion of group velocity 
and b depends on coefficient of quantic form of nonlinearity.

The famous full nonlinearity structure of the perturbed GI- equation is

where α, μ and λ represent the depiction of the inter-modal dispersion, the higher-order 
dispersion effect and the self-steepening for short pulses respectively, m signifies full non-
linearity effects. The current analysis concentrates on one such nonlinear evolution equa-
tion as GI equation (Bekir et al. 2020). The spectral problem and the associated perturbed 
GI hierarchy (Fan 2000a) of nonlinear evolution equations are presented and show that 
the GI hierarchy is integrable in a Liouville sense and possesses bi-Hamiltonian structure. 
Numerous efficient and influential methods have been projected for obtaining solutions 
of GI equation, such as algebra-geometric solutions (Dai and Fan 2004), soliton hierar-
chy (Guo 2009), bifurcations and travelling wave (He and Meng 2010), bright and dark 
soliton solutions (Lü et al. 2015), Darboux transformations (Yilmaz 2015) and many more 
being studied for more than a decade (Fan 2000b; Rogers and Chow 2012; Manafian and 
Lakestani 2016; Biswas et al. 2017, 2018; Triki et al. 2017; Zhang et al. 2017), Kaura and 
Wazwaz (2018) obtain the optical solitons for PGIE.

Let us now introduce this wave transformation:

With � = x − �t, �(x, t) = −kx + wt + � , u(� ) represents the shape features of the 
wave pulse, �(x, t) is the phase component of the soliton, k is the soliton frequency, w is the 
wave number, � is the phase constant and � is the velocity of the soliton. Considering (3–6) 

(1)i qt + a qxx + b
|||q

4|||q + i c q2 q∗
x
= 0 .

(2)iqt + a qxx + b
|||q

4||| q + i c q2 q∗
x
= i [�qx + �

(
q|q|2m)

x
+ �(

(|q|2m)
x
q].

(3)q(x, t) = u(� ) ei�(x,t).

(4)qt =
[
−vu� + i wu

]
ei�(x,t).

(5)qx =
[
u� − i ku

]
ei�(x,t).

(6)qxx =
[
u�� − 2iku� − k2u

]
ei�(x,t).
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into (1), followed by uncoupling of real and imaginary parts of the equation gives a pair of 
equations namely the real part is

And the imaginary part is

The velocity of the soliton can be extracted from Eq. (8), hence we can control the 
soliton arising while Eq. (7) can be solved to determine the soliton behaviour.

Now let us put m = 1 and study Eq.  (7) by putting implement the homogeneous 
balance between u′′, u5 that implies N =

1

2
 which pushes us to take the transformation 

u = U
1

2 hence Eq. (7) will be converted to

Now, let us implement the homogeneous balance between UU′′ and either U′2 or U4 
we get N = 1.

 (ii) The second split concentrated on haw we can used the PPAM to obtain new soliton 
solutions of the PNSEWKL (Zhang et al. 2010; Moosaei et al. 2011; Biswas and 
Konar 2007; Zahran 2015; Eslami 2015; Salam 2018; Akramaand and Mahak 2018; 
Ahmed et al. 2018) that describes the propagation of waves in optical fibres

where � ,�1,�2,�3 are constants where �1,�2,�3 are the third order dispersion, the 
nonlinear dispersion and version of nonlinear dispersion respectively (Kaura and 
Wazwaz 2018). With the aid of the transformation

where i =
√
−1 while k,w and v are constants.

Now, by using the transformation Eq. (11) into Eq. (10) the following two real and 
imaginary parts can be respectively emerged

If we integrate Eq. (12) we obtain

Equations (13), (14) are the same when

From which we get the following relations

(7)au�� − (w + ak2 + �k)u − k�u2m+1 − cku3 + bu5 = 0.

(8)v = −2�k − � + cu2 − [(2m + 1)� + 2m�]u2m.

(9)2aUU�� − aU�2 − 4(w + ak2 + �k)U2 − 4k(� + c)U3 + 4bU4 = 0.

(10)iqt + qxx + �|q|2 q + i
{
�1 qxxx + �2 |q|2qx + �3

(|q|2)
x
q
}
= 0.

(11)q(x, t) = U(� )e[i(−kx+wt)], � = x − vt.

(12)�1U
��� + (2k − v − 3�1k

2)U� + (�2 + 2�3)U
2U� = 0.

