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Abstract

In this article, we cover some soliton solutions and breathers for nonlinear Schrodinger
equation with quadratic nonlinear susceptibility like that Breather lump wave solutions,
Interaction between lump periodic and kink wave, lump soliton solution, Lump one kink
solution, Lump two kink solution, multiwave solution, periodic cross kink solution, periodic
cross lump wave solution, periodic wave solution and rogue wave solution. We also explore
some rational solution such as M-shaped rational solutions, M-shaped rational solutions with
one and two kink, kink cross rational solution and periodic cross rational solution. Also, we
acquire homoclinic breather solution, M-shaped interaction with rogue and kink and M-
shaped interaction with periodic and kink. Furthermore we also study the stability of our
solutions. we also represents our solutions graphically such as 3D, 2D, contour, density plot
and stream plot.

Keywords Homoclinic breather - Lump soliton - M-shaped solution - Multiwave - Rogue
wave

1 Introduction

The nonlinear Schrodinger equation (NLSE) is essential for the improvement in optical
communication system. From the mathematical perspective Schrodinger equation combines
the characteristics of both parabolic and hyperbolic equations. The NLSE applied in many
scientific fields to explain nonlinear physical characteristics also have applications in variety
of fields including semiconductor manufacturing, biology, solid-state physics, condense
matter physics, quantum chemistry, nonlinear optics, wave propagation, optical
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communication, protein folding and bending, nano-technology and industry (Ilhan et al.
2022; Li et al. 2022; Mohyaldeen et al. 2022; Yang et al. 2018). At the present time, the
study of NLSE including analysis, numerics and applications becoming significant subject
in computational and applied mathematics (Shen et al. 2021, 2022; Song et al. 2020; Guo
et al. 2020). Some efficient ways for obtaining soliton solutions and optics have grabed the
attention of many researchers because soliton theory is the fundamental and exciting topic in
research (Rizvi et al. 2021, 2022a, b; Seadawy et al. 2021, 2022a, b, c, d; Batool et al. 2022;
Ali et al. 2022; Ashraf et al. 2022).
In this paper, we will study NLSE-QNS given by Biswas et al. (2022):

W + C1ye + diye + b1y + o0y z = iaryy, (1)

iz; + oz + dozyy + boz + oc2y2 = iayz,. (2)

where x and ¢ represents the spatial and temporal variables respectively. The coefficients a;,
bj, ¢j, d;, o; (j =1,2) are real valued constants. a; are the coefficients of inter-modal
dispersion. ¢; depict the coefficient of chromatic dispersion, while d; stands for the coef-
ficient of spatio-temporal dispersion. And «; are the coefficient of ON. The function y =
y(x,t and z = z(x,¢) are complex valued function. The functions y represents the wave
profile of the forward harmonic waves and z represents second harmonic waves. And
V* =" (x,¢) is the conjugate of y = y(x, ).

2 LSS

By using following transformation, we obtain solution for LSS Biswas et al. (2022):
y(x,t) =2s(lng),, z(x,t) =2(Inj),,. (3)
We have following bilinear form by putting Eq. (3) into Eq. (1),

2b1sg’ gy — 2isgigigy + 2iaisgiigs + 4disi*gigs + dcrsitg, — 20087y

+2isg’ g — 4d15g° 88x — 210158 g — 2415 818w — 6158 8xgne (4)
+ 208y e + 241587 Gt + 2¢1587/ G-
For LS g and j are the following functions:
g=A+ A +k,
J=A+ A+ ks,
where
A =kix+kt+ks, Ay =kax+ kst + ke,
where k;(1 <i<8) are real parameters. Insert Eq. (5) in to Eq. (4). We find some equations
that provide coefficient values, including:

4(11](4

ke

4
k1 =0,k = 0,ky = kg, k¢ = 0,k7 = 0,k = 0, k> =§ialk4,k5 =

To obtain the LSS of Eq. (1), Insert Eq. (6) in to Eq. (5) and then in Eq. (3)
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(a) (b) (c

Fig. 1 LS graphs of solution y(x, #) of Eq. (7) are shown as k4 = 0.5,5 = 4,a; = —7. a 3D plot, b 2D plot,
¢ contour plot

(b)

Fig. 2 LS graphs of solution z(x, f) of Eq. (8) are shown as k4 = 5,5 = 0.4,a; = 1.1.

Ahys (AL 4 fyx)

day ket 2 16 2120
( 5 +k4x) o arkyt

y(x, 1) =

(7

(8)

~—

2(26 (5 + ko)’ = 3R ) — 48 (4 4 kav)”)

z(x, 1) = 5 3
(4t + k)~ gaiizr)

Now we represent some dynamical representation of solutions (Figs. 1 and 2):
3 LOKS

The LOKS’s solution, which contains the sum of the quadratic functions and an exponential
functions, is obtain in this section for Eq. (1) We use the following function g and j Ren
et al. (2019):
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g=A+ A2t e + iy,
J=M+ A e kg,
where
AN =kix+hkt+hky, A =hkyx+kst+ks, H; =rix—+nrt,

Inserting Eq. (9) in to Eq. (4). By inserting all the coefficient of the
x,1, e4r1x+4r2t7 e3r1x+3r2t7 62r1x+2r2t7 er1x+r2t’y* (x7 t),y* (x’ Z)e4r1x+4r2t’y* (x7 t)e3r1x+3rzt7 y* (x’ t)
eIt -y (v £)e 2 to be zero, we get algebraic expression that provide coefficient
values as:

3(8 - 262)
2(/(5(3(11 +2b1d1))’ (10)

1
ks = ks, ke = ke, k7 = ky,ks = kg,n; = ny,r; =0,n, :5(—(4i))b1,

=0,k =ky, k3 = 0,ky = —

putting Eq. (10) in to Eq. (9) and then in Eq. (3) to get LOKS of Eq. (1),

3x(K2-242)
65 (k5 — 2k3) (_ a sy kst + kG)

y(x’ t) = 2 :
3x(-242) L—4)ibyt | 7202
k5(3a1 +2b1d1) —m+k5t+k6 +nes "+ B2 + ke

2 1
N o(2—22) W 9(—2k2) (W24 SV L2 4k )
K2 (Bar+2bid;)* 202 (3a1+2b1dy )

2
(l{ﬂ +meCB 22 4 kg)
3x(k3—2k2
where W = —mwsm ks
Now we represent some graphical representation of solutions (Figs. 3 and 4):

