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Abstract
A quasi complementary super-wideband antenna element based on coplanar wave-
guide feeding and having dimensions of 24 × 22  mm2 along with an operating range of 
3–42.1 GHz (173.3%) is presented in this paper. This structure comprises of a modified 
F-shaped radiator fed by a tapered feed line and a defected coplanar waveguide ground 
plane loaded with a slot complementary to the radiator. The pattern and spatial diver-
sity multiple input multiple output configurations of this antenna element have an overall 
footprint of 24 × 47 mm2 and 24 × 43 mm2 respectively and both are operating over a fre-
quency range of 2.9–42.14 GHz. At maximum frequencies an intraport isolation ≥ 15 dB 
and ECC < 0.008 are achieved for both configurations. The lumped RLC equivalent circuit 
model is also presented for both single element and MIMO configurations. A good agree-
ment between simulated, experimental and equivalent circuit results is obtained.

Keywords  Quasi complementary · Super-wideband · Coplanar waveguide fed · MIMO · 
Spatial diversity · Pattern diversity

1  Introduction

Modern and future wireless communication applications require a compact device with 
wide bandwidth, high-speed data transmission, and broad system capability. The ultra-
wideband (UWB) spectrum allocated by Federal Communication Commission (FCC) 
(2002) provides high data rate with low power level for short-range communication. To 
fulfil the demands of wireless communication devices covering both short and long-range 
communication, researchers initiated efforts to incorporate super-wideband (SWB) tech-
nology (Singhal and Singh 2016) into next-generation wireless devices. The literature 
reports several SWB/UWB antenna structures (Singhal and Singh 2016; Azari 2011; 
Faouri et al. 2022; Sharma et al. 2018; Ajith and Bhattacharya 2018; Okan 2019; Elhabchi 
et al. 2020; Kodavanti et al. 2022; Singh et al. 2019; Ur Rahman et al. 2018; Manohar et al. 
2014; Maity et al. 2022; Srivastava et al. 2018). The various techniques used to achieve 
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super-wideband performance utilize different radiator geometries (fractal, monopole, 
dipole, Vivaldi, quasi complementary), diverse feeding techniques (symmetric or asym-
metric coplanar waveguide feed, microstrip tapered feed line), different ground structures, 
parasitic elements etc.

The self-complementary antenna, first discovered by Mushiake (1992), is a well-known 
broadband antenna that can ideally provide infinite impedance bandwidth because of its 
complementary structure’s constant impedance (188.5 Ω) on an infinitely large ground 
plane. During the past few years, the self-complementary antenna (SCA) family has gain 
more importance due to the development of a quasi self-complementary antenna (QSCA) 
in planar form. A planar QSCA consist a conducting patch, complementary slot, and a 
built-in impedance matching circuit. To suppress the multipath fading effects occurring 
in monopole antenna, several multiple-input multiple-output (MIMO) QSCA antennas 
have been investigated by researchers from both academia and industry. A microstrip fed 
two port MIMO quasi complementary antenna with inverted T shaped common ground 
plane for enhanced isolation was presented in Liu et  al. 2014a. Another microstrip fed 
MIMO QSCA was reported in Kaur and Singh (2022) with band rejection characteristics 
for WiMAX and WLAN bands. In Kumar et al. (2020), a quad element super-wideband 
QSCA with triple band rejection performance was reported. In Li et al. (2015), a triangular 
triband quasi complementary antenna for WLAN and WiMAX applications was presented. 
Several other MIMO antennas with self quasi complementary resonating antenna elements 
and coplanar waveguide feed are investigated in Raheja et  al. (2020), Guo et  al. (2010), 
Lin (2012), Nikam et  al. (2022), Dwivedi et  al. (2021). Among the previously reported 
structures (Singhal and Singh 2016; Azari 2011; Faouri et al. 2022; Ur Rahman et al. 2018; 
Manohar et al. 2014; Maity et al. 2022), due to easy availability and low cost FR-4 epoxy 
substrate is used by several researchers. In few articles, other substrates like Rogers/RT 
Duroid (Azari 2011; Singh et al. 2019; Srivastava et al. 2018) having low dielectric losses 
at millimeter wave frequencies are preferred over FR-4 epoxy substrate. In the previously 
published geometries either the bandwidth dimension ratio (Balani et al. 2019) is less due 
to larger dimensions or bandwidth is narrower.