(13)(1 − 3�1k)U
�� + (w − k2 + �1k

3)U + (� − �2k)U
3 = 0.

(14)�1 U
�� + (2k − v − 3�1k

2)U +
1

3
(�2 + 2�3)U

3 = 0.

(15)�1

1 − 3k�1

=
2k − v − 3�1k

2

w − k2 + �1k
3
=

1

3
(�2 + 2�3)

� − �2k
.
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Hence, we will solve any one of Eqs. (13) or (14) say Eq. (14) which is

The NLPDE have been linked with nonlinear physical structures that concerning with 
several disciplines, like fluid dynamics, wave propagation, plasma physics, nonlinear tel-
ecommunication networks, optical fibres and so on to develop these phenomena and its 
applications. Discussion the studies for some NLPDE concerning their solutions through 
reasonable analytical, asymptotic and mixture methods to obtain the exact solution for the 
NLPDE have significant role in many nonlinear problems arising in various branches of 
science. Many forms of NLPDE have been studied to construct the exact solutions in terms 
of some parameters, when these parameters take definite values the soliton solutions could 
be detected. Some trials have been documented through some published articles via some 
authors to study various forms of shallow-water equations, see for example Kumar et al. 
(2021) who used the tanh–coth method to obtain the soliton solutions of RLW equations as 
well as used the mesh-free method to converts the RLW model into a system of nonlinear 
ordinary differential equations, solved the resultant system via Runge–Kutta method and 
discuss the stability for the extracted solutions, Jiwari and Gerisch (2021) who developed 
a mesh free algorithm based on local radial basis functions (RBFs) combined with the dif-
ferential quadrature (DQ) method to provide numerical approximations of the solutions of 
time-dependent, nonlinear and spatially one-dimensional reaction–diffusion systems and to 
capture their evolving patterns, Jiwari et al. (2020) who employed the Lie Group method to 
reduce the compressible Navier–Stokes equations to a system of highly nonlinear ordinary 
differential equations with suitable similarity transformations and obtained exact solutions 
of the main equation and used the conservation laws multiplier to find the complete set of 
local conservation laws of this equation and Yadav and Jiwari (2019) who studied some 
soliton-type analytical solutions of Schrödinger equation, with their numerical treatment 
by Galerkin finite element method. There recent studies are implemented to discuss wave 
propagations in optical fibers see for example Younas and Ren (2021) who studied the 
propagation of waves through magneto-optic waveguides by using the extended Fan-sub 
equation method and extracted the exact solutions in the forms of Jacobi’s elliptic func-
tions, trigonometric, hyperbolic, including solitary wave solutions like bright, dark, com-
plex, singular, and mixed complex solitons, Younas et al. (2021) who extracted pure-cubic 
optical solitons in nonlinear optical fiber modeled by nonlinear Schrödinger equation with 
the effect of third-order dispersion, Kerr law of nonlinearity and with-out chromatic disper-
sion. The extracted soliton solutions in different forms like, Jacobi’s elliptic, hyperbolic, 
periodic, exponential function solutions including a class of solitary wave solutions such 
that bright, dark, singular, kink-shape, multiple-optical soliton, and mixed complex soliton 
solutions, Younas et al. (2022a) who investigated a series of abundant new soliton solutions 
to The Kraenkel-Manna-Merle model which expresses the nonlinear ultra-short wave pulse 
motions in ferrite’s materials having an external field with zero-conductivity, extracted the 
different forms of solutions like, Jacobi’s elliptic, hyperbolic, periodic, rational function 
solutions including a class of solitary wave solutions such that dark, singular, complex 
combo solitons, and mixed complex soliton solutions by using model expansion method, 
Younas et  al. (2022b) who investigated the dynamical behavior of doubly dispersive 

k =
w1 − ��1

3w1 − �1�2

, w =
(1 − 3�1k)(2k − v − 3�1k

2)

w1

+ k2 − �1k
3, w1 =

1

3
�1 +

2

3
�3.

(16)�1 U
�� + (2k − v − 3�1k

2)U +
1

3
(�2 + 2�3)U

3 = 0.