4 LTKS

The LTKS’s solution, which contains the sum of the quadratic functions and an exponential
functions, is obtain in this section for Eq. (1). We use the following function g and j:

g= A} + A5+ me + e + ks,

5 5 (13)
j:Al +A2+n1eH' +n2€HZ + kg,

where

Aq = kix + kot + k3, Ay =kyx + kst + ke, Hi =rix+rt, Hy =rx+rt,

Putting Eq. (13) in to Eq. (4). By putting all the coefficient of the
X, t, erl)H»rzt7 62r1X+2rzt’ e3r1X+3rzt’ e4r1x+4r2t’ er;)H»ml7 62r3x+2r4t7 e3r3)c+3r4t7 er|x+r2t+r3x+r4t’ e2r1x+2r2t

+r3x + r4l, e3r|x+3rgt+r3x+r4t7 er1x+rzt+2r3x+2r4t’ 62)'|x+2r2t+2r3x+2r4t’ er|x+r2t+3r3x+3r4t’y* (X, t) enx
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(b) (©

Fig. 3 LOKS dynamical representation of solution y(x, 7 of Eq. (11) are shown as
ay = 1.5,b1 = 7,d1 = 0.9,]{2 = 0.5,k5 = 0‘2,1{6 = 74,k7 = 72,111 = 2.2,S =0.05

Optical soliton solutions and various breathers lump...

o010}/

(a) (b) (c)

solution z(x, f) of Eq. (12) are shown as
ay=15b=7,d =09,k =05,ks =02,ks = —4,k7 = =2,ks = —0.07,n, =2.2,5 = 0.05

Fig. 4 LOKS graphical representation of

—I—I"zt,y* (x7 t) le1x+2r2t’y* (x7 t)63r1x+3r2t7y* (x7 t)e4r1x+4r2t7y* (x7 t) er3x+r4t,y* (x7 t)62r3x+2r4t’

y* (x t)e3r3x+3r4t y*(x t)er1x+rzt+r3x+r4z y* (x t) 2N XA 2rattr3xtrat y* (x l‘) X t3nttrx gt
) ) ) b ) ) ) )
y* (x t)er1x+rzl+2r3x+2r4t y* (x t)e2r1x+2rzt+2r3x+2r4t y*(x t)er|x+rzt+3r3x+3r4l to be zero. we
) ) ) ) ) b
get algebraic expression that provide coefficient values as:
k4 (3&1](% + 3a1kf + Zbldlk% + 2b1d1k§)
ky =k ky =0,ks = k3, kg = kg, ks = — 5 3
3(kF —2k3)

b

1
ke =0,k; = ky,ks =0,ny =ny,ny =ny,ry =ry,n :Ei(_4b1 +iry),r3 =0,r4 =14,
(14)

Insert Eq. (14) in to Eq. (13) and then in Eq. (3) to get the LTKS solution of Eq. (1),
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T

(a) (b) ()

Fig. 5 LTKS graphical representation of solution y(x, 7) of Eq. (15) are shown as k; =0.1,k3 = -5,
k4 = —0.4,]{7 = 3.977'1 = —0.2,7‘4 = 3,1)1 = 1.5,&11 = —47}11 = 2.5,}12 = O.Z,dl = 3.17S =-02

25 (2k4 (k4x _ 2k4f(3a1k]z+3a1k§+2b1d1kf+2b1d1ks)) T nlrler1x+%it(74b1+ir4) + 2k (klx + k3))

o)
y(x7 t) - 2 > > 21\ 2 '
<k4x _ 2k4t(3a’kl +3:I(,242t221;{12‘;]k1 +2b‘d‘k4)> +nler1x+%it(*4b1+ir4) + (klx + k3)2 + k7 + mperst
(15)
2 ((cD + 2kF 4 2k3 ) (I1) — (2k4(TT) + @ + 2k; (kyx + k3))2)
(1) = (16)

(m)* ’

2t (3ar k3 +3a1 k3 +2b1d 2 +2by 1 )
3(kp—242)

2
where @ = nlrfe””%”("‘bl”"‘), = <k4x — > +® + (kix +

k3)2 + nze"". and
Now we have shown some graphical representation of above solutions (Figs. 5 and 6):

5 RWS

The RWS’s solution, which contains the sum of the quadratic functions and an exponential
functions, is obtain in this section for Eq. (1) We use the following function g and j Ren
et al. (2019):

g=A?+ A3+ nycosh(2) + ks, (17)
j = A} + A3+ n cosh(2) + ks,
where

AN =kix+ht+k, A =kx+kst+ks, A=rx+nrt,

Insert Eq. (17) in to Eq. (4). Inserting all coefficient of x, ¢, cosh(rx + r2t), cosh? (r1x +
rat), cosh® (rix + rat), cosh? (r1x 4 r2t), cosh® (r1x + r2t), cosh® (r1x + rat), sinh(( r1x +
rat), sinh(rix + rat) cosh(rix + rat), sinh(rix + raf) cosh? (r1x + rat), sinh(rix + rat)
cosh® (r1x + rat), sinh(ryx + r2¢) cosh® (r1x + r2t), sinh(ryx 4 r2t) cosh® (ryx + r2¢),  sinh?
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(b)

Fig. 6 LTKS graphical representation of solution z(x, ¢) of Eq. (16) are shown as
k1 = 1,k3 = 5,1{4 = 0.4,k7 = 3,7‘1 = 0.2,1‘4 = 0.3,b1 = 5,(11 = 4,}11 = 2,}12 = 0‘6,d1 = 3.5,5‘ =2.

(r1ix + rat), sinh? (r1x + rat) cosh(ryx + rat), sinh? (ryx + rot) cosh? (rix + rot), sinh® (rx +
rat) cosh? (r1x + rat), sinh? (r1x + r2t)  cosh*(r1x + ), sinh? (r1x + r2t), sinh® (r1x + r2t)
cosh  (rix+ rt), sinh? (r1x + rat) coshz(rlx + rat), sinh? (r1x + rat) cosh? (r1x + rat),
y(x,2),5"(x,2) cosh(rix + ryt), y*(x, ) cosh? (r1x + rat), y* (x, 1) cosh® (r1x + rt), y*(x,1)
cosh*(rx + rat), y* (x, ) cosh® (ryx + rat),  y*(x,1) cosh®(rix +rat),  y*(x,¢) sinh(rx +
rat),y*(x, 1) sinh(ryx 4 rot) cosh(r1x + r22)), y* (x, 1) sinh(rix 4 r2t)  cosh?(r1x + rat),y*
(x, ) sinh(ryx + r22)  cosh®(rix + ), y* (x, £) sinh(r1x + r2f)  cosh*(rix  +rt),y* (x,1)
sinh(r1x 4 r21) cosh® (ryx + 1), y* (x, £) sinh?(r1x + r2t),y* (x, t) sinh? (1 x + r2t) cosh
(r1ix + rat), ¥*(x,£) sinh?(rx + rat) cosh? (ryx + rat), ¥*(x, £) sinh®(r1x + r2¢) cosh® (rx +
), y*(x, 1) sinh® (r1x + r2t)  cosh® (r1x + rat), * (x, 1) sinh® (r1x + r22), y* (x, £) sinh® (ryx +
rat) cosh(rix + rat), y*(x, £) sinh® (r1x 4 r2¢) cosh? (r1x 4 rat), y* (x, ¢) sinh® (r1x + r,t) cosh?
(r1x 4+ rpt) to be zero, we get expression that provide coefficient values as:

(3i)k3 (2ald1 + 3(21)

ky =0,k = — il ks = ks, ka = ka, ks = 0,k = 0,k7 = 0, ks = kg, m1 = ny,
i
2d1r2
r == y 12 =12,
361

(18)

Insert Eq. (18) in to Eq. (17) and then in Eq. (3) to have the RWS solution of Eq. (1),

2dymyry sinh ( 24102
25 | 2hpx - ————
19
y(x7 t) = " 4 7 . ( )
<k3 3 3t(221%1+361)) +my cosh (l"zt _ 2c§1L:2x) + kﬁx2
) 2

2 (_ (Zkfx -~ 2d1n1r3zcslmh(9)) + (4dfn1r§cczosh(9) + 2k§) (Y)> 20
z(x, 1) = ! ’ (20)

(Y)?
. 2
where Q = 1yt — 2‘%‘%‘ and Y = (k3 — W) +ny cosh(Q) + kx> + ks.
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0 05 0008310

(a) (b)

Fig. 7 RWS graphical representation of solution y(x, f) of Eq. (19) are shown as
k3 = 0.5,k4 = 7,}”2 = 0.1,(21 = 5.5,a1 = 006,}11 = 4,d1 = 1.3,S =2.

(a) (b) ()

Fig. 8 RWS graphical representation of solution z(x, 7 of Eq. (20) are shown as
k3 = 70.5,]{4 = 7,kg = 0.8,7‘2 = 70.1,(21 = 75.5,&1 = 0.06,}11 = 004,d1 = 1.3,S =-2.

Now we have given some graphical representation of these solutions (Figs. 7 and 8):
6 PWS

The PWS’s solution, which contains the sum of the quadratic functions and an exponential
functions, is obtain in this section for Eq. (1). We use the following function g and j Ren
et al. (2019):

g =N+ A +nicos(2) +ky, o)
j=NA 4+ A5 +ncos(2) + ks,
Where
A =kx+hkt+ky, Ay=kix+kst+ks, A=rx+nrt,

Put Eq. (21) into Eq. (4). The coefficient of x, ¢, cos(rix + r2t), cos? (r1x + rat), cos® (r1x +
rat), cost (rix + rt), cos’(rix + rat), cos®(rix + rat), sin(r1x + rat), sin(rix + r2f) cos(rx
+rat), sin(ryx + rot) cos? (r1x + rat), sin(rix + rat) - cos? (r1x + rat), sin(r1x + rat) cos* (ryx

@ Springer
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+rat),sin(rix + rt) oS’ (r1x + rat), sin® (r1x + rat), sin® (r1x + rat) cos(rix + rat),  sin®

(r1x + rat) cos?(r1x + rat), sin® (r1x + rat) cos® (r1x + rat),  sin®(rix + rat) cos* (r1x + rat),
sin® (r1x + rat), sin (rx 4 mt)  cos(rix + rat), sin’ (rx 4 rat) cos? (r1x + rat), sin® (ryx +
at) cos (rix + rat), ¥  (x,£),¥* (x, 1) cos(r1x + rat), y* (x, 1) cos? (r1x + r22), V* (x, £) cos®(ryx
+rat),y*(x, t) cos*(r1x + 1), ¥ (x, 1) sin(r1x 4 rat), y* (x, 1) sin(ryx 4 r2t)  cos(r1x + rat),
V*(x,8)  sin(ryx + rat) cos? (r1x 4 rat), y* (x, ) sin(rix + raf) - cos® (r1x + rat), y*(x, t) sin®
(rix + rat), y* (x, 1) sin? (ryx + rat) cos(r1x + rat), y*(x, £) sin® (r1x + r2t) cos? (r1x + rat)
values of the parameters which are given below:
428

ki =0k =k, ks =0,ky ==—— ks = ks, ks =0,k = 0,kg =0
1 s K2 2,13 s K4 2([1]]{5)7 5 5,16 s /7 s A8 ) (22)
ny=ny,r =0,r=r,

Insert Eq. (22) in to Eq. (21) and then in Eq. (3) to have the PWS solution of Eq. (1),

x(k3 4242
25 (k3 + 2k2) ( (Zalkss) + k5t)
yx, 1) = — 3 : (23)
aks <<x(k22;55) + k5t> +k3 2 +my cos(rzt)>

(1222 2
(k§+2k§)z (( (AZZHTZS)Jrkst) +k§tz+n1 cos(rzt)) (k22+2k§)2 (X(Z%Ti:§)+kst) ’

2 _
2a1k aiky

2
x(k3+2k2) 2 20
et kst )ttt +m cos(rat)

Now we have some graphical representation of these solutions (Figs. 9 and 10):

z(x,t) =

==
§

=

(a) (b) (c)

Fig. 9 PWS graphical representation of solution y(x, ¢ of Eq. (23) are shown as
k2 = 1.3,k5 = 0.5,7‘2 = 0.05,}11 = 6,(11 = 1.5,5 =0.1.
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(b)

Fig. 10 PWS graphical representation of solution z(x, #) of Eq. (24) are shown as
kz = 1.57k5 = 2.5,7‘2 = 5,111 = —67a1 = 1.5,S =0.1.

7 PCKS

The PCKS’s solution, which contains the sum of the quadratic functions and an exponential
functions, is obtain in this section for Eq. (1). We use the following function g and j:

g=e MM +n cos(Ay) + r3 cosh(As) + ko,

A A (25)
j=e M+ K1 4 Ky cos(Ap) + K3 cosh(Az) + ki,
Where
A =kix+ht+k, A =kx+kst, Az =kex+kqt,
Put Eq. (25) into Eq. (4). We have values of the parameters which are given below:
k. k
by =0,k =k, ks = 0, kg = by, ks = —6(11—4 ke = ke, k7 = 0, k10 = kio, k11 = Kzr 10
1 2
ry :0,}"2 =T1,I3 =13,K] :07K2 = K2,K3 = K3,
(26)

Insert Eq. (26) into Eq. (25) and then in Eq. (3) to have the PCKS solution of Eq. (1),

2k4rys sin (Clk“’ k. x)

y(x,t) = (27)
5 COS (“k“’ k4x) +kio+e kot
2( (13k2 cosh(kex) — K2k cos (<! — k A) — (A)?
A t) = ((K3 5 cosh(kex) — 1> COSZ( 4x))( ) — (A1) )’ (28)
(4)
where A=1; cos( —k x) - "Zr—f‘“ + e®! 4 53 cosh(kex), and A =

Ko k4 Sin (Clk“‘ k4x) + 13ke smh(k6x)

Now we get some dynamical representation of our solutions (Figs. 11 and 12):

@ Springer
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(b)

Fig. 11 PCKS graphical representation of solution y(x, 7 of Eq. (27) are shown as
k2 = 5,k4 = O.2,k10 = 0.7}"2 = 3,01 = O.S,dl = 1‘375 = -2.