This paper presents a compact quasi-complementary super-wideband antenna and its 
two MIMO configurations due to the limitations of the abovementioned geometries. 
Integrating the quasi-complementary radiator, tapered feedline, and defective coplanar 
waveguide ground plane in the proposed antenna resulted in an impedance bandwidth 
of ~ 39.1  GHz. In the case of diversity configurations, intra-port isolation of ≥ 20  dB is 
achieved at maximum operating frequencies without using any decoupling technique. The 
proposed antenna element, spatial and pattern diversity configurations have achieved a size 
reduction up to 98%, 67%, and 84%, respectively, over available structures.

2 � Antenna design

2.1 � Single antenna element

The geometry of the quasi-complementary antenna element (Ant 1) is displayed in 
Fig.  1a, and the optimized dimensions are listed in Table  1. The proposed antenna is 
designed and fabricated on a low-cost FR-4 epoxy dielectric substrate of size 24 × 22 
mm2 and thickness of 1.6 mm. The proposed antenna consists of an F-shaped conduct-
ing patch attached to a central strip of tapered CPW feed, a rectangular F-shaped patch 
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loaded with a slightly off-centered radiator’s complementary slot and trapezoidal slot, 
and a supporting trapezoidal ground plane with a rectangular notch. The supporting 
ground plane acts as the impedance matching circuit that forms part of the in-built CPW 
feed. The coplanar conducting patch and complementary slots are arranged on the oppo-
site side of the symmetry line.

Since the input impedance of the quasi complementary structure presented by 
Zin =

�o

2
≈ 60� ≈ 188.5Ω Mushiake (2004) has no dependence on frequency or antenna 

dimensions, therefore quasi self-complementary antenna with extremely large band-
widths can be easily designed by using the self-complementarity principle.

The Riccati equation (Manohar et al. 2014) for a triangularly tapered microstrip-line 
is solved by Γ(�) =

(
e−j�Lk

2

)
ln

(
ZL

Zo

)[
sin (�Lk∕2)
(�Lk∕2)

]2
 where Lk is the length of the tapered 

microstrip-line, ZL and Z0 are the respective load impedance and characteristic imped-
ance, and Γ(θ) is the reflection coefficient and β is the phase constant. As a result, the 
triangular tapered microstrip line’s impedance changes over its length. The standard 50 

(a)

(b)

(c)

Fig. 1   Geometries of proposed antenna structures

Table 1   Optimised dimensions of proposed antenna configurations

Parameter Lsub Wsub Wrect1 Lrect1 Wrect2 Lrect2 a b Wf1 Wf2

Value 24 22 9.9 9 4.9 2.5 1.7 4.59 1.6 0.375

Parameter t Lg1 Lg2 g Lslot Wslot d p Wspatial Wpattern

Value 0.4 4.88 2 1.5 0.86 0.5 6 4 43 47
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Ω (coaxial) RF source and the quasi-complementary radiator are impedance matched 
using a tapered feed-line.

