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Abstract
The purpose of this work is to seek various innovative exact solutions using the new 
Kudryashov approach to the nonlinear partial differential equations (NLPDEs). This tech-
nique obtains novel exact solutions of soliton types. Moreover, several 3D and 2D plots of 
the higher dimensional Klein-Gordon, Kadomtsev-Petviashvili, and Boussinesq equations 
are demonstrated by considering the relevant values of the aforementioned parameters to 
exhibit the nonlinear wave structures more adequately. The new Kudryashov technique is 
an effective, and simple technique that provides new generalized solitonic wave profiles. It 
is anticipated that these novel solutions will enable a thorough understanding of the devel-
opment and dynamic nature of such models.
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1 Introduction

NLPDEs play a crucial and practical role in many branches of technology, science, and 
theoretical physics Yépez-Martínez et al. (2022), Akinyemi et al. (2022), Arqub et al. 
(2020), Mohamed and El-Sherif (2010), Jeragh et  al. (2007), Osman (2019), Osman 
et  al. (2020), Aljahdali et  al. (2013), Akinyemi et  al. (2022), Houwe et  al. (2022), 
Osman and Ghanbari (2018), Osman et al. (2019). Numerous scientists have developed 
cutting-edge methods for obtaining precise solutions to the myriad fascinating nonlinear 
models that appear in contemporary science Nisar et al. (2022), Abbagari et al. (2022), 
Arqub et al. (2022), Osman and Wazwaz (2019). An essential subject in the research of 
nonlinear phenomena is the development of analytical solutions for NLPDEs Rezazadeh 
et al. (2021), Tarla et al. (2022), Chu et al. (2021), Jin et al. (2022).

Many effective methods for handling these models have been employed in the pre-
sent era of practical science and engineering, such as the Hirota’s bilinear transform 
approach Kumar and Mohan (2021), Özkan et  al. (2022), exp-function method Nisar 
et  al. (2021), Gepreel and Zayed (2021), the unified method and its generalized form 
Osman (2017), Wazwaz and Osman (2018), Osman (2016), the technique of Kudryashov 
Tarla et al. (2022), Malik et al. (2021), Sain et al. (2021), Dan et al. (2020), the soliton 
ansatz method Fan and Hona (2002), Savescu et al. (2014), the improved trial equation 
method Zhou et al. (2016), Günerhan et al. (2020), invariant subspace method Hashemi 
(2018, 2021), and Lie symmetry method Malik et al. (2021), Hu and Li (2022), Kumar 
et  al. (2021, 2022). Over the past few decades, one of the most fascinating areas of 
current research has been the study of the solitonic and optical behaviour of nonlinear 
models Zayed and Arnous (2013); our perspective is still applicable even though the 
provided model suggests additional odd order partial derivative terms El-Shiekh and 
Al-Nowehy (2013).

In the past few years, many efficient studies were done to typify the soliton solutions 
for different complicated nonlinear differential equations, including the extended sinh- and 
sine-Gordon equation expansion approach Baskonus et  al. (2018), Ali et  al. (2020), the 
extended Jocobi’s elliptic approach Hong and Lu (2009), Tarla et al. (2022a, 2022b), the 
modified auxiliary equation mapping method Cheemaa et al. (2020), the modify extended 
direct algebraic technique Yaro et al. (2020), the inverse scattering transformation method 
Zhang and Chen (2019), the extended rational sine-cosine method Mahak and Akram 
(2019), semi-inverse variational principle Kohl et  al. (2020) and many more Hosseini 
et al. (2020), Kudryashov (2020), Qureshi et al. (2022), Arqub et al. (2022), Rashid et al. 
(2022), Adel et al. (2022), Ismael et al. (2022), Yao et al. (2022). The main object of this 
study is to use the new Kudryashov approach Tarla et al. (2022), Malik et al. (2021), Sain 
et  al. (2021), Dan et  al. (2020) to analyze three different important models namely: the 
(1+1)-dimensional Klein-Gordan equation (1D-KGE) Opanasenko and Popovych (2020), 
Chargui et al. (2010), the (2+1)-dimensional Kadomtsev-Petviashvili equation (2D-KPE) 
Gai et  al. (2016), Alharbi et  al. (2020), and the (3+1)-dimensional Boussinesq equation 
(3D-BE) Wazwaz and Kaur (2019), Hu and Li (2022) by finding their analytical solutions 
and discuss their behaviors graphically through some 3D and 2D charts.

