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Abstract
This paper is performed to extract solitons and other solitary wave solutions of the general-
ized third-order nonlinear Schrödinger model by implementing two compatible schemes 
like improved auxiliary equation and enhanced rational (G�

∕G)-expansion methods. The 
mentioned equation governs extensive applications in numerous disciplines of engineer-
ing and applied science and demonstrate how short-ultra pulses in optical fibers and quan-
tum characteristics interact dynamically. A stack of hyperbolic, rational, and trigonometric 
function solitary wave solutions is magnificently constructed by means of the indicated 
schemes. Some of the acquired wave solutions are characterized graphically in 3D outlines, 
contour forms and 2D shapes to illustrate the dynamical behavior. The density of nonlin-
earity is brought out by contour plots and 2D outlines make clear the dynamic nature of 
pulse transmission. A comparable analysis of this study with the available consequences in 
literature confirms the innovation and assortment of present accomplished wave solutions 
and hence enhances the great performance of the employed techniques.

Keywords The generalized third-order Schrödinger model · Soliton · Optical fibers · 
Improved auxiliary equation approach · Enhanced rational (G�

∕G)-expansion procedure

1 Introduction

The nature of real world is governed by various nonlinear complex phenomena which are the 
main concerns of the scholars and researchers. Based on intricate phenomena arise in various 
branches of science, there have been modeled numerous nonlinear evolution equations among 
which Schrödinger types are remarkable for their significance (Kilbas et  al. 2006; Wazwaz 
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2002; Miller and Ross 1993; Oldham and Spanier 1974). Nonlinear Schrödinger models as 
well numerous other nonlinear models have been studied by many researchers with various 
techniques such as the semi-inverse variational principle has been employed to study log law, 
power law and cubic nonlinearity of the resonant nonlinear Schrödinger’s equation (Biswas 
2013); a higher-order Schrödinger equation with variable coefficients has been examined by 
the Hirota bilinear method for the periodic attenuating oscillation of solitons (Liu et al. 2019); 
some researchers have adopted exp-function method to explain in detail the soliton natures 
arise in the dimensionless coupled nonlinear Schrödinger equations, cubic-quartic nonlinear 
Schrödinger equation, and the chiral nonlinear Schrödinger’s models (Ekici et al. 2017; Yildi-
rim et  al. 2020; Ebadi et  al. 2012); the nonlinear Schrödinger equation with parabolic law 
nonlinearity and an improved nonlinear Schrödinger equation have been investigated for opti-
cal solitons by using the ansatz method (Zhou et al. 2015; Savescu et al. 2013); the extended 
Fan-sub equation method has been utilized to analyze quadratic-cubic and dual-power laws 
nonlinearity of a couple of nonlinear Schrödinger equations, the ultra-short pulses providing 
by the Hamiltonian amplitude equation, and the separation phase connecting to the convec-
tive-diffusive Cahn–Hilliard equation (Younas and Ren 2021; Younas et al. 2022a, 2022b); 
the Schrödinger equation relating to cubic optical solitons, the Kraenkel-Manna-Merle sys-
tem expressing the motion of nonlinear ultra-short wave pulse and the generalized Korteweg-
de-Vries-Zakharov-Kuznetsov model arise in plasma physics have been studied through the 
Φ6-model expansion method (Younas et  al. 2021, 2022c, 2022d); the new extended direct 
algebraic method has been adopted to investigate wave solutions of the three-dimensional 
Wazwaz-Benjamin-Bona-Mahony equation, and the doubly dispersive equation (Younas and 
Ren 2022; Younas et  al. 2022e); the 

(
G�∕G, 1∕G�

)
-expansion and 

(
1∕G�

)
-expansion tech-

niques have been used to examine (1 + 1)-dimensional Schrödinger equation (Kaplan et  al. 
2016); the pure-cubic complex Ginzburg-Landau equation having nonlinear refractive index 
has been studied by applying the new mapping method and the addendum to Kudryashov’s 
approach (Zayed et al 2021a); a nonlinear Schrödinger model has been studied by implement-
ing extended Fan sub-equation scheme (Cheema and Younis 2016); (m + G

�

∕G)-expansion 
and exp-�(�)-expansion tools have been employed to study the cubic-quartic and resonant 
nonlinear Schrödinger equation for optical soliton solutions (Gao et al. 2020); the fractional 
order (2 + 1)-dimensional Schrödinger model has been investigated by employing (G�

∕G)

-expansion approach (Li et  al. 2019); the variational iteration method has been adopted to 
investigate optical solitons of Schrödinger model in normal dispersive regimes (Wazwaz 
and Kaur 2019); coupled of Schrödinger equations has been explored by operating improved 
tanh and rational (G�

∕G)-expansion schemes to construct diverse optical solitons (Islam 
et al. 2022a, 2022b); new F-expansion tool has been employed to explore wave solutions of 
Schrödinger equations (Pandir and Duzgun 2019; Biswas et al. 2019); various F-expansion 
and extended trial equation procedures have been applied to examine analytic solutions of the 
(2 + 1)-dimensional Schrödinger model (Rizvi et al. 2017); the cubic Schrödinger equation has 
been inspected by homotopy analysis method (Hemida et al. 2012) and worth stating further 
studies (Younis et al. 2018; Liu et al. 2017; Chowdhury et al. 2021; Ismael et al. 2021; Zayed 
et al. 2021a; Rizvi et al. 2021; Salam et al. 2016; Lu et al. 2017; Malik et al. 2021a; Islam et al. 
2022c; Gu et al. 2022; Osman et al. 2022; Biswas et al. 2017).