Figure 2 shows the various design steps of an antenna element. A monopole antenna 
with a coplanar waveguide feed is designed initially in Step 1. The radiator is designed 
by combining three rectangular sections of different dimensions and one elliptical sec-
tion. The quasi-complementary radiator of Step 2 is designed by dividing the radiator 
of Step 1 into 2 subsections and replacing the left half subsection with the complement 
of right half section resulting into self-complementary configuration. This resulted into 
wider impedance bandwidth. Since the dimensions of main F shaped radiating patch 
are slightly different from its complementary slot, hence the antenna is termed as quasi 
complementary. Furthermore, in step 3, the rectangular feedline and rectangular ground 
plane are replaced with one side tapered feedline and trapezoidal ground plane with-
out affecting the gap between the two. This replacement of feedline and ground plane 
sections was carried out to provide smooth current flow leading to minimized incident 
wave’s reflections resulting into improved impedance matching between the quasi-com-
plementary radiator and the standard 50 Ω (coaxial) RF source and enhanced impedance 
bandwidth. The tapered feed line allows steady impedance variations over the frequency 
range, and the impedance can be estimated using Manohar et al. (2014). At higher fre-
quencies, to reduce the electromagnetic coupling between the ground plane and the 
radiator, a trapezoidal slot is created in step 4, complementary to the shape of the right 
side trapezoidal ground plane. In final stage i.e. Ant 1, theright hand side trapezoidal 
ground plane is loaded with a rectangular notch to improve the impedance matching in 
the frequency range of 29.8–31.8 GHz and 42.4–44.8 GHz by exciting additional reso-
nances at 30.8 GHz and 33.2 GHz. 

2.2 � MIMO

The spatial diversity MIMO antenna (Ant 2), shown in Fig. 1b, is created by aligning 
two identical antenna elements in a mirror image configuration and overlapping some 
ground plane region of ground plane. It has an overall dimension of 24 × 43 mm2. In the 
pattern diversity configuration (Ant 3), Fig. 1c, the two antenna elements are orthogo-
nal to each other, with a horizontal separation of 1 mm between them. It has an overall 
footprint of 24 × 47 mm2. The fabricated prototypes of Ant 1, Ant 2 and Ant 3 are illus-
trated in Fig. 3. The proposed antenna is simulated and analysed with the Finite Element 
Method-based ANSYS v 21 software (HFSS 2021).

(a) (b) (c) (d) (e)

Fig. 2   Design Steps of the proposed antenna element
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3 � Result and discussion

3.1 � Frequency domain results

3.1.1 � Single antenna element

The validation of simulated scattering parameters with experimental results is done upto 
40 GHz and the radiation pattern and gain measurement is done upto 18 GHz due to meas-
urement setup limitations. The intermediate antenna element design stages are compared in 
terms of their VSWR characteristics in Fig. 4 and the quantitative analysis of bands of each 
intermediate stage is listed in Table 2. It is observed that Step 1 antenna has two operat-
ing bands with frequency range of 29.7–34 GHz and 39.4 GHz to more than 44 GHz. In 
case of Step 2 antenna, the lower band edge frequency of first operating band reduces from 
29.7 to 3.2  GHz due to the inherent wideband property of quasi complementary struc-
ture. This antenna structure is operating over four bands i.e.3.2–28.8 GHz, 31–31.8 GHz, 
32.6–36.6  GHz and 38.2–42.4  GHz. For Step 3 antenna, the tapering of the outer edge 
of feedline and inner edge of right-side ground plane improved the impedance matching 

(a) Single element  (b) Spatial Diversity   (c) Pattern Diversity

Fig. 3   Proposed antenna prototypes

Fig. 4   VSWR of design stages of 
antenna element
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resulting into two operating bands 2.98–29.18 GHz and 32.3–42.63 GHz instead of four 
operating bands. In case of Step 4 antenna, the loading of the left hand side ground plane 
with a trapezoidal slot improved the impedance matching near the frequencies of 30 GHz 
and 37.5  GHz leading to enhancement of bandwidth for first operating band from 26.2 
to 34.37  GHz and reduction in the bandwidth of second operating band from 10.33 to 
4.99 GHz. In the last stage antenna i.e. Ant 1, the introduction of a rectangular notch on the 
right hand side ground plane merged both the operating bands of Step 4 into a single super 
wideband2.94–42.22 GHz. The comparison of simulated VSWR of Ant1 with experimen-
tal results is depicted in Fig. 5. The slight deviations in simulated and experimental results 
at higher frequenciescan be attributed to the fabrication tolerancesand measurement errors.