This article is devised as follows: in Sect. 2, the new Kudryashov method is intro-
duced. Section 3, deals with the solution of 1D-KGE by using the new Kudryashov tech-
nique. In Sect. 4, this method is utilized for extracting exact solutions of the 2D-KPE. 
Solitons of the 3D-BE is considered in Sect. 5. The last section, contains some conclu-
sions and final remarks.
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2  The new Kudryashov method

Assume the next NLPDE:

where Ω simply represents a polynomial. Using another transformation of the form

where � represents the speed of wave. Rewriting Eq. (2) as the following nonlinear ODE

Consider (3) has a solution as:

where ci, (i = 0, 1,… ,N) are the coefficients of Qi(�) with cN ≠ 0 and 

Q(�) =
1

aAΘ� + bA−Θ�
 is the solution of

where the constants a, b, Θ and A are non-zero, with A > 0 and A ≠ 1.
Here we will find N by the classical balance procedure and then putting Eq. (4) into Eq. 

(3). Since Q(�) ≠ 0 , and we equated all the coefficients of Qi(�) to zero. Then, this system 
is solved for a, b and ci’s. Whenever a, b and ci ’s are determined, then solutions are obtained 
with the help of parameters by using the explicit strategy. Then by substitution of � = x − �t 
into the solutions satisfying (5), the procedure is going to end.

3  The (1+1)‑dimensional Klein–Gordan equation Opanasenko 
and Popovych (2020), Chargui et al. (2010)

where u = u(x, t) is the unknown function with a real value that results from the real inde-
pendent variables x and t, and q, s are real constants. The 1D-KGE is a relativistic wave 
equation, related to the Schrödinger equation. Opanasenko and Popovych Opanasenko and 
Popovych (2020) have described generalized symmetries and local conservation laws for 
the 1D-KGE. Furthermore, Chargui et al. (2010) solved Eq. (6) in one spatial dimension 
for the case of mixed scalar and vector linear potentials in the context of deformed quan-
tum mechanics characterized by a finite minimal uncertainty in position.

Assuming that Eq. (6) has a traveling wave

where � is wave velocity. Inserting (7) in (6), we get the following nonlinear ODE:

(1)Ω(u, ut, ux, utt,…) = 0,

(2)u(x, t) = U(�), � = x − �t,

(3)G(U,U�,U��,U���,…) = 0.

(4)U(�) =

N
∑

i=0

ciQ
i(�),

(5)(Q�(�))2 = (Θ(lnA)Q(�))2(1 − 4abQ2(�)),

(6)utt − uxx + qu + su3 = 0,

(7)u(x, t) = U(�), � = x − �t,
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Balancing the terms U�� and U3 to get N = 1 . By substituting N = 1 in to (4) to get

Substituting (9) in (8) and equate the coefficient of Q(�) yields

Solving the above system, we get

By substituting (11) in to (9), we recover this exact solution

where � = x −

√

−q + Θ2(ln (A))2

Θ ln (A)
t.

4  The (2+1)‑dimensional Kadomtsev–Petviashvili equation Gai et al. 
(2016), Alharbi et al. (2020)

where u = u(x, y, t) is the unknown function with a real value that results from the real 
independent variables x, y, and t and It is used to describe the plasma’s electrostatic wave 
potential or the fluid’s shallow-water wave amplitude. Gai et al. (2016) used three differ-
ent analytical techniques namely: the Lie symmetry, the extended tanh and the homotopy 
perturbation methods to investigate some exact and approximate solutions for the 2D-KPE. 
The exp(�(�))-expansion method is used by Alharbi et al. (2020) to find a variety of exact 
solutions with different wave structures for Eq. (13) and they discussed the stability of the 
obtained solutions via the commonly used form of the Hamiltonian system.

Assume that Eq. (13) has a traveling wave solution

where � is wave velocity. Using (14) in (13), we get the following nonlinear ODE:

Then, with respect to � , integrate equation (15) twice and simplify to get

(8)(�2 − 1)U�� + qU + sU3 = 0.

(9)U(�) = c0 + c1Q(�).