This present investigation deals with the generalized third-order nonlinear Schrödinger 
equation

(1.1)i
(
�t + �xxx

)
+ |�|2(b� + ic�x

)
+ id

(|�|2)
x
� = 0,
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where � represents complex function depending on temporal variable t and spatial vari-
able x ; the cubic nonlinearity is affected by b while the dispersive terms are affected by 
c and d . Earlier, this complex governing model has been investigated to seek for accurate 
wave solutions by the researchers such as Lu et al. have studied Eq. (1.1) by employing exp 
(−Υ(�))-expansion and extended simple equation methods which provided analytical wave 
solutions (Lu et al. 2019); the same model has been examined by Nasreen et al. for exact 
solutions via the Riccati mapping method (Nasreen et al. 2019); the exp-function and uni-
fied procedures have been imposed to construct and analyse the wave solutions of the men-
tioned equation by Hosseini et al. (Hosseini et al. 2020); Malik et al. have utilized the Lie 
symmetry analysis and different methods, and discovered different optical soliton solutions 
(Malik et al. 2021b); the novel homotopy perturbation method has been applied to study 
the stated governing equation by Zhao et al. (2022); Jacobi elliptic function solutions of the 
mentioned model have been assembled by Wang et al. (2014).

Subsequently, improved auxiliary equation and enhanced rational (G�

∕G)-expansion 
schemes are putted forward to pursue suitable analytic solutions of the governing equa-
tion stated in Eq. (1.1). Soliton theory has attracted profound awareness in investigational 
studies for being effective research extent subjective to telecommunication, engineering, 
mathematical physics, and several other problems occur in nonlinear sciences. At present, 
optical solitons have taken great importance from researchers and scholars because of their 
extensive roles to analyse related complicated phenomena. Optical solitons are special 
type of solitary waves which endure unaffected during the propagation in long distance. 
Solitons are supportive in wide-ranging sense in the machinery of signal-based fiber-optic 
amplifiers, optical pulse compressors, communication links, and some others. We pay our 
devotion to comprise assorted solitons associated with optical fibers. Accordingly, this 
investigation adopts the advised methods fruitfully and collects profuse appropriate wave 
solutions which might be noticeable first time in the literature.

2  Elucidation of advised schemes

Take the evolution equation involving nonlinearity as

Commencing the new wave variable

Transforms Eq. (2.1) into the ODE

One may integrate Eq. (2.3) as much possible and consider the constant of integration 
as zero for pursuing soliton solutions. The major dealings of the recommended schemes are 
stated bellow:

2.1  Improved auxiliary equation technique

The expected solution of Eq. (2.1) is specified as follows (Islam et al. 2021a, b):

(2.1)Ψ
(
u, ux, uy, ut,… , uxy, uxt, uyt,… , uxx, uyy, utt,…

)
= 0, 0 < 𝛼 ≤ 1

(2.2)u = u(�), � = �(x, y, t,…)

(2.3)Ω
(
u, u�, u��, u���,………

)
= 0
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where e′
i
s and f ′

i
s are free parameters; one of en and fn is different from zero; s is decided 

by using balancing theme for Eq. (2.3) and �(�) satisfies the equation

The solutions of Eq. (2.5) are well-known (Akbar et al. 2019). Gripping the calculated 
value of s , Eq.  (2.4) alongside its required differential coefficient and Eq.  (2.5) pushes 
Eq. (2.3) to be a polynomial in a�(�) . Set polynomial’s coefficients to zero and unravel them 
for involved arbitrary constants with the support of the software Maple. Incorporating the 
solutions of Eq. (2.5) and the found parameter’s values in Eq. (2.4) delivers the expected 
solitary wave solutions of Eq. (2.1).

2.2  Enhanced rational (G
′

∕G)‑expansion scheme

The desired solution is itemized as (Islam et al. 2021b)

where s is picked out as in previous scheme and (G�

(ξ)∕G(ξ)) satisfies

where ε, ϵ and � are free constraints. The Cole-Hopf transformation ψ(ξ) = G
�(ξ)∕G(ξ) 

diminishes Eq. (2.7) to be

Equation (2.8) offers several solutions (Zhu 2008). Equation (2.3) alongside Eqs. (2.6) 
and (2.8) yields a polynomial in (G�

(�)∕G(�)) . Adjust same terms of to zero for algebraic 
equations. Find out the essential parameter’s values from these equations by computer soft-
ware Maple. Implanting these values in Eq.  (2.6) yields appropriate analytic solutions to 
Eq. (2.1). Thereupon, we derive the proper solitary wave solutions of the generalized third-
order Schrödinger model as follows:

3  Formation of solutions

In this portion, the generalized third-order nonlinear Schrödinger equation is resolved 
by means of two proficient techniques like improved auxiliary equation approach and 
enhanced rational (G�

∕G)-expansion procedure. We introduce the transformation,

The adaptation of the transformation (3.1) in Eq. (1.1) leaves

(2.4)u(�) =

∑s

i=0
eia

i�(�)

∑s

i=0
fia

i�(�)

(2.5)� �(�) =
1

ln a

{
pa−�(�) + q + ra�(�)

}

(2.6)u(�) =
e0 +

∑s

i=1
ei
�
G�(�)∕G(�)

�i
+ fi

�
G�(�)∕G(�)

�−i
g0 +

∑s

i=1
gi(G

�(�)∕G(�))i + hi(G
�(�)∕G(�))−i

(2.7)GG
��

= εGG
�

+ ϵG2 + �G
�2

(2.8)ψ
�

(ξ) = ϵ + εψ(ξ) + (� − 1)ψ2(ξ)

(3.1)�(x, t) = u(�)ei�(x,t), �(x, t) = ax + �t + �, � = �x + wt
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Integrating Eq. (3.3) and setting integral parameter as zero yields

Equation (3.2) coincides with Eq. (3.4) and hence becomes

under the conditions b = −2ad , � =
3aw−8a3�

�
 . Applying homogeneous balance principle 

to Eq. (3.5) provides s = 1 . Now, we adopt the suggested techniques.

3.1  Outcomes via improved auxiliary equation technique

The balancing number forces Eq. (2.1) to be

Equation (3.2) alongside Eqs. (3.1.1) and (2.1) turns into a polynomial in a�(�) . Equating 
similar terms of the polynomial to zero and resolving them by computer package Maple, 
the following outcomes are collected:

Merging Eqs. (3.1.2)–(3.1.4) and Eq. (3.1.1) yield three expressions for traveling wave 
solutions as follows:

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2(q2 − 4pr)}.