The input impedance vs frequency plot is shown in Fig.  6. The real part of input 
impedance is varying around 50 Ω and imaginary part is oscillating around 0 Ω. This 
results in an overall impedance matching of 50 Ω in the entire opearting band. From 
Fig. 7, it is observed that the normalized radiation patterns are bidirectional in E (or 
XZ)-plane and omni directional in H (or YZ)-plane at frequencies below 10 GHz how-
ever at higher frequencies > 10 GHz, distorted radiation patterns are observed due to 
the exciation of higher order modes. The peak realized gain is observed to be varying 
in the range of 2–8.6 dBi. Maximum radiation efficiency of 97.3% is achieved in the 
entire operating band as depicted in Fig. 8. Table 3 lists the comparison of Ant 1 with 

Table 2   Comparison of 
intermediate stages of the Ant.1

Band Step 1 Step 2 Step 3 Step 4 Ant 1

Band 1
fl1 (GHz) 29.39 3.05 2.98 2.95 2.94
fh1 (GHz) 34.23 28.98 29.18 37.32 42.22
Band 2
fl2 (GHz) 39.17 30.78 32.3 37.68 –
fh2 (GHz)  > 44 36.89 42.63 42.67 –
Band 3
fl3 (GHz) – 37.91 – – –
fh3 (GHz) – 42.65 – – –

Fig. 5   VSWR plot of Ant 1
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previously reported structures in terms of their dimensions, percentage size reduction 
in terms of square of wavelength at lowest band edge frequency, peak realized gain 
and bandwidth dimension ratio. The proposed antenna is observed to be having a size 
reduction upto ~ 98% with dimensions of 0.24 λL × 0.22 λL, comaparble peak gain of 
8.6 dBi, maximum BDR of ~ 3284 and comparable fracational bandwidth of ~ 174% in 
comaprison to other comapred geometries.

Fig. 6   Input Impedance plot of 
Ant 1

(a) (b) (c)

(d) (e) (f)

Fig. 7   Radiation pattern of proposed single antenna element (Ant 1)
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3.1.2 � MIMO

3.1.2.1  Spatial diversity configuration  The reflection coefficient plots for both ports of 
spatial diversity configuration, i.e. S11 ≅ S22, are overlapping in Fig. 9a due to identical 
antenna elements. The intraport isolation between the antenna elements is more than the 
required value of 13 dB (Ahmed et al. 2018) in the entire operating frequency range except 
for frequency range of 4.3–4.7 GHz where due to electromagnetic coupling the isolation is 
reducing upto ~ 10 dB and is more than 20 dB at frequencies higher than 20 GHz. The imped-
ance bandwidth of proposed MIMO spatial diversity configuration is 2.91–42.14 GHz. No 
additional isolation structure is added as the geometry of proposed quasi complementary 
antenna is itself acting as an isolation structure. The ground planes are connected to achieve 
the same reference voltage. Due to identical antenna elements, the radiation patterns for port 
1 and port 2 are also same. Therefore, the radiation patterns in E- and H- planes are shown 
for Port 1 only in Fig. 10. The radiation patterns are bidirectional in E-plane and omnidirec-
tional in H-plane at frequencies lesser than 10 GHz. At frequencies more than 10 GHz, the 
radiation patterns in both planes get distorted due to the excitation of higher order modes.

3.1.2.2  Pattern diversity configuration  Both elements of the pattern diversity configuration 
have an impedance bandwidth of 2.9–42.1 GHz and the intra-port isolation, S21 > 13 dB in 
the entire operating band and S21 > 25 dB in the majority of the operating band, as shown in 
Fig. 11. The radiation pattern achieved for port 1 in XZ plane is same as pattern of port 2 in 
YZ plane and vice versa as shown in Figs. 12 and 13. This interchanging of planes confirms 
pattern diversity is achieved.