New diverse variety analytical optical soliton solutions for…

1 3

Page 5 of 16 190

equation which governs the propagation of nonlinear waves in the elastic Murnaghan’s rod, 
extracted a variety of solitary wave solutions with unknown parameters in different shapes 
such as bright, dark, kink-type, bell-shape, combine and complex soliton, hyperbolic, expo-
nential, and trigonometric function solutions by using the new extended direct algebraic 
method and the generalized Kudryashov method, Younas et al. (2022c) who discussed the 
dynamical behavior of ill-posed Boussinesq dynamical wave equation that depicts how 
long wave made in shallow water propagates due to the influence of gravity, obtained dif-
ferent wave structures as novel breather waves, lump solutions, two-wave solutions, and 
rogue wave solutions by utilizing of Hirota’s bilinear method and different test function 
approaches, Younas et al. (2022d) who secured the different soliton and other solutions in 
the magneto electro-elastic circular rod, obtained abundant solutions of the nonlinear lon-
gitudinal wave equation with dispersion caused by the transverse Poisson’s effect in a long 
circular rod by using the modified Sardar sub-equation method and extracted the soliton 
wave structures such as bright, dark, singular, bright-dark, bright-singular, complex, and 
combined and generate hyperbolic, trigonometric, exponential type and periodic solutions 
and Younas et al. (2022e) who secured the different forms of optical soliton solutions by 
using the new extended direct algebraic method to three-component Gross–Pitaevskii (tc-
GP) system which describes the F = 1 spinor Bose–Einstein condensate, with F denoting 
the atom’s spin the spinor Bose–Einstein condensate, achieved different kinds of solitons, 
such as dark, singular, kink, bright–dark, complex and combined, are extracted.

The main target of our work focused on derived new types of soliton solutions for these 
two various models in the framework of the PPAM, the novelty our achieved solutions 
appears through the performance of the new behaviour of the extract solitons.

This article is prepared as follow, in the second and third sections the PPAM algorithm 
and its application to construct new types of soliton solutions for the two suggested models 
respectively, in the fourth section the conclusion is established.

2  The PPAM algorithm

Any nonlinear evolution equation can be written in the form

where R is defined in terms of U(x, t) and its partial derivatives, with using the transforma-
tion U(x, t) = U(� ), � = x − vt, Eq. (17) can be reduced to the following ODE:

where S in term of U(� ) and its total derivatives.
According to PPAM (Kudryashov 2019; Bekir and Zahran 2020, 2021a, b; Bekir et al. 

2020) the exact solution for any nonlinear ordinary differential equation can be written in 
the following form

Or

(17)R(U,Ux,Ut,Uxx,Utt, ⋅ ⋅ ⋅) = 0.

(18)S(U�,U��,U���, ⋅ ⋅ ⋅) = 0.

(19)U(� ) = A0 + A1S(X) e
−N� , X = R(� ).

(20)U(� ) = A0 + A1S(X) e
−N� + A2S

2(X) e−2N� , X = R(� ).
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where X = R(� ) = C1 −
e−N�

N
 and S(X) appearing in Eq. (18) and Eq. (19) surrenders to the 

Riccati-equation in the form Sx − AS2 = 0 which has solution in the form

Consequently

3  Applications

3.1  Firstly for the PGIE

In this section we are going to apply the PPAM to get new lump solutions for the PGIE, via 
inserting Eqs. (19), (22), (23) into Eq. (9) mentioned above and equating the coefficients of 
various powers S(� )e−N� to zero we obtained a system of equations whose solution is

Now, we will implement the solutions corresponding to the first and last result.

(21)S(X) =
1

SX + X0

.

(22)U� = −NA1 Se
−N� − A1 A e−2N�S2.

(23)U�� = A1N
2 S e−N� + 3A1ANS

2e−2N� + 2A1A
2S3e−3N� .

(24)

(1) A0 = 0, a = −
3k2c2+16b(w+�k)+6�ck2+3�2k2

16bk2
,

A =
8bkA1√

9k2c2+48b(w+�k)+18�ck2+9�2k2
,

N =
−2

√
3k2(c+�)√

3k2c2+16b(w+�k)+6�ck2+3�2k2
.

(25)

(2) A0 = 0, a = −
3k2c2+16b(w+�k)+6�ck2+3�2k2

16bk2
,

A =
−8bkA1√

9k2c2+48b(w+�k)+18�ck2+9�2k2
,

N =
2
√
3k2(c+�)√

3k2c2+16b(w+�k)+6�ck2+3�2k2
.

(26)

(3) A0 =
3k(c+�)

4b
, a = −

3k2c2+16b(w+�k)+6�ck2+3�2k2

16bk2
,

A =
−8bkA1√

9k2c2+48b(w+�k)+18�ck2+9�2k2
,

N =
−2

√
3k2(c+�)√

3k2c2+16b(w+�k)+6�ck2+3�2k2
.