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2(q2 − 4pr)}.

(3.2)3a�2u�� +
(
� − a3

)
u + (ac − b)u3 = 0

(3.3)�3u��� +
(
w − 3�a2

)
u� + �(c + 2d)u2u� = 0

(3.4)3�3u�� + 3
(
w − 3�a2

)
u + �(c + 2d)u3 = 0

(3.5)3�2u�� +
(
3w − 9a2�

)
u + (c + 2d)u3 = 0

(3.1.1)u(�) =
e0 + e1a

�(�)

f0 + f1a
�(�)

(3.1.2)

Case 1 ∶ e0 = ±
�
�
2pf1 − qf0

�√
−6�

2
√
c + 2d

, e1 = ±
�
�
qf1 − 2rf0

�√
−6�

2
√
c + 2d

, w =
�

2

�
6a2 + �2

�
q2 − 4pr

��

(3.1.3)

Case 2 ∶ e0 = ±
f1�

�
4pr − q2

�√
−6�

4r
√
c + 2d

, e1 = 0, f0 =
qf1

2r
, w =

�

2

�
6a2 + �2

�
q2 − 4pr

��

(3.1.4)

Case 3 ∶ e0 = ∓
3�2qf0√

−6�(c + 2d)
, e1 = ±

f0rk
√
−6�√

c + 2d
, f1 = 0, w =

�

2

�
6a2 + �2

�
q2 − 4pr

��

(3.1.5)�1(x, t) =
�ei�(x,t)

√
−6�{±

�
2pf1 − qf0

�
±
�
qf1 − 2rf0

�
af (�)}

2
√
c + 2d{f0 + f1a

f (�)}

(3.1.6)�2(x, t) =
±ei�(x,t)�(4pr − q2)

√
−6�

2
√
c + 2d{q + 2raf (�)}
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where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2(q2 − 4pr)}.

We derive the families of solitary wave solutions only for the expressions (3.1.5) 
and (3.1.6) to avoid the anonymity of the readers. Moreover, for the simplicity, some 
achieved solutions are ignored to record here.

Group 1 Combining Eq. (3.1.5) with the outcomes of Eq. (2.5) provide twenty-eight 
wave solutions. Some are given as bellow:

The agreements q2 − 4pr < 0 and r ≠ 0 yield

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2(q2 − 4pr)}.

According to the conditions q2 − 4pr > 0 and r ≠ 0 , the solution is

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2(q2 − 4pr)}.

Under the assumption q2 + 4p2 < 0 , r ≠ 0 and r = −p , we obtain

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2(q2 + 4p2)}.

When q2 + 4p2 > 0 , r ≠ 0 and r = −p,

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2(q2 + 4p2)}.

The postulates q2 − 4p2 < 0 and r = p gives the solutions

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2(q2 − 4p2)}.

If we agree q2 − 4p2 > 0 and r = p , then the found solution is

(3.1.7)�3(x, t) =
3ei�(x,t)�2

�
∓q ∓ 2raf (�)

�
√
−6�(c + 2d)

(3.1.8)

�12(x, t) =
±�

√
−6�{2r

�
2pf1 − qf0

�
−
�
qf1 − 2rf0

�
{q +

√
4pr − q2cot(

√
4pr − q2�∕2)}}

2e−i�(x,t)
√
c + 2d{2rf0 − f1{q +

√
4pr − q2cot(

√
4pr − q2�∕2)}}

(3.1.9)

�13(x, t) =
±�

√
−6�{2r

�
2pf1 − qf0

�
−
�
qf1 − 2rf0

�
{q +

√
q2 − 4prtanh(

√
q2 − 4pr�∕2)}}

2e−i�(x,t)
√
c + 2d{2rf0 − f1{q +

√
q2 − 4prtanh(

√
q2 − 4pr�∕2)}}

(3.1.10)

�15(x, t) =
±�

√
−6�{2p

�
2pf1 − qf0

�
+
�
qf1 + 2pf0

�
(q −

√
−q2 − 4p2tan(

√
−q2 − 4p2�∕2))}

2e−i�(x,t)
√
c + 2d{2pf0 + f1(q −

√
−q2 − 4p2tan(

√
−q2 − 4p2�∕2))}

(3.1.11)

�16(x, t) =
±�

√
−6�{2p

�
2pf1 − qf0

�
+
�
qf1 + 2pf0

�
(q +

√
−q2 − 4p2cot(

√
−q2 − 4p2�∕2))}

2e−i�(x,t)
√
c + 2d{2pf0 + f1(q +

√
−q2 − 4p2cot(

√
−q2 − 4p2�∕2))}

(3.1.12)

�18(x, t) =
±�

√
−6�{2p

�
2pf1 − qf0

�
+
�
qf1 + 2pf0

�
(q +

√
q2 + 4p2coth(

√
q2 + 4p2�∕2))}

2e−i�(x,t)
√
c + 2d{2pf0 + f1(q +

√
q2 + 4p2coth(

√
q2 + 4p2�∕2))}

(3.1.13)

�19(x, t) =
±�

√
−6�{2p

�
2pf1 − qf0

�
−
�
qf1 − 2pf0

�
(q −

√
−q2 + 4p2tan(

√
−q2 + 4p2�∕2))}

2e−i�(x,t)
√
c + 2d{2pf0 + f1(q −

√
−q2 + 4p2tan(

√
−q2 + 4p2�∕2))}
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where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2(q2 − 4p2)}.

For the conditions rp < 0 , q = 0 and r ≠ 0 , we attain

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 − 4pr�2}.

According to the supposition q = 0 and p = −r , we construct

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + 4r2�2}.

If p = r = 0 , then

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2q2}.

When p = q = K and r = 0,

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2(K2 − 4Kr)}.

The agreements q = r = K and p = 0 provide

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2K2}.

For q = p + r,

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2(p − r)2}.

When p = 0,

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2q2}.