3.1.2.3  Equivalent circuit modelling  The equivalent circuit model of single element (Ant 1), 
spatial diversity antenna (Ant 2) and pattern diversity antenna (Ant 3) is shown Fig. 14 and 
the optimised value of R, L and C are tabulated in Table 4. The equivalent circuit for narrow 
band antenna is approximately modelled by LC resonant circuit. Unlike narrow band antenna, 
a good approximation to represent ultrawideband or super-wideband antenna is the cascaded 
connection of multiple parallel RLC resonant circuits. This cascading of RLC resonant circuit 
results in wide band in UWB/SWB antenna due to the continuously overlapping of adjacent 

Fig. 8   Gain and radiation 
efficiency of proposed single 
antenna element (Ant1)
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resonances (Chu and Yang Dec. 2008). The lumped equivalent circuit model of proposed Ant1 
is represented by a series connection of eighteen series resonant circuit (N = 18) with inductor 
(Lf), resistor (Rf) and capacitor (Cf). The series connection of Lf, Cf and Rf represents the effect 
of feeding and higher order modes.

(1)Q =
fr

Bandwidth
= 2�frCR
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Fig. 9   Scattering parameters of Spatial diversity configuration
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Fig. 10   Radiation patterns of spatial diversity MIMO configuration
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The circuit is excited by 50 Ω RF source. ANSYS circuit simulator v21 is used to simu-
late and analyse this circuit. To model the lumped equivalent circuit of proposed antenna 
the value of real and imaginary part of input to impedance, Z11 corresponding to resonant 
frequency of proposed antenna is extracted from the plot generated by HFSS EM simula-
tor. The Eqs. (1–2) are used to calculate the value of L and C corresponding to each reso-
nant frequency (Maity et al. 2022). The calculated value of L and C are further tuned and 

(2)fr =
1

2�
√
LC
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Fig. 11   Scattering parameters of pattern diversity configuration

(a) (b) (c)
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Fig. 12   Radiation patterns of port1 of pattern diversity MIMO configuration
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optimised using ANSYS circuit simulator to get the desired response. In case of spatial 
diversity antenna (Ant 2), the equivalent circuit for each antenna element will remain same 
as Ant1 as both the elements are identical. However, to consider the effect of coupling 
between the two elements with connected ground plane a inductor (Lspatial) is connected in 
parallel with capacitor (Cspatial) (Abdulhasan et al. 2021). For Ant 3, the coupling between 
the two orthogonal placed antenna elements is modelled by parallel connection of inductor 
(Lpattern) capacitor (Cpattern) (Iqbal et al. 2020). The equivalent circuit model for Ant 3. The 
results of equivalent circuit model for Ant 1, Ant 2 and Ant 3 are depicted in Fig. 14. These 
results agree well with simulated and measured results, and in accordance with previously 
reported results in Faouri et al. (2022), Maity et al. (2022), Mohanty (2021).

3.1.2.4  MIMO diversity performance  The diversity performance of MIMO antenna con-
figurations is evaluated in terms of the following parameters using standard equations from 
Ahmed et al. (2018), Lodhi and Singhal (2021). Envelope correlation coefficient (ECC) is 
used to estimate the amount of correlation between the two elements of MIMO antenna. It 
can be calculated by using (3) based on scattering parameters or by using (4) based on far-
field radiation patterns. Figure 15a illustrates that for both spatial (ECC < 0.009) and pattern 
(ECC < 0.017) diversity configurations, ECC is ≤ 0.002 at maximum operating frequencies 
and ≤ 0.05 in entire band of operation. The maximum acceptable value of ECC is 0.5. The 
maximum value of ECC calculated using farfield (Fig. 15b) is 0.05 for spatial and 0.01 for 
pattern diversity configuration. The diversity gain (DG), ≅ 10 (acceptable) at all operating 
frequencies for both configurations as illustrated in Fig. 15(c). In addition to this, the chan-
nel capacity loss shown in Fig. 15d is also < 0.4 b/sec/Hz. From Fig. 16a, b, it is observed 
that the mean effective gain is − 3 dB as desired for both the MIMO configurations. The 
MEG difference between the two ports of MIMO antenna is also nearly 0 dB. These ECC 
and CCL values are less than the acceptable limits, and the almost constant values of DG 

(a) (b) (c)

(d) (e) (f)

Fig. 13   Radiation patterns of port2 of pattern diversity MIMO configuration
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and MEG indicate that the proposed antenna configurations are suitable for SWB MIMO 
applications.