(27)

(4) A0 =
3k(c+�)

4b
, a = −

3k2c2+16b(w+�k)+6�ck2+3�2k2

16bk2
,

A =
8bkA1√

9k2c2+48b(w+�k)+18�ck2+9�2k2
,

N =
2
√
3k2(c+�)√

3k2c2+16b(w+�k)+6�ck2+3�2k2
.
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(1) For the first result which is

That can be simplified to be

The solution in the framework of this result, according to the suggested method will be

(2) For the last result which is

That can be simplified to be

A0 = 0, a = −
3k2c2 + 16b(w + �k) + 6�ck2 + 3�2k2

16bk2
,

A =
8bkA1√

9k2c2 + 48b(w + �k) + 18�ck2 + 9�2k2
,

N =
−2

√
3k2(c + �)√

3k2c2 + 16b(w + �k) + 6�ck2 + 3�2k2
.

(28)b = c = w = v = k = � = � = A1 = 1,A0 = 0, a = −2.8,A = 0.7,N = −1.1.

(29)U(� ) =
e1.1�

0.7(1 +
e1.1�

1.1
) + 1

.

(30)u(� ) =

(
1.1e1.1�

1.9 + 0.7 e1.1�

)0.5

.

(31)q(x, t) =

(
1.1e1.1�

1.9 + 0.7 e1.1�

)0.5

× ei�(x,t).

(32)q(x, t) = u(x, t)[cos�(x, t) + i sin�(x, t)].

(33)Req(x, t) =

(
1.1e1.1�

1.9 + 0.7 e1.1�

)0.5

× cos�(x, t).

(34)Imq(x, t) =

(
1.1e1.1�

1.9 + 0.7 e1.1�

)0.5

× sin�(x, t).

A0 =
3k(c + �)

4b
, a = −

3k2c2 + 16b(w + �k) + 6�ck2 + 3�2k2

16bk2
,

A =
8bkA1√

9k2c2 + 48b(w + �k) + 18�ck2 + 9�2k2
,

N =
2
√
3k2(c + �)√

3k2c2 + 16b(w + �k) + 6�ck2 + 3�2k2
.
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The solution according to the suggested method and this result will be

3.2  Secondly for the PNSEWKL

Via inserting Eqs. (19), (22–23) into Eq. (16) and by equating the coefficients of various 
powers of S(� )e−N� to zero we get a system of equations from which the following results 
will be detected

From which we will discuss the first and the third results to get the corresponding 
solutions.

(1) For the first result which is

(35)
X0 = b = c = c1 = w = v = k = � = � = 1,A0 = 1.5, a = −2.8,A = 0.7,N = 1.1.

(36)U(� ) = 1.5 +
1.1e−1.1�

1.9 − 0.7e−1.1�
.

(37)u(� ) =

(
1.5 +

1.1e−1.1�

1.9 − 0.7e−1.1�

)0.5

.

(38)q(x, t) =

(
1.5 +

1.1e−1.1�

1.9 − 0.7e−1.1�

)0.5

× ei�(x,t).

(39)Req(x, t) =

(
1.5 +

1.1e−1.1�

1.9 − 0.7e−1.1�

)0.5

× cos�(x, t).

(40)Imq(x, t) =

(
1.5 +

1.1e−1.1�

1.9 − 0.7e−1.1�

)0.5

× sin�(x, t).

(41)(1) A0 = −1.8i

√
3k2�1+v−2k

�2+2�3

, A = −0.4i A1

√
�2+2�3

�1

, N = 1.4i

√
3k2�1+v−2k

�1

.

(42)(2) A0 = −1.8i

√
3k2�1+v−2k

�2+2�3

, A = 0.4i A1

√
�2+2�3

�1

, N = −1.4i

√
3k2�1+v−2k

�1

.

(43)(3) A0 = 1.8i

√
3k2�1+v−2k

�2+2�3

, A = −0.4i A1

√
�2+2�3

�1

, N = −1.4i

√
3k2�1+v−2k

�1

.

(44)(4) A0 = 1.8i

√
3k2�1+v−2k

�2+2�3

, A = 0.4i A1

√
�2+2�3

�1

, N = 1.4i

√
3k2�1+v−2k

�1

.
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That can be simplified to be

The solution in the framework of this result, according to the suggested method will 
be

(2) For the third result which is

That can be simplified to be

A0 = −1.8i

√
3k2�1 + v − 2k

�2 + 2�3

,A = −0.4i A1

√
�2 + 2�3

�1

,N = 1.4i

√
3k2�1 + v − 2k

�1

.