(3.1.14)

�111(x, t) =
±�

√
−6�{2p

�
2pf1 − qf0

�
−
�
qf1 − 2pf0

�
(q +

√
q2 − 4p2tanh(

√
q2 − 4p2�∕2))}

2e−i�(x,t)
√
c + 2d{2pf0 − f1(q +

√
q2 − 4p2tanh(

√
q2 − 4p2�∕2))}

(3.1.15)�115(x, t) =
±2�

√
−6�{pf1 + rf0

√
−p∕rcoth(

√
−rp�)}

2e−i�(x,t)
√
c + 2d{f0 − f1

√
−p∕rcoth(

√
−rp�)}

(3.1.16)�116(x, t) =
∓r�

√
−6�{f1

�
e−2r� − 1

�
+ f0(e

−2r� + 1)}

e−i�(x,t)
√
c + 2d{f0(e

−2r� − 1) + f1(e
−2r� + 1)}

(3.1.17)�118(x, t) =
∓q�

√
−6�{f0 − f1(cosh(q�) + sinh(q�))}

2e−i�(x,t)
√
c + 2d{f0 + f1(cosh(q�) + sinh(q�))}

(3.1.18)�119(x, t) =
±K�

√
−6�{

�
2f1 − f0

�
+ f1(e

K� − 1)}

e−i�(x,t)2
√
c + 2d{f0 + f1(e

K� − 1)}

(3.1.19)�120(x, t) =
∓K�

√
−6�{f0

�
1 − eK�

�
−
�
f1 − 2f0

�
eK�}

2e−i�(x,t)
√
c + 2d{f0(1 − eK�) + f1e

K�}

(3.1.20)

�121(x, t) =
±�

√
−6�{

�
2pf1 − (p + r)f0

��
1 − re(p−r)�

�
−
�
(p + r)f1 − 2rf0

�
(1 − pe(p−r)�)}

2e−i�(x,t)
√
c + 2d{f0

�
1 − re(p−r)�

�
− f1(1 − pe(p−r)�)}

(3.1.21)�123(x, t) =
∓�

√
−6�{qf0

�
1 − req�

�
−
�
qf1 − 2rf0

�
qeq�}

2e−i�(x,t)
√
c + 2d{f0(1 − req�) + f1qe

q�}



 M. T. Islam et al.

1 3

866 Page 8 of 21

According to the postulate r = q = p ≠ 0 , we gain

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2(q2 − 4pr)}.

For p = q = 0,

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

6a2�

2
.

According to r = p and q = 0 , the solution is

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 − 4p2�2}.

Under the agreement r = 0 , the solution is obtained as

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2q2}.

Group 2 Merging Eq. (3.1.6) together with the solutions of Eq. (2.5) delivers twenty-
five wave solutions among which some are as follows:

According to the assumption q2 − 4pr < 0 and r ≠ 0 , we obtain the solution

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2(q2 − 4pr)}.

The conditions q2 − 4pr > 0 and r ≠ 0 provide

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2(q2 − 4pr)}.

When q2 + 4p2 < 0 , r ≠ 0 and r = −p,

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2(q2 + 4p2)}.

Under the assumption q2 + 4p2 > 0 , r ≠ 0 and r = −p , the obtained solution is

(3.1.22)

�124(x, t) =
±�

√
−6�{2

�
2pf1 − qf0

�
+
�
qf1 − 2rf0

�
(
√
3tan(

√
3p�∕2) − 1)}

2e−i�(x,t)
√
c + 2d{2f0 + f1(

√
3tan(

√
3p�∕2) − 1)}

(3.1.23)�126(x, t) =
±f0�e

i�(x,t)
√
−6�

�
√
c + 2d{f0 − f1∕r�}

(3.1.24)�127(x, t) =
±�

√
−6�{2pf1 − 2pf0tan(p�)}

2e−i�(x,t)
√
c + 2d{f0 + f1tan(p�)}

(3.1.25)�128(x, t) =
±�

√
−6�{

�
2pf1 − qf0

�
+ qf1(e

q� − m∕n)}

2e−i�(x,t)
√
c + 2d{f0 + f1(e

q� − m∕n)}

(3.1.26)�21(x, t) =
±ei�(x,t)�

√
−6�(4pr − q2)

2
√
(c + 2d)(4pr − q2)tan(

√
4pr − q2�∕2)

(3.1.27)�24(x, t) =
±ei�(x,t)�

√
−6�(q2 − 4pr)

2
√
(c + 2d)(q2 − 4pr)coth(

√
q2 − 4pr�∕2)

(3.1.28)�26(x, t) =
±ei�(x,t)�

√
6�(4p2 + q2)

2
√
(c + 2d)cot(

√
−q2 − 4p2�∕2)
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where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2(q2 + 4p2)}.

Imposing q2 − 4p2 < 0 and r = p yield

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2(q2 − 4p2)}.

The assumption q2 − 4p2 > 0 and r = p give

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2(q2 − 4p2)}.

When rp < 0 , q = 0 and r ≠ 0,

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 − 4pr�2}.

If q = 0 and p = −r , the solution is

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + 4�2r2}.

According to p = r = 0 , we acquire

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2q2}.

The agreements p = q = K and r = 0 offer

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2K2}.

When q = r = K and p = 0 , the solution is

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2K2}.

(3.1.29)�28(x, t) =
±ei�(x,t)�

√
−6�(q2 + 4p2)

2
√
c + 2dcoth(

√
q2 + 4p2�∕2)

(3.1.30)�29(x, t) =
±ei�(x,t)�

√
−6�(4p2 − q2)

2
√
c + 2dtan(

√
−q2 + 4p2�∕2)

(3.1.31)�212(x, t) =
±ei�(x,t)�

√
−6�(q2 − 4p2)

2
√
c + 2dcoth(

√
q2 − 4p2�∕2)

(3.1.32)�213(x, t) = ∓
�pei�(x,t)

√
6�r√

p(c + 2d)tanh(
√
−rp�)

(3.1.33)�216(x, t) =
∓�rei�(x,t)

√
−6�(1 − e2r�)√

c + 2d(1 + e2r�)

(3.1.34)�217(x, t) =
∓�qei�(x,t)

√
−6�

2
√
c + 2d

(3.1.35)�218(x, t) =
∓�Kei�(x,t)

√
−6�

2
√
c + 2d

(3.1.36)�219(x, t) =
∓�Kei�(x,t)

√
−6�(1 − eK�)

2
√
c + 2d(1 + eK�)
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According to the condition q = −(p + r) , the solution is attained as

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2(p − r)2}.