(b) (c)

Fig. 12 PCKS graphical representation of solution =z(x, #) of Eq. (28) are shown as
kz = 2,]{4 = 0.2,]{6 = 0.6,/{10 = 0.07,}"2 = 0.03701 = 0.5,d1 = 1.8,5 = —57 Ky = 0.5,K3 = 4s.

8 PCLWS

The PCLWS’s solution, which contains the sum of the quadratic functions and an expo-
nential functions, is obtain in this section for Eq. (1). We use the following function g and j:

g= A% + A% + ny cos(Hy) + ny cosh(H,) + k7,

5 5 (29)
Jj= A7+ A5+ nycos(H,) + ny cosh(Hy) + ks,
Where
A =kix+hkt+k, A =kx+kst+ks, H =rix—+nrt, Hy=rx+rt,
Put Eq. (25) into Eq. (4). We have values of the parameters which are given below:
by =kiky = 0,k3 = k3, by = ky, ks = ks, ke = ko, k7 = kq, kg = 0,
d1F4 (30)

rn=0,r=ryr = T =T
1
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S ~ 20

—— E

—

(a) (b)

Fig. 13 PCLWS graphical representation of solution y(x, ) of Eq. (31) are shown as k; = 1.1,k3 = 0.3, k4 =
70.4,1{5 = 0.57 k6 = 6.5,/{7 = 0.1,}11 = 4.4,}12 = 2.9,1‘2 = 12,?‘4 = 1.05,(71 = 8.5,d1 = 1A5,S =5.

Insert Eq. (30) into Eq. (29) and then in Eq. (3) to have the PCLWS solution of Eq. (1),

dynyry sinh (mtfd‘;l”)
2s —++2k1(k1x+k3) +2k4(k4x—|—k5t+k6) ( )
31
y(x,8) = - 5 5 .
n, cosh (r4t — lc;;4x> + (klx + k3) -+ (k4x + kst + ks) + k7 +ny COS(l"zt)
z((z 2K 4 202) (2) — (=2 + 2y (hx + ks) + 2 (Rax + kst + k6))2)
z(x, 1) = — ,
()
(32)

where = = ny cosh <r4t - d‘L—’l“") + (kix + k3)2 + (kax + kst + k6)2 + ny cos(rat) and

2, 2 ( dyrgx
5 dinyr; cosh r4t—T)

2
4

Now we get some dynamical representation of our solutions (Figs. 13 and 14):
9 MWS

The MWS’s solution, which contains the sum of the quadratic functions and an exponential
functions, is obtain in this section for Eq. (1). We use the following function g and j
Seadawy et al. (2021):

g = Ko cosh(41) + Ky cos(Az) + Kz cosh(A3) + ki,

33
J = rocosh(Z1) 4 71 cos(42) + ry cosh(4s) + ki, Y

Where
M=kix+hkt+k, A=kx+kst+ks, A3=hkx+kgt+ ko,
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=

"
| % arerererererme
"

(a) (b)

Fig. 14 PCLWS graphical representation of solution z(x, #) of Eq. (32) are shown as ky = —1,k3 = 3.5, ks =
4. ks = =5, ke =0.6,k; = —0.1,n = —4.4,n, =29, = —12,r4s = 1,¢; = =5,d; = 1.5,5s = 5.

Put Eq. (33) into Eq. (4). We have values of the parameters which are given below:
ki =0,k =0,k = 0,kq = ka, ks = ks, ks = 0,k7 = 0,ks = 0,ky = ko, k10 = k10,

2K (bl + 201]@% + 2d1k4k5)
K2 (2b1 + Clki + d1k4k5)

ki =0,r0 =0,r = y¥2 =12, Ko = Ko, K1 = K1,K3 = K2

(34)
Insert Eq. (34) into Eq. (33) and then in Eq. (3) to have the MWS solution of Eq. (1),

2Kc1kas sin(kax + kst)

Ko + klo + K1 COS(k4x + kst) + 1 COSh(kg) . (35)

y(x’t) =

) 2ic1kirs (bi42e1k+2d kaks ) cos(hax+hs1) (&) 4rhirs (bit2eik+2d ksks )?sin? (kyx-+st)
2 (2011t kaks ) K2 (2by+erkitdikaks)” (36)

(&)

2K (bl +261k§+2d1k4k5) cos(kax—+kst)
K2 (2b1+61k3+d1k4k5)
Now we get some dynamical representation of our solutions (Figs. 15 and 16):

z(x,t) =

)

where ¢ = r, cosh(kg) —

10 LPKW

The LPKW’s solution, which contains the sum of the quadratic functions and an exponential
functions, is obtain in this section for Eq. (1). We use the following function g and j Ren
et al. (2019):

g= AT+ A5 +me™ 4 nycos() + ka, (37)
=N+ A3+ ne™ + nycos(A)ks,
where

A =kx+hkt+k, A =kx+kst+ks, H =rix+nrt, A=mx-+myt,
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Fig. 15 MWS graphical representation of solution yp(x, #) of Eq. (35) are shown as
k4 = —0.2,]{5 = 1.3,]{9 = 0‘05,]{10 = 0.1,5 = S,Ko = 2.5, K1 = 1.9, Ky = 3.5.

[ [

Fig. 16 MWS graphical representation of solution z(x, #) of Eq. (36) are shown as ky = —0.2,ks = 1.5,ky =
0.05,]{10 = 0.1,5 = 5, Koy = 2.57 K| = 1.97 Ky = 3.5,[)1 = 5,d1 = 4.5,6’1 = 3,}"2 =2.