(45)
X0 = k = v = c1 = B = w = �1 = �2 = �3 = A1 = 1,A0 = −1.5i,A = −0.7i ,N = i.

(46)H(� ) =
e −i�

−0.7i(1 −
e −i�

i
) + 1

.

(47)ReH(� ) =
0.7 sin � + cos � + 0.7

0.98 sin � + 1.4 cos � + 1.98
.

(48)ImH(� ) = −1.5 +
0.7 cos � − sin �

0.98 sin � + 1.4 cos � + 1.98
.

q(x, t) = H(� ) exp[i(−kx + wt + �)].

(49)

q(x, t) =

⎧⎪⎨⎪⎩

�
0.7 sin � + cos � + 0.7

0.98 sin � + 1.4 cos � + 1.98
+ i

�
−1.5 +

0.7 cos � − sin �

0.98 sin � + 1.4 cos � + 1.98

��
×

(cos(−kx + wt + �) + i sin(−kx + wt + �))

⎫⎪⎬⎪⎭
.

(50)Re q(� ) =

⎧
⎪⎪⎨⎪⎪⎩

�
0.7 sin � + cos � + 0.7

0.98 sin � + 1.4 cos � + 1.98

�
× cos(−kx + wt + �)

−

�
−1.5 +

0.7 cos � − sin �

0.98 sin � + 1.4 cos � + 1.98

�
× sin(−kx + wt + �)

⎫
⎪⎪⎬⎪⎪⎭

.

(51)Im q(� ) =

⎧
⎪⎪⎨⎪⎪⎩

�
0.7 sin � + cos � + 0.7

0.98 sin � + 1.4 cos � + 1.98

�
× sin(−kx + wt + �)

+

�
−1.5 +

0.7 cos � − sin �

0.98 sin � + 1.4 cos � + 1.98

�
× cos(−kx + wt + �)

⎫
⎪⎪⎬⎪⎪⎭

.

A0 = 1.8i

√
3k2�1 + v − 2k

�2 + 2�3

,A = −0.4i A1

√
�2 + 2�3

�1

,N = −1.4i

√
3k2�1 + v − 2k

�1

.
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The solution in the framework of this result, according to the suggested method will 
be

4  Conclusion

Throughout of this study, the PPAM was implemented for the first time to achieve new 
lump solutions of the PGIE in various behaviour forms as bright soliton solution, dark 
soliton solution and rational soliton solution that are appear through Figs. 1, 2, 3 and 
4. When the comparison imbed between our obtained lump solutions to PGIE with 
that previously achieved by Triki et  al. (2017) that used other techniques, the agree-
ments shown in some cases while the others are new. In a related subject, the suggested 
method has been used for construct new types of lump solutions for the PNSEWKL as 
bright soliton solution, dark soliton solution and trigonometric soliton solution that are 

(52)
X0 = k = v = c1 = B = w = �1 = �2 = �3 = A1 = 1,A0 = 1.5i,A = −0.7i ,N = −i.

(53)H(� ) =
e i�

−0.7i(1 +
e i�

i
) + 1

.

(54)ReH(� ) =
cos � − 0.7 sin � − 0.7

0.98 sin � − 1.4 cos � + 1.98
.

(55)ImH(� ) = 1.5 +
0.7 cos � + sin �

0.98 sin � − 1.4 cos � + 1.98
.

q(x, t) = H(� ) exp[i(−kx + wt + �)].

(56)

q(x, t) =

⎧⎪⎨⎪⎩

�
cos � − 0.7 sin � − 0.7

0.98 sin � − 1.4 cos � + 1.98
+ i

�
1.5 +

0.7 cos � + sin �

0.98 sin � − 1.4 cos � + 1.98

��
×

(cos(−kx + wt + �) + i sin(−kx + wt + �))

⎫⎪⎬⎪⎭
.

(57)Re q(� ) =

⎧
⎪⎪⎨⎪⎪⎩

�
cos � − 0.7 sin � − 0.7

0.98 sin � − 1.4 cos � + 1.98

�
× cos(−kx + wt + �)

−

�
1.5 +

0.7 cos � + sin �

0.98 sin � − 1.4 cos � + 1.98

�
× sin(−kx + wt + �)

⎫
⎪⎪⎬⎪⎪⎭

.