(10)

Q0 ∶ qc0 + sc0
3 = 0,

Q1 ∶ qc1 + 3 sc0
2c1 + c1Θ

2(ln (A))2�2 − c1Θ
2(ln (A))2 = 0,

Q2 ∶ 3 sc0c1
2 = 0,

Q3 ∶ sc1
3 − 8 c1Θ

2(ln (A))2�2ab + 8 c1Θ
2(ln (A))2ab = 0.

(11)c0 = 0, c1 = ±2

√

−
2abq

s
, � =

√

−q + Θ2(ln (A))2

Θ ln (A)
.

(12)u(x, t) = ±

√

−
2abq

s

2

aAΘ� + bA−Θ�
,

(13)(ut + 6uux + uxxx)x + uyy = 0,

(14)u(x, y, t) = U(�), � = x + �y − �t,

(15)U���� + 6UU�� + (�2 − �)U�� + 6U2
�
= 0.
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with integral constants treating as zero. Balancing the terms U�� and U2 to get N = 2 . By 
substituting N = 2 in to (4) to get

Substituting (17) in (16) and equate the coefficient of Q(�) to zero yields

Following the aforementioned system’s solution, we obtain the sets:

Set 1:

By substituting (19) in to (14), we recover this exact solution

where � = x + �y −
(

�2 + 4Θ2(ln (A))2
)

t.

Set 2:

By substituting (21) in to (14), we recover this exact solution

where � = x + �y −
(

�2 − 4Θ2(ln (A))2
)

t.

5  The (3+1)‑dimensional Boussinesq equation Wazwaz and Kaur 
(2019), Hu and Li (2022)

(16)U�� + 3U2 + (�2 − �)U = 0,

(17)U(�) = c0 + c1Q(�) + c2Q(�)
2.

(18)

Q0 ∶ �2c0 − � c0 + 3 c0
2 = 0,

Q1 ∶ �2c1 − � c1 + 6 c0c1 + Θ2(ln (A))2c1 = 0,

Q2 ∶ �2c2 − � c2 + 6 c0c2 + 3 c1
2 + 4Θ2(ln (A))2c2 = 0,

Q3 ∶ 6 c1c2 − 8Θ2(ln (A))2c1ab = 0,

Q4 ∶ 3 c2
2 − 24Θ2(ln (A))2c2ab = 0.

(19)c0 = 0, c1 = 0, c2 = 8Θ2(ln (A))2ab, � = �2 + 4Θ2(ln (A))2.

(20)u(x, y, t) =
8Θ2(ln (A))2ab
(

aAΘ� + bA−Θ�
)2
,

(21)
c0 = −

4

3
Θ2(ln (A))2, c1 = 0, c2 = 8Θ2(ln (A))2ab, � = �2 − 4Θ2(ln (A))2.

(22)u(x, y, t) = −
4

3
Θ2(ln (A))2 +

8Θ2(ln (A))2ab
(

aAΘ� + bA−Θ�
)2
,

(23)utt − uxx − �(u2)xx − �uxxxx +
�2

4
uyy + �uyt + �uxz = 0.
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where u = u(x, y, z, t) is the unknown function with a real value that results from the real 
independent variables x, y, z, and t, and �, � , � and � are real constants. It is commonly 
recognized that the 3D-BE is a crucial mathematical physics model with large application 
background, including in wave motion, weather forecast, and ocean ecology, all of which 
have undergone intensive research. In Hu and Li (2022), the nonlocal symmetry of the 
3D-BE is obtained with the truncated Painleve’ method. Wazwaz and Kaur (2019) tested 
the integrability of Eq. (23) by Painleve’ test and obtained complex and real soliton solu-
tions for this equation by using the simplified Hirota’s method.

Suppose that Eq. (23) has a traveling wave solution

where � is wave velocity. Substituting (24) into (23), we get the following nonlinear ODE:

Then, with respect to � , integrate equation (25) twice and simplify to get

with integral constants treating as zero. Balancing the terms U�� and U2 to get N = 2 . By 
substituting N = 2 in to (4) to get

Substituting (27) in (26) and equate the coefficient of Q(�) to zero yields

Following the aforementioned system’s solution, we obtain the sets:

Set 1:

By substituting (29) in to (24), we recover this exact solution

(24)u(x, y, z, t) = U(�), � = x + �y + sz − �t,

(25)−�U���� − 2�UU�� +
(

�2 − 1 − ��� + �s +
1

4
�2�2

)

U�� − 2�U2
�
= 0.