(3)ECC
(
�ij
)|||Based on scattering parameters

=

|||
S∗
ii
Sij + S∗

ji
Sjj
|||

2

(

1 − ||Sii||
2
−
|||
Sji
|||

2
)(

1 −
|||
Sjj
|||

2

−
|||
Sij
|||

2
)

(a)

(b)

(c)

Fig. 14   Equivalent circuit model for all three proposed configurations
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The comparison of Ant2 and Ant3 with previously reported other 2 element MIMO 
antenna configurations are provided in Table 5. It displays that both the proposed MIMO 
configurations have sufficient isolation of ≥ 15 dB at maximum operating frequencies with 
very low values of ECC and superwide bandwidth of ~ 39 GHz (~ 174%). In addition to 
this, Ant 2 has achieved a size reduction of 67% and Ant 3 has achieved a size reduction 
of ~ 84% over previously reported structures.

4 � Conclusion

A quasi-complementary radiator, tapered feed line, and coplanar waveguide ground plane 
are used in this paper to achieve super wide band performance. The super wide bandwidth 
achieved by the quasi-complementary antenna and its MIMO configuration is 3–42.1 GHz 
and 2.9–42.14 GHz, respectively. It has a high BDR of 3283.9, a peak gain of 8.6 dBi, and 
a maximum radiation efficiency of 97.3 percent. The intraport isolation for both the MIMO 
configurations is ≥ 15  dB in major portion of the operating band. The equivalent circuit 
model for Ant1, Ant2 and Ant3 is also presented to discuss the mechanism of UWB and 
SWB antenna. The above-mentioned advantages of proposed antenna configurations make 
it suitable for various super-wideband applications.

(4)ECC
(
�ij
)|||Based on farfield

=
∬

4�
Ei(�,Φ) ⋅ E∗

j
(�,Φ)dΩ

√
∬

4�
Ei(�,Φ) ⋅ E∗

i
(�,Φ)dΩ∬

4�
Ej(�,Φ) ⋅ E∗

j
(�,Φ)dΩ

Table 4   Optimized value of R, L, C components for equivalent circuit models

L L1 L2 L3 L4 L5 L6 L7

Value (pH) 1297.36 320.36 185.72 324.74 98.27 79.58 259.38
L L8 L9 L10 L11 L12 L13 L14

Value (pH) 937.40 46.13 40.29 44.19 68.56 25.88 11.68
L L15 L16 L17 L18 Lf = L1sf = L2sf = L1pf = L2pf LspatiaL LpatteRn

Value (pH) 13.84 14.48 9.26 20.68 97.5 12,835 19,627
C C1 C2 C3 C4 C5 C6 C7

Value (pF) 2.94 11.20 3.20 4.32 3.43 3.14 0.61
C C8 C9 C10 C11 C12 C13 C14

Value (pF) 1.257 2.25 1.62 1.09 2.28 1.15 1.24
C C15 C16 C17 C18 Cf = C1sf = C2sf = C1pf = C2pf CspatiaL CpatteRn

Value (pF) 2.82 0.932 2.61 0.94 2.40 1 × 10–15 5.67
R R1 R2 R3 R4 R5 R6 R7

Value (Ω) 58.84 51 32.58 20.47 40.60 29.46 28.36
R R8 R9 R 10 R 11 R 12 R13 R14

Value (Ω) 55.87 25.06 38.13 31.06 12.37 22.51 43.82
R R15 R16 R17 R 18 Rf = R1sf = R2sf = R1pf = R2pf

Value (Ω) 47.05 12.37 31.06 38.13 5.7
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Fig. 15   Diversity performance parameters for MIMO configuration
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