When p = 0,

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2q2}.

Under the condition r = q = p ≠ 0 , the delivered solution is

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2(q2 − 4pr)}.

The agreement r = 0 offers the wave solution

where �(x, t) = ax +
3aw−8a3�

�
t + � , � = �x + wt and w =

�

2
{6a2 + �2q2}.

3.2  Outcomes via enhanced rational (G
′

∕G)‑expansion approach

The balancing number forces Eq. (2.1) to be

Incorporating Eq.  (3.2.1) alongside Eq.  (2.2) in Eq.  (3.2) yields a polynomial in 
(G

�

(�)∕G(�)) . Set each coefficient of the found polynomial to zero and solve them for the 
required results by using Maple software:

(3.1.37)�221(x, t) =
±ei�(x,t)�(p − r)2

√
−6�(r − e(p−r)�)

2
√
c + 2d{(p + r)(r − e(p−r)�) − 2r(p − e(p−r)�)}

(3.1.38)�222(x, t) =
∓ei�(x,t)�q2

√
−6�

�
1 − req�

�

2
√
c + 2d

�
q
�
1 − req�

�
+ 2rqeq�

�

(3.1.39)�223(x, t) =
±ei�(x,t)�

�
4pr − q2

�√
−6�

2
√
c + 2d{q − r +

√
3r tan

�√
3p�∕2

�

(3.1.40)�225(x, t) =
∓�qei�(x,t)

√
−6�

2
√
c + 2d

(3.2.1)u(�) =
e0 + e1

(
G�(�)∕G(�)

)
+ f1

(
G�(�)∕G(�)

)−1
g0 + g1(G

�(�)∕G(�)) + h1(G
�(�)∕G(�))−1

(3.2.2)

Case 1 ∶ e0 = ∓
6�2�g0√

−6�(c + 2d)
, e1 = ±

g0�(� − 1)
√
−6�(c + 2d)

c + 2d
,

f1 = ∓
6�2g0 ∈√
−6�(c + 2d)

, h1 =
g0�

2(� − 1)
, g1 = 0, a = ±

�
3�

�
�3

�
�2 − 4 ∈ � + 4 ∈

�
+ w

�

3�
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The req uired above cases deliver huge wave solutions in appropriate form. For sim-
plicity, we state the outcomes only for case 1. Using Eqs.  (3.2.2) and (3.2.1) yields the 
assumed expression for traveling wave solutions:

(3.2.3)

Case 2 ∶ e0 = ∓
�
�
�g0 − 2h1(� − 1)

�√
−6�(c + 2d)

2(c + 2d)
, e1 = 0,

f1 = ±
�
�
�h1 − 2 ∈ g0

�√
−6�(c + 2d)

2(c + 2d)
,

g1 = 0, w =
�

2

�
�2
�
�2 − 4 ∈ � + 4 ∈

�
+ 6a2

�

(3.2.4)

Case 3 ∶ e0 = ∓
6�2�g0√

−6�(c + 2d)
, e1 = ±

g0�(� − 1)
√
−6�(c + 2d)

c + 2d
,

f1 = ∓
3�2g0

�
�2 − 2 ∈ � + 2 ∈

�

(� − 1)
√
−6�(c + 2d)

, h1 =
g0�

2(� − 1)
, g1 = 0,

a = ±

�
−3�

�
�3
�
2�2 − 8 ∈ � + 8 ∈

�
− w

�

3�

(3.2.5)

Case 4 ∶ e0 = ∓
3�2�g0√

−6�(c + 2d)
, e1 = 0, f1 = ±

g0 ∈ �
√
−6�(c + 2d)

c + 2d
,

h1 = g1 = 0, w =
�

2

�
�2
�
�2 − 4 ∈ � + 4 ∈

�
+ 6a2

�

(3.2.6)

Case 5 ∶ e0 = ∓
3�2

�
�g0 + 2h1(� − 1)

�
√
−6�(c + 2d)

, e1 = ±
g0�(� − 1)

√
−6�(c + 2d)

c + 2d
,

f1 = ∓
3�2�h1√

−6�(c + 2d)
, g1 = 0, w =

�

2

�
�2
�
�2 − 4 ∈ � + 4 ∈

�
+ 6a2

�

(3.2.7)
Case 6 ∶ e0 = ±

h1�
�
�2 − 4 ∈ � + 4 ∈

�√
−6�(c + 2d)

4 ∈ (c + 2d)
,

g0 =
�h1

2 ∈
, e1 = f1 = g1 = 0,w =

�

2

�
�2
�
�2 − 4 ∈ � + 4 ∈

�
+ 6a2

�

(3.2.8)

Case 7 ∶ e0 = ∓
6�2�g0√

−6�(c + 2d)
, e1 = ±

g0�(� − 1)
√
−6�(c + 2d)

c + 2d
,

f1 = ∓
3�2�2g0

2(� − 1)
√
−6�(c + 2d)

, h1 =
g0�

2(� − 1)
, g1 = 0,

a = ±

�
−6�

�
�3
�
�2 − 4 ∈ � + 4 ∈

�
− 2w

�

6�
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where �(x, t) = ±

√
3�{�3(�2−4��+4�)+w}

3�
x +

3aw−8a3�

�
t + � , � = �x + wt.

Type 1 Under the postulates Υ = ε2 − 4ϵ(𝜂 − 1) > 0andε(𝜂 − 1) ≠ 0(orϵ(𝜂 − 1) ≠ 0) , 
twelve solitary wave solutions are originated among which a few are as follows:

where c1 and c2 are non-zero real parameters.

where �(x, t) = ±

√
3�{�3(�2−4��+4�)+w}

3�
x +

3aw−8a3�

�
t + � , � = �x + wt.