(26)−�U�� − �U2 +
(

�2 − 1 − ��� + �s +
1

4
�2�2

)

U = 0.

(27)U(�) = c0 + c1Q(�) + c2Q(�)
2.

(28)

Q0 ∶ −c0 + �2c0 − � c0
2 + (1∕4) �2�2c0 + � sc0 − � �� c0 = 0,

Q1 ∶ (1∕4) �2�2c1 + � sc1 − 2 � c0c1 − � �� c1 − � Θ2(ln (A))2c1 − c1 + �2c1 = 0,

Q2 ∶ (1∕4) �2�2c2 + � sc2 − 2 � c0c2 + �2c2 − � c1
2 − � �� c2 − 4 � Θ2(ln (A))2c2 − c2 = 0,

Q3 ∶ 8 � Θ2(ln (A))2c1ab − 2 � c1c2 = 0,

Q4 ∶ −� c2
2 + 24 � Θ2(ln (A))2c2ab = 0.

(29)
c0 = 0, c1 = 0, c2 = 24

� Θ2(ln (A))2ab

�

s =
−�2�2 − 4 �2 + 4 � �� + 16 � Θ2(ln (A))2 + 4

4�
.
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where � = x + �y +

(

−�2�2 − 4 �2 + 4 � �� + 16 � Θ2(ln (A))2 + 4

4�

)

z − �t.

Set 2:

(30)u(x, y, z, t) = 24
� Θ2(ln (A))2ab

�
(

aAΘ � + bA−Θ �
)2
,

Fig. 1  New exact solution u(x,  t) (12) of the Klein–Gordon equation (6), for 
a = 2, b = 1.5, q = −2, s = 0.15,Θ = 1.5 , when A = 2.7
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By substituting (31) in to (24), we recover this exact solution

where � = x + �y −
(

�2�2+16 � Θ2(ln (A))2+4 �2−4−4 � ��

�

)

z − �t.

(31)
c0 = −4

� Θ2(ln (A))2

�
, c1 = 0, c2 = 24

� Θ2(ln (A))2ab

�
,

s = −
�2�2 + 16 � Θ2(ln (A))2 + 4 �2 − 4 − 4 � ��

4�
.

(32)u(x, y, z, t) = −4
� Θ2(ln (A))2

�
+ 24

� Θ2(ln (A))2ab

�
(

aAΘ � + bA−Θ �
)2
,

Fig. 2  New exact solution u(x,  y,  t) (20) of the KP equation (13), for 
a = 1.5, b = 0.5,Θ = 1.4,� = 0.3, y = 1 , when A = 1.6
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6  Conclusion

The new type of the Kudryashov technique is utilized to get some new exact solutions 
of the nonlinear problems. Some of the well-known nonlinear differential equations, e.g. 
Klein–Gordon equation, Kadomtsev–Petviashvili equation, and Boussinesq equation in 
higher dimensions are considered. Solitons of discussed equations are reported and some 
figures are shown to demonstrate the behavior of models in two and three dimensions. 
Figs. 1, 2, and 3 represent the solutions given by Eqs. (12), (20), and (30) for the models the 
Klein–Gordon equation, the KP equation, and the Boussinesq equation, respectively. Using 
the assumed values for the relevant parameter, we found that all obtained solutions depict 

Fig. 3  New exact solution u(x,  y,  z,  t) (30) of the Boussinesq equation (23), for 
a = 2.5, b = 1.5, � = 1, � = 1.5, � = 0.2, � = −0.5, � = 2Θ = 2,� = 0.3, y = 0.5, z = 0.5 , when A = 2
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bright soliton solutions created in 3D through x and t as −4.5 ≤ x ≤ 4.5 and −4.5 ≤ t ≤ 4.5 . 
Whereas the 2D spreading is depicted for various t. It is evident that the wave solutions 
sweep from left to right along x-axis with the same amplitude. We mention that the solu-
tions existed in Yomba (2007), Pandir and Ulusoy (2013) are special cases of the obtained 
solutions given by (12), (20), and (30) when a = b . The Kudryashov method is a useful and 
strong mathematical instrument that may be used to provide the analytical solutions to a 
variety of other different NLPDEs.
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