Put Eq. (37) into Eq. (4). We have values of the parameters which are given below:

1
kl :OakZ :07k3 :k37k4 :k4ak5 :k57k6 :03k7 :g(_z)k§7k8 = Oa (38)

Insert Eq. (38) into Eq. (37) and then in Eq. (3) to have the LPKW solution of Eq. (1),
y(x, 1)

B 25(2ks (kgx + kst) — myny sin(myx + mot) + nlrpe )
1;_% + (kgx + kst)? + ny cos(mx + myt) + nyenv+rt

(39)

2((2/{% — miny cos(0) + nyrie< ) (o) — (2ks(kax + kst) — myny sin(6) + nlrle"”’z“)z)
(e)?

Z(xa t) = s
(40)
where 0 = mx + myt and ¢ = k2 + (kax + kst)* 4 ny cos(6) + nm e ¥+,

Now we get some dynamical representation of our solutions (Figs. 17 and 18):
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(c)

Fig. 17 LPKW graphical representation of solution y(x, ¢ of Eq. (39) are shown as
k3 = —0.9,]{4 = 10,k5 = 1.1,S = 0.5,7‘1 = 3,7‘2 = 0.3,}11 = 5,]12 = O.S,ml = 2.5,Wl2 =4.

B

(b)

Fig. 18 LPKW graphical representation of solution z(x, #) of Eq. (40) are shown as
k3 = 70.9,]{4 = 10,k5 = 71.1,3‘ = 0.5,1‘1 = 3,}"2 = 70.3,111 = 5,112 = 70.8,”11 = 2.5,m2 = —4.

11 BLWS

The BLWS’s solution, which contains the sum of the quadratic functions and an exponential
functions, is obtain in this section for Eq. (1). We use the following function g and j
Seadawy et al. (2021):

g= e 4 mlehAl + nycos(hiAp) + ke,

41
j= e_hAl + nlehA‘ +ny COS(hlAz) + k7, (

~—

where
Al =kix+kt+k, Ay =kyx+ kst,
Put Eq. (41) into Eq. (4). We have values of the parameters which are given below:

dk
fi = 0,ky = ky ks = k3 by = — == ks = ks, ke = ke, = mi,ny = (42
C1

~—

Insert Eq. (42) into Eq. (41) and then in Eq. (3) to have the BLWS solution of Eq. (1),
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(a) (b) (o)

Fig. 19 BLWS graphical representation of solution y(x, 7 of Eq. (43) are shown as
k2 = —0.5,k3 = 7,k5 = 0.05,]{6 = O.7,S = O.Z,dl = S,h = 0.1,h1 = 0.3,}11 = 2,}12 = 3,61 =0.5.

(a) (0

Fig. 20 BLWS graphical representation of solution z(x, 7) of Eq. (44) are shown as k; = 0.7,k3 = 0.7, ks =
S,k =7,k7 =—08,5=0.5,dy =-3,h=0.01,h; =0.5,n, =0.2,n, =0.03,¢; =6.

2d1hiksnys Sln(hl(kSt %))

Y = e L @)
C| (l’lz CoS (hl (k5t - Ic_lsx)) + nleh(kzt+k3) + efh(k2t+k3) + k6)
o & ntkiny cos((p)(nz cos((p)+n1e”("Z‘”@)+e’h(“2’+k3)+k7) _dihiking sin® ()
a a (44)

z(x,t) =

)

(nz COS((p) + nleh(k2t+k3) + e*h(k2t+k3) + k7)2

where ¢ = I (k5t — d’g—’?") .

Now we get some dynamical representation of our solutions (Figs. 19 and 20):
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12 Traveling wave transformation (TWT)

To solve Egs. (1) and (2), the TWT are formed as Biswas et al. (2022),
y(x,1) = Vi (v)e= &, (45)

z2(x, 1) = Yo(v)e¥et0), (46)
Y;(v) for j=1,2 are components of amplitude and wave variables is
v=1(x—qt), (47)

where iy and ¢ are the real-valued constants that symbolize the soliton width and velocity,
and the phase components are given as

6j(xa t) =-—px+vt+ ¢a (48)

where p, v and ¢ are the real-valued constants that represents the soliton frequency, soliton
wave number and phase constant respectively.

Next By putting Egs. (45) and (46) in Egs. (1) and (2) we have the real and imaginary
parts are

wz(c] — qdl)Yl// + (b1 —v —p2c1 +pvdy —pa)Y1 + oY1 Y, =0, (49)
pgdy — 2pcy +vdy —q —a; =0, (50)

l//2(02 — qdz)Yzﬂ + (b —2v— 4p202 + 4dpvdy — 2pax)Y, + o le =0, (51)
2pqd, — 4pcy +2vdy — g —ay, =0, (52)

Equations (49)—(52) shorten to ordinary differential equation by using balancing rule

Y2 (c —qd)Y' + (2cp® — 2dpv + ap +v)Y + a¥? = 0, (53)
with velocity
_4pc—2vd + 1

and constraints are
Y1 = Y2 = Y,dl :2d,d2 Zd,cl :2C,C2 =c,a) = ay —a,
oy = 20,0y =a,b; = by :b,b:6cp2 — 6dpv + 3ap + 3v.

Now we apply the transformation below for variety of rational solutions
Y =2(logg);, (56)

Eq. (56) is inserted into Eq. (51) to generate the following bilinear form,
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dedpyPg’s’ +2cyPg’e — Ad*wWige + 2dnyPg’s — dadp’g’e + 2apg’s — 8cdp’giy
+ 86dplﬁ2g/3 _ IZCdplﬁzgg'g" + 4ct,//2g'3 4 46p2g2g' _ 601,//2gg'g” + Sdzpzvgzg/ _ 8d2v1//2g’3
+ 12d°wWlgg'g" + 4dny’g” — Budpgg” — 8dpvg’g — 6dn’gg's” + dagg” + 2vg’g'

(57)

The remaining part of the paper is structured as following:

13 MSRS

For solving MSRS we use the following transformation (Ashraf et al. 2022),
g= (if + o% + us,
o1 =u{+uy, 02=u3{+us,
inserting Eq. (58) into Eq. (57) and we have some values of parameters
= i(u3 + us)(ap + 2cp* — 2dpv +v)
b 2(oq) ’

B apu? + apus + 2cp*u? + 2cpPus — 2dpulv — 2dpusv + ulv + usv (59)
2(oug) ’

Uy =
Uy = 0,uq = ug,us = us,

For MSRS of Egs. (45) and (46) substitute Eq. (59) into Eq. (58) and then put in Eq. (56),

2l (—Pxtvitd) (_ YBG) _ M)