(58)Im q(� ) =

⎧
⎪⎪⎨⎪⎪⎩

�
cos � − 0.7 sin � − 0.7

0.98 sin � − 1.4 cos � + 1.98

�
× sin(−kx + wt + �)

+

�
1.5 +

0.7 cos � + sin �

0.98 sin � − 1.4 cos � + 1.98

�
× cos(−kx + wt + �)

⎫
⎪⎪⎬⎪⎪⎭

.
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appear through Figs. 5, 6, 7 and 8. When we compare the achieved lump solutions of 
the PNSEWKL with the previously achieved solutions by Zhang et al. (2017); Biswas 
et al. 2018; Kaura and Wazwaz 2018; Zhang et al. 2010; Moosaei et al. 2011; Biswas 
and Konar 2007; Zahran 2015; Eslami 2015) who used other techniques it is clear that 
the obtained solutions are new. Consequently, we can document new lump solutions for 

Fig. 1  The plot Req(x, t) Eq.  (33) in 2D and 3D with values: 
X0 = b = c = c1 = w = v = k = � = � = A1 = 1,A0 = 0, a = −2.8,A = 0.7,N = −1.1

Fig. 2  The plot Imq(x, t) Eq.  (34) in 2D and 3D with values: 
X0 = b = c = c1 = w = v = k = � = � = A1 = 1,A0 = 0, a = −2.8,A = 0.7,N = −1.1
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the two models via the PPAM which weren’t achieved before by any other methods. The 
new types of soliton solutions detected by adjusting the parameter have great contribu-
tion, significance in improve the quality of optical communications for the related appli-
cations such as recent telecommunication processes, few-cycle pulse propagation in 
metamaterials, the nonlinear refractive index cubic-quartic through birefringent fibers, 
helpful in the design optical amplifiers and so on. The prediction of the solitons appear-
ing in this work is sufficient for the experimental observations. The achieved soliton 

Fig. 3  The plot Req(x, t) Eq.  (39) in 2D and 3D with values: 
X0 = b = c = c1 = w = v = k = � = � = 1, A0 = 1.5, a = −2.8, A = 0.7,N = 1.1

Fig. 4  The plot Imq(x, t) Eq.  (40) in 2D and 3D with values: 
X0 = b = c = c1 = w = v = k = � = � = 1, A0 = 1.5, a = −2.8, A = 0.7, N = 1.1
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Fig. 5  The plot Req(x, t) Eq.  (50) in 2D and 3D with values: 
X0 = k = v = c1 = B = w = �1 = �2 = �3 = A1 = 1,A0 = −1.5i,A = −0.7i ,N = i

Fig. 6  The plot Imq(x, t) Eq.  (51) in 2D and 3D with values: 
X0 = k = v = c1 = B = w = �1 = �2 = �3 = A1 = 1, A0 = −1.5i, A = −0.7i, N = i

Fig. 7  The plot Req(x, t) Eq.  (57) in 2D and 3D with values: 
X0 = k = v = c1 = B = w = �1 = �2 = �3 = A1 = 1, A0 = 1.5i, A = −0.7i, N = −i
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solutions denote that the used method is effective and can be applied for any nonlinear 
evolution equations.

Acknowledgements Not applicable

Author contributions All authors contributed equally to the writing of this paper. All authors read and 
approved the final manuscript.

Funding The authors have not disclosed any funding.

Availability of data and materials The datasets generated during and/or analysed during the current study 
are available from the corresponding author on reasonable request.

Declarations 

Conflict of interest The authors declare that they have no competing interests.

Ethics approval and consent to participate Not applicable.

Consent for publication Not applicable.

References

Ahmed, N., Irshad, A., Mohyud-Din, S., Khan, U.: Exact solutions of perturbed nonlinear Schrödinger’s 
equation with Kerr law nonlinearity by improved tan-expansion method. Opt Quant Electron 50, 45 
(2018)

Akramaand, G., Mahak, N.: Traveling wave and exact solutions for the perturbed nonlinear Schr ̈odinger 
equation with Kerr law nonlinearity. Eur. Phys. J. plus 133, 212 (2018)

Bekir, A., Zahran, E.H.M.: Painlev´e approach and its applications to get new exact solutions of three bio-
logical models instead of its numerical solutions. Int. J. Mod. Phys. B 34, 2050270 (2020)