Type 2 According to the conditions 
Υ = ε2 − 4ϵ(𝜂 − 1) < 0 and 𝜀(𝜂 − 1) ≠ 0(or𝜖(𝜂 − 1) ≠ 0) , we might produce twelve wave 
solutions. But few solutions are recorded here for simplicity as follows:

(3.2.9)�(x, t) =
6�2ei�(x,t){∓� ∓ (� − 1)(G

�

(�)∕G(�)) ∓ �∕(G
�

(�)∕G(�))}√
−6�(c + 2d){1 + �∕{2(� − 1)(G

�
(�)∕G(�))}}

(3.2.10)

�1(x, t) =
6�2ei�(x,t){∓� ± ({ε +

√
Υtanh(

√
Υξ∕2)}∕2) ± 2�(� − 1)∕{ε +

√
Υtanh(

√
Υξ∕2)}}√

−6�(c + 2d){1 − �∕{ε +
√
Υtanh(

√
Υξ∕2)}}

(3.2.11)

�2(x, t) =
6�2ei�(x,t){∓� ± ({ε +

√
Υcoth(

√
Υξ∕2)}∕2) ± 2ϵ(� − 1)∕{ε +

√
Υcoth(

√
Υξ∕2)}}√

−6�(c + 2d){1 − �∕{ε +
√
Υcoth(

√
Υξ∕2)}}

(3.2.12)
�4(x, t) =

6�2ei�(x,t){∓� ±
ε+

√
Υ(coth

�√
Υξ

�
±csch

�√
Υξ

�
)

2

±2�(� − 1)∕{� +
√
Υ(coth(

√
Υξ) ± csch(

√
Υ�))}}

√
−6�(c + 2d){1 − �∕{ε +

√
Υ(coth(

√
Υξ) ± csch(

√
Υξ))}}

(3.2.13)
�7(x, t) =

6�2ei�(x,t){∓� ∓ {−� −

√
(c21+c

2

2)Υ+c1
√
Υcosh(

√
Υξ)

c1sinh(
√
Υξ)+c2

}∕2

∓2�(� − 1)∕{−� −

√
(c21+c

2

2)Υ+c1
√
Υcosh(

√
Υξ)

c1sinh(
√
Υξ)+c2

}}

√
−6�(c + 2d){1 + �∕{−ε −

√
(c21+c

2

2)Υ+c1
√
Υcosh(

√
Υξ)

c1sinh(
√
Υξ)+c2

}}

(3.2.14)

�8(x, t) =

6�2ei�(x,t){∓� ∓
2ϵ(�−1)cosh(

√
Υξ∕2)√

Υsinh(
√
Υξ∕2)−εcosh(

√
Υξ∕2)

∓

√
Υsinh(

√
Υξ∕2)−εcosh(

√
Υξ∕2)

2cosh(
√
Υξ∕2)

}

√
−6�(c + 2d){1 +

�(
√
Υsinh(

√
Υξ∕2)−εcosh(

√
Υξ∕2))

4�(�−1)cosh(
√
Υξ∕2)

}

(3.2.15)

�9(x, t) =

6�2ei�(x,t){∓� ±
2ϵ(�−1)sinh(

√
Υξ∕2)

εsinh(
√
Υξ∕2)−

√
Υcosh(

√
Υξ∕2)

±
εsinh(

√
Υξ∕2)−

√
Υcosh(

√
Υξ∕2)

2sinh(
√
Υξ∕2)

}

√
−6�(c + 2d){1 −

�(εsinh(
√
Υξ∕2)−

√
Υcosh(

√
Υξ∕2))

4�(�−1)sinh(
√
Υξ∕2)

}

(3.2.16)

�13(x, t) =
6�2{∓� ∓ {−ε +

√
−Υtan(

√
−Υξ∕2)}∕2 ∓ 2�(� − 1)∕{−ε +

√
−Υtan(

√
−Υξ∕2)}}

e−i�(x,t)
√
−6�(c + 2d){1 + �∕{−ε +

√
−Υtan(

√
−Υξ∕2)}}
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where c1 and c2 are non-zero real parameters satisfying c2
1
− c2

2
> 0.

where �(x, t) = ±

√
3�{�3(�2−4��+4�)+w}

3�
x +

3aw−8a3�

�
t + � , � = �x + wt.

Type 3 For the agreements ϵ = 0andε(� − 1) ≠ 0 , we obtain the wave solutions

where d1 is an arbitrary constant and �(x, t) = ±
√
3�{�3�2+w}

3�
x +

3aw−8a3�

�
t + � , � = �x + wt.

Type 4 Under the assumption � − 1 ≠ 0andϵ = ε = 0 , the wave solution is found as

where c3 is an arbitrary constant and �(x, t) = ±
√
3�w

3�
x +

3aw−8a3�

�
t + � , � = �x + wt.

(3.2.17)

�14(x, t) =
6�2ei�(x,t){∓� ± {ε +

√
−Υcot(

√
−Υξ∕2)} ± 2�(� − 1)∕{ε +

√
−Υcot(

√
−Υξ∕2)}}√

−6�(c + 2d){1 − �∕{ε +
√
−Υcot(

√
−Υξ∕2)}}

(3.2.18)

�19(x, t) =

6�2ei�(x,t)

⎧
⎪⎨⎪⎩
∓� ∓

⎧
⎪⎨⎪⎩
−� −

±

�
−Υ

�
c2
1
− c2

2

�
+ c1

√
−Υ cos

�√
−Υξ

�

c1 sin

�√
−Υξ

�
+ c2

⎫
⎪⎬⎪⎭
∕2

∓2 ∈ (� − 1)∕

⎧⎪⎨⎪⎩
−ε −

±

�
−Υ

�
c2
1
− c2

2

�
+ c1

√
−Υ cos

�√
−Υξ

�

c1 sin

�√
−Υξ

�
+ c2

⎫⎪⎬⎪⎭

⎫⎪⎬⎪⎭
√
−6�(c + 2d)