202 uﬁ oy

Y1 (x7 t) = 2 a2 (60)
— Yo+ (@) tus
9 p2i(—pxtvi+¢) (_ zl/;Tﬁ;z _ (125?))
21 (xv t) = V() 24 ; (61)
T4 + (w) +us
— (2 2 2 2 _ 1(4ep—2dv+1) — 2
where f = (uj + us)"(ap + 2cp* — 2dpv +v)", y=x— 7 P 0 = apuy + apus+
2cp?u3 + 2cpPus — 2dpudv — 2dpusv + udv + usv, T =x — %725?% and @ = uy — lg(z);
14 MSR1K
For solving MSR1K we use the following transformation (Ashraf et al. 2022),
g= of + O'% +zleV‘ + us,
or=wui{+u, 02 =u3{+ua, (62)

Vi =wil +wy,

inserting Eq. (62) into Eq. (57) and we have some values of parameters
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3ug(ap + 2cp? — 2dpv +v)
20 ’ (63)
Uy = ug,us = us,w; = 0,wr = wp,z1 = z1,

uj :O,Mz = Uy, Uz =

For MSRI1K of Egs. (45) and (46) substitute Eq. (63) into Eq. (62) and then put in Eq. (56),

] 2_ d P __1(4ep=2dv+n)
6u4ez(—px+vt+¢) (ap + chz — 2dpv + v) (u4 . 3u4l//(ap+2cp 2 ,;;+v)(* 2dp—1 ))
»2 (x, t) - 3uaiy(ap+2cp? —2dpv+v) (xf—lmp MN'])) 2
a<<u4 _ wapree ’;“ 2] ) +13 + us + ew221>
(64)
. 3 a2 —2dpvtv x_z(4cp—2dv+n)
6u4e2’(*/”‘+v’+¢) (ap N 20p2 ~ dpy + V) <u4 B 4l//( p+2cp 1;; )( a1 ))
= (x’ t) - 3u4l//(ap+2¢p272dpv+v)(xf—’(hpizd‘rﬂ)) 2
o (u4 - 2u = ) +u3 + us + ez

(65)

15 MSR2K

For solving MSR2K we use the following transformation (Ashraf et al. 2022),
g= o-% + 0'5 +rie!t + e + us,
o =l +uy, 0y =u3zl+ us, (66)
Vi=wil+wy, Va=w{+u,

inserting Eq. (66) into Eq. (57) and we have some values of parameters

3ug(ap + 2cp? — 2dpv + v)
20 ’ (67)

Uy = Ug,us = us, wp = wy, wy = wy, w3 = 0,wg = wy, 21 = 21,23 = 23,

up = 0,uy = up,u3 =

For MSR2K of Egs. (45) and (46) substitute Eq. (66) into Eq. (67) and then put in Eq. (56),

2 i(—pxtvi+g) (lele(Wl‘//(X*I(Acgr;)zfr”))+W) _ 3“4(”’”2“”2*%”"*")(6))

o

(68)

V3 (x, l) = 1(4cp—2dvin) ’

(8)2+ZI€(WI‘II(X7 o)) 4 uj +us + ez,

. __t{4ep—2dv-+1) 3uy (ap+2cp>~2dpv+v) ()
2i(—pr-+vit) (i (x—2000 4y  Sua (ap-2ep~2dp
2¢ wizie Z 5

(69)

z3(x, 1) = Y
’ (8)2+zle(wl ¥ (5T ) + u% +us + ez 7

3ugy (ap+2cp2 72dpv+v) (xf—'(%g;pszﬂ))

where ¢ = uy — 2
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16 HBS

For solving HBS we use the following transformation (Ahmed et al. 2019b),
g= e—u(w]Cerz) + Zlew(uglJrlm) + 2z cos(u1 (W5C + Wé)), (70)
inserting Eq. (70) into Eq. (57) and we have some values of parameters

_ap+ 2cp* — 2dpv +v

JUp = Uy, W = wi,wy = wy, w3 = 0, w4 = wy, Ws = ws, Wg = W,

2(mwy)
1 = 0,22 = O,
(71)
For HBS of Egs. (45) and (46) substitute Eq. (71) into Eq. (70) and then put in Eq. (56),
i(—px+vt+¢) 2ep% — 2d
Jalet) = — e (ap —0—“ cp Ipv + V) ‘ (72)

2i(—px+vt+¢) 2ep% — 2d 4
za(x,t) = =2 (ap J; "~ 2dpvtv), (73)

17 PCRS

For solving PCRS we use the following transformation (Ahmed et al. 2019a),
g =0 + a5 +zicos(Vy) +z; cosh(V2) + us,
or=wl+u, o013=ul+us, (74)
Vi=wil+wy, Va=w{+wy,
inserting Eq. (74) into Eq. (5§7) and we have some values of parameters:
3 (tpzu;(chp + ¢ —2d*v +dn))
4(a(2dp — 1))

_ —2adp?+ap—4cdp® +2cp? +4d? p?v—A4dpv+v
2cdp+c—2d*v+dn

Ui :07142:142,“3:1/{3,144:

,Us = U5, 21 :0,22 :07

Wi =W, Wy =Wy, W3 =

lp b
(75)
For PCRS of Egs. (45) and (46) substitute Eq. (75) into Eq. (74) and then put in Eq. (56),
2 2adp? —ap-+4cdp® —2cp? —4d2 p? v-ddpv—v sinh(0)
. 2 cdp+c—2d%v+dy .
2i(~privi+d) \/ 2 f;z o + 2u3(p) — wyz; sin(Q)

X, 1) =
¥s(1) 2z cosh(0) + (p)*+z1 cos(Q) + 2 + us
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‘ Z \/ 2adp? —a[)A4idp3v ;2:‘/?2 7‘:12’ p2v-+adpy—v sinh(6)
2Q2i(—prvitd) 2 f;z o + 2u3(p) — wyz; sin(Q)
Zs (x7 t) = 2 s
zp cosh(6) + (p) 4z cos(Q) + 13 + us
(77)
whete 0\ R P ( ) ey and =
3usy? (2cdp+c—2d2v+d _odv _
b’ ( :aéd;—w 1) + usy (x - 7[(46’2’@2_[]1“7)) and Q = wy (x — Mep_2dvin) dpsz+">) +wy.
18 KCRS
For solving KCRS we use the following transformation (Ahmed et al. 2019a, b),
g=e " 4 ze" +O’% + o*% + us,
o1 =ui{+uz, 032=us{+u, (78)
Vi=wi{+ws,
inserting Eq. (78) into Eq. (57) and we have some values of parameters
3ug(ap + 2cp? — 2dpv +v)
= 0 = = — = = =
U yUpg = Uz, U3 b ) Uq = Ug, Us = U5, 2] = 2] (79)

wp = 0, Wy = Wy,
For KCRS of Egs. (45) and (46) substitute Eq. (79) into Eq. (78) and then put in Eq. (56),

_ 3u4w(ap+20p2—2dpv+v) (x—%#))