Bekir, A., Zahran, E.H.M.: Optical soliton solutions of the thin-film ferro-electric materials equation accord-
ing to the Painlevé approach. Opt. Quantum Electron. 53, 118 (2021a)

Bekir, A., Zahran, E.H.M.: New visions of the soliton solutions to the modified nonlinear Schrodinger equa-
tion. Optik 232, 166539 (2021)

Bekir, A., Shehata, M.S.M., Zahran, E.H.M.: Comparison between the exact solutions of three distinct shal-
low water equations using the painlev´e approach and its numerical solutions. Russian J. Nonlinear 
Dyn. 16(3), 463–477 (2020)

Fig. 8  The plot Imq(x, t) Eq.  (58) in 2D and 3D with values: 
X0 = k = v = c1 = B = w = �1 = �2 = �3 = A1 = 1, A0 = 1.5i,A = −0.7i, N = −i



New diverse variety analytical optical soliton solutions for…

1 3

Page 15 of 16 190

Biswas, A., Konar, S.: Introduction to non-Kerr-law optical solitons, CRC Press, Boca Raton. FL, USA 
(2007)

Biswas, A., Yıldırım, Y., Yaşar, E., Babatin, M.M.: Conservation laws for Gerdjikov-Ivanov equation in 
nonlinear fiber optics and PCF. Optik-Int. J. Light Electron Opt. 148, 209–214 (2017)

Biswas, A., Yildirim, Y., Yasar, E., Triki, H., Alshomrani, A.S., Ullah, M.Z., Belic, M.: Optical soliton per-
turbation with full nonlinearity for Gerdjikov-Ivanov equation by trial equation method. Optik-Int. J. 
Light Electron Opt. 157, 1214–1218 (2018)

Dai, H.H., Fan, E.G.: Variable separation and algebro-geometric solutions of the Gerdjikov-Ivanov equa-
tion. Chaos Solitons Fractals 22(1), 93–101 (2004)

Eslami, M.: Solitary wave solutions for perturbed nonlinear Schrödinger’s equation with Kerr law nonlin-
earity under the DAM. Optik 126, 1312–1317 (2015)

Fan, E.: Integrable evolution systems based on Gerdjikov-Ivanov equations, bi-Hamiltonian structure, 
finite-dimensional integrable systems and N-fold Darboux transformation. J. Math. Phys. 41(11), 
7769–7782 (2000a)

Fan, E.: Darboux transformation and soliton-like solutions for the Gerdjikov-Ivanov equation. J. Phys. 
A: Math. Gen. 33(39), 6925 (2000b)

Gerdjikov, V.S., Ivanov, M.I.: The quadratic bundle of general form and the nonlinear evolution equa-
tions II, hierarchies of Hamiltonian structures. Bulg. J. Phys. 10, 130–143 (1983)

Guo, X.: Two expanding integrable systems of the GI soliton hierarchy and a generalized GI hierarchy 
with self-consistent sources as well as its extension form. Commun. Nonlinear Sci. Numer. Simul. 
14(12), 4065–4070 (2009)

He, B., Meng, Q.: Bifurcations and new exact travelling wave solutions for the Gerdjikov-Ivanov equa-
tion. Commun. Nonlinear Sci. Numer. Simul. 15(7), 1783–1790 (2010)

Jiwari, R., Gerisch, A.: A local radial basis function differential quadrature semi discretization technique 
for the simulation of time-dependent reaction-diffusion problems. Engineering with Computers 
38(6), 2666–2691 (2021)

Jiwari, R., Kumar, V., Singh, S.: Lie group analysis, exact solutions and conservation laws to compress-
ible isentropic Navier-Stokes equation. Engineering with Computers 38, 2027–2036 (2022)

Kaura, L., Wazwaz, A.M.: Optical solitons for perturbed Gerdjikov-Ivanov equation. Optik-Int. J. Light 
Electron Opt. 174, 447–451 (2018)

Kudryashov, N.A.: The Painlevé approach for finding solitary wave solutions of nonlinear non-integrable 
differential equations. Optik 183, 642–649 (2019)

Kumar, S., Ram Jiwari, R., Mittal, R.C., Awrejcewicz, J.: Dark and bright soliton solutions and compu-
tational modeling of nonlinear regularized long wave model. Nonlinear Dyn. 104(7), 1–22 (2021)