�
1 + �∕

�
−ε −

±
√

−Υ(c21−c
2

2)+c1
√
−Υ cos

�√
−Υξ

�

c1 sin

�√
−Υξ

�
+c2

��

(3.2.19)

�20(x, t) =

6�2ei�(x,t)

�
∓� ±

2∈(�−1) cos
�√

−Υξ∕2
�

√
−Υ sin

�√
−Υξ∕2

�
+ε cos

�√
−Υξ∕2

� ±

√
−Υ sin

�√
−Υξ∕2

�
+ε cos

�√
−Υξ∕2

�

2 cos

�√
−Υξ∕2

�
�

√
−6�(c + 2d)

�
1 −

�

�√
−Υ sin

�√
−Υξ∕2

�
+ε cos

�√
−Υξ∕2

��

4∈(�−1) cos
�√

−Υξ∕2
�

�

(3.2.20)

�21(x, t) =

6�2{∓� ∓
2ϵ(�−1)sin(

√
−Υξ∕2)

−εsin(
√
−Υξ∕2)+

√
−Υcos(

√
−Υξ∕2)

∓
−εsin(

√
−Υξ∕2)+

√
−Υcos(

√
−Υξ∕2)

2sin(
√
−Υξ∕2)

}

e−i�(x,t)
√
−6�(c + 2d){1 +

�(−εsin(
√
−Υξ∕2)+

√
−Υcos(

√
−Υξ∕2))

4�(�−1)sin(
√
−Υξ∕2)

}

(3.2.21)

�25(x, t) =
6�2ei�(x,t)

�
∓� ±

εd1

d1+cosh (εξ)−sinh (εξ)
±

∈(�−1)[d+cosh (εξ)−sinh (εξ)]
εd1

�
√
−6�(c + 2d)

�
1 −

�
d1 + cosh (εξ) − sinh (εξ)

�
∕2d1

�

(3.2.22)

�26(x, t) =
6�2ei�(x,t)

�
∓� ±

ε[cosh (εξ)+sinh (εξ)]

d1+cosh (εξ)+sinh (εξ)
±

∈(�−1)[d1+cosh (εξ)+sinh (εξ)]

ε[cosh (εξ)+sinh (εξ)]

�
√
−6�(c + 2d){1 − {d1 + cosh (εξ) + sinh (εξ)}∕2[cosh (εξ) + sinh (εξ)]}

(3.2.23)�27(x, t) =
6�2ei�(x,t){∓� ±

�−1

(�−1)ξ+c3
± �{(� − 1)ξ + c3}}

√
−6�(c + 2d){1 −

�{(�−1)ξ+c3}

2(�−1)
}
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Fig. 1  The sketch of solution (3.1.8) represents anti-kink type soliton for the values of 
c = d = � = q = r = f1 = 1 , a = f0 = 0 and � = p = −1 within the interval −4 ≤ x, t ≤ 4 while plotting 2D 
for t = 0

Fig. 2  Compacton soliton obtained from solution (3.1.10) under c = f0 = f1 = 1 , � = q = p = −1 , 
a = � = 0 , d = 1.25 within −0.2 ≤ x ≤ 0.2 and −0.1 ≤ t ≤ 0.1 and 2D figure represents with t = 0

Fig. 3  Yield of the solution (3.1.11) is in periodic form for the values c = p = f1 = 1 , � = q = f0 = −1 , 
a = � = 0 , d = 1.25  in −3.5 ≤ x ≤ 3.5 and −0.5 ≤ t ≤ 0.5 whereas 2D graph for t = 0
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4  Results discussion and graphical appearances

The above created outcomes to the generalized third-order Schrödinger model have been 
compared with the available results in the literature and claimed to be diverse and novel 
with the distinct wave characteristics (Lu et al. 2019; Nasreen et al. 2019; Hosseini et al. 
2020; Malik et al. 2021b; Zhao et al. 2022; Wang et al. 2014). At this theme, some of the 
solutions are described graphically for their physical attendance which stands for different 
type of solitons, like, kink shape soliton, singular kink shape soliton, bell shape soliton, 
anti-bell shape soliton, periodic soliton, anti-periodic soliton, compacton, peakon, anti-
peakon etc. The sketch of solution (3.1.8) is in anti-kink shape soliton: 3D and contour are 
displayed in Fig. 1a, b with particular values c = d = � = q = r = f1 = 1 , a = f0 = 0 and 
� = p = −1 within the interval −4 ≤ x, t ≤ 4 while plotting 2D profile in Fig. 1c along with 
the values of t = 0 . Compacton soliton obtained from solution (3.1.10): Fig. 2a, b consti-
tuted for 3D, contour are drawn with the fixed values of c = f0 = f1 = 1 , � = q = p = −1 , 
a = � = 0 , d = 1.25 in the range −0.2 ≤ x ≤ 0.2 and −0.1 ≤ t ≤ 0.1 while Fig.  2c repre-
sents 2D figure along with t = 0 . Yield of the solution (3.1.11) is in periodic form: 3D, 
contour are established in Fig. 3a, b alongside the values c = p = f1 = 1 , � = q = f0 = −1 , 
a = � = 0 , d = 1.25  within −3.5 ≤ x ≤ 3.5 and −0.5 ≤ t ≤ 0.5 whereas 2D graph placed in 

Fig. 4  Soliton of the solution (3.1.14) is periodic type under the values � = c = d = � = q = p = f0 = 1 , 
a = f1 = 0.001 in the range −4 ≤ x ≤ 8 and −4 ≤ t ≤ 4  in which 2D plot displayed with t = 0

Fig. 5  Eq.  (3.1.16) bounces anti-kink type soliton for c = d = � = f1 = 1 , � = r = −1 and a = f0 = 0 in 
association with −2.5 ≤ x, t ≤ 2.5 and 2D plot nominated for t = 0
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Fig. 3c for t = 0 . Soliton of the solution (3.1.14) is in periodic form: Fig. 4a, b portrayed 
for 3D, contour are drawn together with the fixed values � = c = d = � = q = p = f0 = 1 , 
a = f1 = 0.001 in the interval −4 ≤ x ≤ 8 and −4 ≤ t ≤ 4  in which Fig. 4c displayed 2D 