614" PHED) (ap + 2ep? — 2dpv + V) <u4

20
ys(X, t) == , (dp=2dvin)\\ 2
” <(u4 _ Bugi(ap+2cp *ZdFZFV)(X* 2dp-1 )) +u + u% + ez + eW2>
(80)
6u4e2i(—px+vt+¢) (ap + 2Cp2 _ dev + V) <u4 . 3u4‘1’(ap+2cp272dp2v+v) (xff(“"fz’az)iz:"l’w))
o
Z6 (x, t) = —

, 2
Susty(ap+2cp? —2dpv+v) xfw
o <<u4 _ > ( 2dp—1 ) +u + u% + eW221 + e

(81)
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19 MSPK

For solving MSPK we use the following transformation (Ahmed et al. 2019b),

g= a% + ag + +z; cos(V) + 26" 4 us,
o1 =uil+uy, 02 =u3(+u, (82)
Vi=wil+wy,  Vo=ws{+wy,

inserting Eq. (82) into Eq. (57) and we have some values of parameters:

3y%us3 (2cdp 4 ¢ — 2d*v + dn)

up =0,up = up,u3 = uz,uy = ,Us = us,
4(a(2dp — 1))
\/_ 2adp? —ap+4cdp® —2cp* —4d* p*v+4dpv—v
2cdp+c—2d?v+dn
wp = y W3 = W3, W4 = Wy, Wy = WpZ| = 21,22 = 22,

W
(83)

For MSPK of Egs. (45) and (46) substitute Eq. (83) into Eq. (82) and then put in Eq. (56),

) 2(2edptc—2dv
2¢l(=privitd) (F + 2us (—Suw (2:;1{2;;7?;1 +n) + uzyy (x - 74“3 dpde+"))) + W3zze®>

yrlxt) = 3us? Qedp-+e—2dPv+d) t(4ep—2dvin)\ )2 '
u3\” (2cdp+c—2d>v+dn) (4cp—2dv+n (o) 2
zy cos(¢) + ( 42(2dp—1) tu '/’( 2dp—1 )) tz2e” +uy + us
(84)
2(2., . 2
2i(—prxivitd) 3u3? (2cdp+e—2d*v+dn)  t4cp=2dv+1) )
2e [+ 2u3 T0(2dp—T1) +usy(x 2dp—1 +wszze
z1x 1) 3usy? 2edp-+c—2d2v-+dn) 1(4ep—2dvin)\ \ 2 ’
us3 cdp+c v+dn _ t(4cp—2dv+y (e 2
zycos(&) + <—4a(2dp T +u3 l//(x 72@ : >) +2€® + 13 + us
(85)
¥ —2adp®+ap—4cdp’ +2cp> +4d>p*v—adpv+v [ t(4ep—2dv+n)
where & = \/ Yedpte—2dvdn X 2dp—1 + wz and
—2adp?® +ap—4cdp3 +2cp? +4d2p2 v— —ddpry
2 2edp+e—2d2vrdy n(¢)
r=— and
v

@ — W3l//(x _ t(4L€;p2il\;+”)) + Wa + u% + us.
20 MSRK

For solving MSRK we use the following transformation (Seadawy et al. 2021; Manafian
et al. 2020),

g= o% + G% + +z; cosh(V) +2e" 4 us,
oy =il +uy, 02 =u3z(+us, (86)
Vi=wil+wy,  Vo=ws{+wy,

inserting Eq. (86) into Eq. (57) and we have some values of parameters:
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3 (wzug(chp + ¢ —2d*v +dn))
4x(2dp— 1))

_ —2adp?+ap—4cdp’+2cp? +4d? p? v—A4dpv+v
2cdp+c—2d*v+dn

up = 0,uy = up,u3 = uz,uy = ,Us = Us,

yW3 = W3, W4 = Wy, Wy = WpZ| = 21,2 = I3,

W
(87)
For MSRK of Egs. (45) and (46) insert Eq. (87) into Eq. (86) and then put in Eq. (56),
2 \/ 2adp? —ap-+4cdp’ 72(p2274d2p2 viddpyy o (®)
2 i (—Prvt+) 2ol “72:; i +2uz(A) + wazpe® (88)
wsl(x,t) = )
1) 21 cosh(®) + (A)*+z2e® + 13 + us
2adp? —ap+4cdp3 —2cp? —4d2 p2v+adpv—v .
) z) T, sinh(®)
2 2i(—pxtvi+d) \/ il 2;2 il + 2u3(A) + wyzpe® (89)
Z8 (-x7 t) = 2 )
z1 cosh(®) + (A) +ze” + u? + us
whow 0 P _tig ) A

3uzy” (2€dP+C*2d2V+d"l) t(4cp—2dv+n) t(4cp—2dv+1)
T0(2dp—1) +ustp(x — 2dp—1 and @ = w3y (x — 2dp—1 +ws.

21 Stability

Now using Hamiltonian method I" framework, we examine the stability (Khater 2019),

P P
1 1
r = 3 / Y (x)dx T = 3 / 22 (x)dx, (90)
-P -P
Now we verify the stability as
'
(I
i Ay em
ittt RN
- : A S s 0,05
= Vo 010
o T Taw Vi 04 02 00
() (b) (c)
Fig. 21 Graphical representation of solution y;(x,#) in Eq. (60) are presented via a =2,00=0.8,¢ =
0.0l,d=—-4,n=2,p=35, u=2,u; =0.06,u3; = —0.03,us = —0.9,us =5,v=03,w, =5, w3 =

3wy =7, =8,z =09,z = —5,¢ = 0.5, (a) 3D plot (b) 2D plot (c) density plot and (d) stream plot
respectively
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Fig. 22 Graphical representation of solution z;(x,7) in Eq. (61) are presented via a =2, = 0.8, ¢ =
0.01,d=—-4,n=2,p=5u=2,u; =0.06,u3 = —0.03,u4y = —0.9,us =5,v=03,w, =5,w3 =3,

Wy = —7,!// =8,21=09,2, = _57¢ =05

10,d = 04,5 =5,

10,d =04,7=5,p=15,

(b)

0.0010

0.0005

0.0004-0.00020.0000 0.0002 0.0004

(0

Fig. 23 Graphical representation of solution y,(x,) in Eq. (64) are presented via a = —2,0 = —0.2,¢ =

p=15u=-2uy =06,u3 = —-3,u4 =19,us = -05,v=-3,w, =15w; =
0.03,wy = 0.7,y = —0.8,z; = —0.1,z, =5, = 15

0.03,ws = —0.7, ) = —0.8,21 = 0.1,z = 5, ¢ = 15
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(c)