Lü, X., Ma, W.X., Yu, J., Lin, F., Khalique, C.M.: Envelope bright-and dark-soliton solutions for the 
Gerdjikov-Ivanov model. Nonlinear Dyn. 82(3), 1211–1220 (2015)

Manafian, J., Lakestani, M.: Optical soliton solutions for the Gerdjikov-Ivanov model via tan (ϕ/2)-
expansion method. Optik-Int. J. Light Electron Opt. 127(20), 9603–9620 (2016)

Moosaei, H., Mirzazadeh, M., Yildirim, A.: Exact solutions to the perturped nonlinear Schrodiger equa-
tion with Kerr-law nonlinearity using the first integral method. Nonlinear Anal. Model. Control 16, 
332–339 (2011)

Rogers, C., Chow, K.W.: Localized pulses for the quintic derivative nonlinear Schrödinger equation on a 
continuous-wave background. Phys. Rev. E 86(3), 037601 (2012)

Salam, S.S.: Soliton solutions of perturbed nonlinear Schrödinger equation with Kerr law nonlinearity 
via the modified simple equation method and the sub ordinary differential equation method. Turk. J. 
Phys. 42, 425–432 (2018)

Triki, H., Alqahtani, R.T., Zhou, Q., Biswas, A.: New envelope solitons for Gerdjikov-Ivanov model in 
nonlinear fiber optics. Superlattices Microstruct. 111, 326–334 (2017)

Yadav, O.P., Jiwari, R.: Some soliton-type analytical solutions and numerical simulation of nonlinear 
Schrödinger equation. Nonlinear Dyn. 95, 2825–2836 (2019)

Yilmaz, H.: Exact solutions of the Gerdjikov-Ivanov equation using Darboux transformations. J. Nonlin-
ear Math. Phys. 22(1), 32–46 (2015)

Younas, U., Ren, J.: Investigation of exact soliton solutions in magneto-optic waveguides and its stability 
analysis. Results Phys 21, 103816 (2021)

Younas, U., Bilal, M., Ren, J.: Propagation of the pure-cubic optical solitons and stability analysis in the 
absence of chromatic dispersion. Opt. Quantum Electron. 53(9), 1–25 (2021)

Younas, U., Bilal, M., Ren, J.: Diversity of exact solutions and solitary waves with the influence of 
damping effect in ferrites materials. J. Magn. Magn. Mater. 549, 168995 (2022a)

Younas, U., Bilal, M., Sulaiman, T.A., Ren, J., Yusuf, A.: On the exact soliton solutions and different 
wave structures to the double dispersive equation. Opt. Quantum Electron. 54(2), 1–22 (2022b)



 E. H. M. Zahran et al.

1 3

190 Page 16 of 16

Younas, U., Sulaiman, T.A., Ren, J., Yusuf, A.: Lump interaction phenomena to the nonlinear ill-posed 
Boussinesq dynamical wave equation. J. Geometry Phys. 178, 104586 (2022c)

Younas, U., Sulaiman, T.A., Ren, J.: On the optical soliton structures in the magneto electro-elastic cir-
cular rod modeled by nonlinear dynamical longitudinal wave equation. Opt. Quant. Electron. 54, 
688 (2022d)

Younas, U., Sulaiman, T.A., Ren, J.: Diversity of optical soliton structures in the spinor Bose-Ein-
stein condensate modeled by three-component Gross-Pitaevskii system. Int. J. Modern Phys. B 
37(1), 2350004 (2023)

Zahran, E.H.M.: Traveling wave solutions of nonlinear evolution equations via modified exp(-phi)-
expansion method. J. Comput. Theor. Nanosci. 12, 5716–5724 (2015)

Zhang, Z.Y., Liu, Z.H., Miao, X.J., Chen, Y.Z.: New exact solutions to the perturped nonlinear Schrodiger 
equation with Kerr-law nonlinearity. Appl. Math. Comput. 216, 3064–3072 (2010)

Zhang, J.B., Gongye, Y.Y., Chen, S.T.: Soliton solutions to the coupled Gerdjikov-Ivanov equation with 
rogue-wave-like phenomena. Chin. Phys. Lett. 34(9), 090201 (2017)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable 
law.


	New diverse variety analytical optical soliton solutions for two various models that are emerged from the perturbed nonlinear Schrödinger equation
	Abstract
	1 Introduction
	2 The PPAM algorithm
	3 Applications
	3.1 Firstly for the PGIE
	3.2 Secondly for the PNSEWKL

	4 Conclusion
	Acknowledgements 
	References