Fig. 6  Diagram of (3.1.23) is singular kink shape soliton under � = c = d = � = f0 = f1 = r = 1 and 
a = 0.01 within −5 ≤ x, t ≤ 5 whereas 2D profile for t = 0

Fig. 7  Peakon soliton attained for the solution (3.1.27) after fixing the values c = d = � = r = 1 , � = −1 , 
a = 0 , q = 2 and p = 0.5 in −4 ≤ x, t ≤ 4 while 2D graph exhibited by using t = 0

Fig. 8  Cuspon gifted from (3.1.28) for c = d = � = q = 1 , � = −1 , a = 0 , p = 0.79 in  −4 ≤ x ≤ 4 and 
−0.25 ≤ t ≤ 0.25 placed for 3D and contour while 2D plot with t = 0
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plot with t = 0 . The solution (3.1.16) bounces anti-kink shape soliton: Fig. 5a, b exposing 
3D, contour are ornamented by denoting the values c = d = � = f1 = 1 , � = r = −1 and 
a = f0 = 0 within the range −2.5 ≤ x, t ≤ 2.5 and 2D plot designated in Fig. 5c for t = 0 . 

Fig. 9  Output is in anti-peakon for (3.1.38) under � = 1.199 , a = −0.019 , c = � = 1 , d = 1.5 , q = 1.05 and 
r = 1.19 within −5 ≤ x, t ≤ 5 while 2D plot for t = 0

Fig. 10  Attained soliton is in anti-periodic form for (3.1.39) with c = d = � = q = 1 , � = r = −1 , p = 0.25 
and a = 0 in −15 ≤ x, t ≤ 30 in which 2D plot for t = 0

Fig. 11  Singular kink type soliton of (3.2.12) for � = c = d = w = 1 , � = −1 , a = 0.1 , � = 0 , � = 3 and 
� = 2 in the interval −0.2 ≤ x ≤ 0.213 while 2D figure is portrayed for t = 0
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Diagram of solution (3.1.23) is in singular kink shape soliton: 3D, contour are sketched 
by conveying the particular values of unknown parameters � = c = d = � = f0 = f1 = r = 1 
and a = 0.01 in the duration −5 ≤ x, t ≤ 5 indicating in Fig.  6a, b where 2D profile dis-
played in Fig.  6c is found for t = 0 . Peakon soliton attained for the solution (3.1.27): 
Fig.  7a, b existing for 3D, contour that are outlined by using fixed values of arbitrary 
constants c = d = � = r = 1 , � = −1 , a = 0 , q = 2 and p = 0.5 within the interval 
−4 ≤ x, t ≤ 4 in which 2D graph exhibited in Fig. 7c with t = 0 . Graph of a cuspon gifted 
from the solution (3.1.28): Fig. 8a, b are decorated by giving the unknown parameter’s val-
ues c = d = � = q = 1 , � = −1 , a = 0 , p = 0.79 in association with the range −4 ≤ x ≤ 4 
and −0.25 ≤ t ≤ 0.25  placed for 3D, contour while 2D plot in Fig. 8c is obtained for t = 0 . 
Output is in anti-peakon soliton for the solution (3.1.38): Fig. 9a, b sited for 3D, contour are 
traced by assigning arbitrary constrictions as � = 1.199 , a = −0.019 , c = � = 1 , d = 1.5 , 
q = 1.05 and r = 1.19 within −5 ≤ x, t ≤ 5 whereas 2D graph in Fig. 9c is appeared with 
t = 0 . Attained soliton is in anti-periodic form of solution (3.1.39): Fig. 10a, b representing 
3D, contour are portrayed with the values c = d = � = q = 1 , � = r = −1 , p = 0.25 and 
a = 0 in the interval −15 ≤ x, t ≤ 30 in which 2D plot are pictured in Fig. 10c for t = 0 . 
The singular kink shape soliton obtained from solution (3.2.12): 3D, contour found in 
Fig. 11a, b for the particular values of � = c = d = w = 1 , � = −1 , a = 0.1 , � = 0 , � = 3 
and � = 2 within the range −0.2 ≤ x ≤ 0.213 while 2D figure presenting in Fig. 11c along 
with t = 0 . Outline of the solution (3.2.13) is in anti-bell shape soliton: 3D, contour are 
recognized in Fig. 12a, b with the values � = c = d = w = A = B = 1 , � = 0.25 , � = −2 , 
� = −1 and a = � = 0 in the interval −9 ≤ x ≤ 9 where 2D graph positioned in Fig. 12c for 
t = 0.

5  Conclusions

The purpose to construct impressive analytic wave solutions of the considered general-
ized third-order Schrödinger model by implementing two efficient procedures namely, 
improved auxiliary equation and enhanced rational (G�

∕G)-expansion methods has been 
accomplished effectively. The abundant achieved solutions involving many free param-
eters expose distinct dynamic behaviors of nonlinear waves arise in optical fibers which 
might be helpful to explain respective phenomena in detail. The novel wave structures 

Fig. 12  The solution (3.2.13) represents anti-bell shape soliton for the values � = c = d = w = A = B = 1 , 
� = 0.25 , � = −2 , � = −1 and a = � = 0 in −9 ≤ x ≤ 9 whereas 2D graph in Fig. 12c under t = 0
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of the achieved solutions have been made visible graphically in 3D, 2D and contour 
sketches such as cuspon, compacton, peakon, kink, bell, periodic and so on. A com-
parable analysis of the acquired outcomes with those of earlier studies has claimed the 
significance of the present work. The resulting outcomes are impressive, innovative 
and potentially effective in realizing the transition of energy and diffusion procedures 
in mathematical simulations of numerous fields like applied physics, ultra-short pulses, 
transmission system, optical fibre etc. The expanded results with the adaptation of the 
recommended schemes have confirmed the importance of the study to influence the 
researchers and scholars for further work in this area as a continuation.
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