Fig. 24 Graphical representation of solution z;(x,7) in Eq. (65) are presented via a = —2,0 = —0.2,¢ =

u=—-2uy =0.6,us = —-3,u4 = 1.9,us = —0.5,v=-3,w, =15 w; =
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Fig. 25 Graphical representation of solution y;(x, ) in Eq. (68) are presented via a = —2.4,0 = —0.2,¢c =
1.7, d=24n=55p=65u=25u =-0.6,u3 =—-0.03,us =—19,us =05, v=-39,w =
0.4,w, = 1.05,w3 =3.7, wg = 0.7,y = 0.08,z;, = 0.01,z, = -3, ¢ = 1.05
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Fig. 26 Graphical representation of solution z3(x,7) in Eq. (69) are presented via a = —2.4,0 = —0.2,¢
1.7,d =24,n=55p=65u=2.5, uy = —0.6,u3 = —0.03,u4 = —1.9,us =0.5,v= -39, w =

0.4, w, = 1.05, w3 = 3.7, ws = 0.7, 1) = 0.08,2; = 0.01,2, = —3, ¢ = 1.05
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Fig. 27 Graphical representation of solution y4(x,f) in Eq. (72) are presented via
a=50=-05c¢=03,d=2,p=3,v=05,¢6=02
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Fig. 28 Graphical representation of solution =z (x,7) in Eq. (73) are presented via

a=50=-05c¢c=03,d=2p=3,v=0.5,¢6=02
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Fig. 29 Graphical representation of solution ys(x,#) in Eq. (77) are presented via us = 7.5, a = 4,0 =
—02,c=-6.7,d=25n=-55p=-5u=2,uy = —0.06,us = —3,us = —1,v=0.09,w; =4,w, =
7,W3 = 37, Wyq = —0,7,!// = 8,21 = —l,Zz = 3,¢ =5
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Fig. 30 Graphical representation of solution zs(x,¢) in Eq. (77) are presented via us = 7.5, a = 4,00 =
—02,c=-6.7,d=25n=-55p=—-5u=2,u; = —0.06,u3 = -3,
ug=—1,v=0.09w; =4 w, =7, w3 =37T,wy=-07,y =8,z =-1,2,b=3,¢=5
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Fig. 31 Graphical representation of solution ys(x, ¢) in Eq. (80) are presented via a = 0.5, alpha = 0.08,¢c =
0.2,d =-04,1=02,p=0.5u=—2,u; = 0.6,
ug=—-04,v=-03,w, =7,y =-05,21=09,¢ =3
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(b) © @

Fig. 32 Graphical representation of solution ze(x, 7) in Eq. (81) are presented via a = 0.5, alpha = 0.08,¢ =
02,d=-04,n=02,p=0.5, u=—-2,uy =06,u4 =—-04,v=-03,w, =7,y =05,z =

09, =3

(0

Fig. 33 Graphical representation of solution y;(x,¢) in Eq. (84) are presented via a = 0.5,0 = 8,c =
02,d=04,n=-2,p=-3, u=-2,uy =—-0.6,u3 =—-03,u4 =0.7,us =—-8,v=-3w, =5w; =
—03,wy=-7, ¢y =-05,2 =-09,z,=-5,¢=5
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Fig. 34 Graphical representation of solution z7(x,¢) in Eq. (85) are presented via a =0.5,0 = 8,c =
02,d=04,n=-2,p=-3, u=-2,uy=—-0.6,u3 =—-03u4 =0.7,us =—-8,v=-3w, =5w; =
—03,wy =—7, Y =—-05,2; = =09,z = -5, =5

where I'; (j=1,2) and c represented as momentum and velocity respectively (Figs. 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31,32, 33,34, 35 and 36). Hamiltonian system provides the
stability condition, all solutions we got through this condition is given by (Table 1), ,
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Fig. 35 Graphical representation of solution ys(x,#) in Eq. (88) are presented via a = —0.5,0 = 8,¢c =
02,d=04,n=-2,p=5u=-2, Uy = 0.6,u3 = —0.3,u3 =04,us =8, v=0.3,w, =5 w; =
03,ws=7,y=-052=-09,20=-5,¢=3
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Fig. 36 Graphical representation of solution zg(x,) in Eq. (89) are presented via a = —0.5,0 = 8,¢ =
02,d=04,n=-2,p=5, u=—-2,up =0.6,u3 = —03us =04,us =8, v=03,w, =5 w3 =

(@) (b)

0.3,W4 = 7, l// = 70.5,21 = 70.9,22 = 75,(,{) =3

22 Results and discussion

By establishing the proper values for the parameters, we were able to successfully generate
the desired type of solutions which express wave discrepancy. Take note of Figs. 1 and 2
which presents bright soliton solution for Eq. (7-8) by using appropriate values for
parameters. In Figs. (a) 3D plot (b) 2D plot and (c) contour plot respectively. We get some
multiple bright soliton graph for Eq. (11-12) by using the values @) = 1.5,b; =7,d, =
0.9,k =0.5,ks =02, k¢ = —4,k; = —2,n, = 2.2,5 = 0.05 in Figs. 3 and 4. The geo-
metrical structures of lump wave soliton solutions are presented in Figs. 4, 5, 6, 7, 8, 9 and
10 for various values for parameters. Figures 13, 14, 15, 16, 17, 18, 19 and 20 shows kink
type LSS for different values of parameters. We have computed M-shaped graphs for y; (x, ¢)
and zi(x,f) with values a=2,0=08,c=00l,d=—-4n=2,p=5u=2,u; =
0.06,u3 = —0.03,u4 = —0.9, us =5v=03,w, =5w; =3, wy=-7,y =8,z =
0.9,z = —=5,¢ = 0.5 in Figs. 21 and 22, (a) 3D plot (b) 2D plot (c) density plot and (d)
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stream plot respectively. Figures 23 and 24 represented graph of M-shaped with one and two
kinks. We have attained the breather for ys(x,¢) and z4(x,7) with values a = 5,0 =
—0.5,¢=0.3,d=2,p=3,v=0.5,¢ = 0.2 in Figs. 27 and 28. We also obtained some
M-shaped interaction with periodic, rogue and kink profiles are presented in Figs. 29, 30,
31, 32, 33, 34, 35 and 36.

23 Conclusion

In this paper, we explored distinct solutions for NLSE-QNS such as multi, rogue and
periodic waves. we have investigated lump with kink, lump periodic and kink, breather
Iump, homoclinic breather. We also categorised MSRS, MSRS with one and two kink, HBS,
PCRS, KCRS, MSPK and MSRK. Additionally, we also manipulated their stability. We
discovered by HS properties that y;(x,y), z(x,y) where (i =2,4,7) and (j = 1,2) to be
stable solutions.
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