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Abstract
In this paper, we have investigated the perturbed Chen–Lee–Liu equation which describes 
the pulse propagation in the optical fibers, under the impact of the inter-modal dispersion, 
self-steepening and nonlinear dispersion terms. By using the enhanced modified extended 
tanh expansion method, bright, singular, periodic singular and periodic bright solitons have 
been obtained and the effects of the coefficients of the inter-modal dispersion, self-steepen-
ing and nonlinear dispersion terms on the soliton’s dynamics have been examined in each 
case. In this respect, the review in the article has not been studied and reported before. The 
computations throughout this paper have been fulfilled by Maple and also the graphical 
simulations are demonstrated via Matlab.
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1 Introduction

In real life, there are many diverse and complicated physical phenomena that can be best 
modeled by nonlinear Schrödinger (NLS) equations including higher-order nonlinear and 
dispersion terms. So, the NLS equations have a widespread application in various branches 
of natural and engineering sciences. Different forms of the NLS equations have commonly 
come across in nonlinear optics (Leble and Reichel 2009; Dörfler et  al. 2011), quantum 
mechanics (Ohsumi 2019; Chen et al. 2007), plasma physics (Lee et al. 2007; Do Ó et al. 
2009) and telecommunication (Zhou 2014; Yin et al. 2017; Tala-Tebue et al. 2018), etc. So, 
many researchers focus on solving the equations to interpret the dynamics of the solutions. 
In the literature, there are many produced methods and their versions called extended, 
modified, improved and generalized, etc. (Cesar et al. 2022; Hajar et al. 2021, 2022; Tarla 
et  al. 2022; Kalim et  al. 2021; Ozdemir et  al. 2021; Ali et  al. 2022; Cinar et  al. 2021, 
2022a, b; Mahak and Akram 2019; Liu et al. 2018;  Biswas et al. 2016; Biswas and Arshed 
2018; Korkmaz et al. 2020; Akbar et al. 2021; Raslan 2017; Tarla et al. 2022; Tariq et al. 
2018, 2022a, b; Ozisik et al. 2022a).

One of these equations is the Chen–Lee–Liu (CLL) equation which was introduced in 
1979 by Chen et al. (1979, 1987) as follows:

where u = u(x, t) is a complex-valued function and �1, �2 are real values and they come 
from group velocity dispersion and nonlinear dispersion terms, respectively. Besides t rep-
resents the temporal variable and x is the spatial variable which is propagation distance. 
If it is considered that �1 = �2 = 1 , then Eq.  (1) converts into the well-known regular 
Chen–Lee–Liu form. As it is known that Eq. (1) is also called the second derivative non-
linear Schrödinger equation (DNLSII) (Shuwei et al. 2011; Zhang et al. 2015; Gadzhiev 
et al. 1986). The CLL equation is important in that it represents a model controlling the 
propagation of the optical pulse with only a self-steepening effect (SSE) but no self-phase 
modulation (SPM). Especially in 2007, experimentally revealing the physical interpretation 
of the optical expression, which the DNLSII equation represents rather than being an equa-
tion only theoretically or mathematically, has increased the importance of the CLL equa-
tion and pioneered the formation of many forms of the CLL equation. Such as, an integra-
ble coupled derivative NLS equation (Sakovich and Sakovich 2005; Feng 2012), DNLSII 
equation (Liu et al. 2019; Zhou et al. 2022), an integrable coupled CLL model (Tsuchida 
and Wadati 1999; Alrashed et al. 2022), perturbed CLL (Esen et al. 2021; Yépez-Martínez 
2021), CLL in birefringent fiber (Yildirim 2019), higher-order CLL equation (Zhang et al. 
2022), conservation laws of CLL equation Arnous et  al. 2022), fractional CLL equation 
(Hussain et al. 2020; Yusuf et al. 2019). It should also be noted here that DNLSII has a 
wide range of applications, not only in optics but also in the modeling of weak nonlinear 
propagating water waves (Guo et al. 2014; Xia et al. 2021; Trulsen et al. 2000).

The Chen–Lee–Liu equation describes the propagation in nonlinear optical fibers 
(Mohamed et al. 2022; Akinyemi et al. 2021), besides it may appears in meta-materials, 
optical couplers and optoelectronic devices (Baskonus et al. 2021). In this study, we deal 
with the dimensionless perturbed Chen–Lee–Liu equation defined as Chen et al. (1979), 
Biswas (2018):

(1)i
�u

�t
+ �1

�2u

�x2
+ i�2�u�2 �u

�x
= 0, i =

√
−1,
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where u = u(x, t) is a complex function and the parameters �1, �2 are the coefficient of the 
group velocity dispersion and nonlinear dispersion term, respectively. The coefficients 
�1, �2, and �3 are the inter-modal dispersion (IMD), the self-steepening and nonlinear dis-
persion terms, respectively. In addition, the all parameters are real values and n, the param-
eter of full nonlinearity, refers the density of complex function.

In the literature, the considered perturbed CLL equation has been solved via some other 
methods such as the first integral (Kudryashov 2019), Jacobi and the Weierstrass elliptic 
functions (Kudryashov 2021), Jacobi elliptic function method Tarla et al. (2022), general-
ized exponential rational function method (Tarla et al. 2022), both modified G∕G�-expan-
sion and modified Kudryashov methods (Yokus et al. 2021), the generalized Kudryashov 
and exp(−�(�))-expansion methods (Baskonus et al. 2021). Besides, Yildirim et al. (2020) 
studied the considered equation by using different techniques that are Riccati, Sine-Gordon, 
F-Expansion, functional variable, Exp- expansion, trial equation and modified simple equa-
tion technique. As can be seen from the references in Yildirim et al. (2020), Kudryashov 
(2019), Biswas (2018), Kudryashov (2021), Tarla et al. (2022), Tarla et al. (2022), Yokus 
et al. (2021), Baskonus et al. (2021), the existing studies in the literature generally focus on 
the existence of some soliton solutions of the perturbed CLL equation with different refrac-
tive indexes or obtaining soliton solutions by applying different methods.

The aim of this study is not only focused on the soliton solution of the perturbed CLL 
equation, but also to examine the effects of terms of the inter-modal, self-steepening and 
nonlinear dispersion on the soliton behavior represented by the perturbed CLL equation. In 
this respect, no such review and results presented in this article have been reported for the 
perturbed CLL equation before.

In this study, the enhanced modified extended tanh expansion method (eMETEM) 
(Ozisik et al. 2022b) has been applied to construct some soliton solutions of the perturbed 
CLL equation. Extracting the effects of the coefficients of the inter-modal, self-steepening 
and nonlinear dispersion terms on soliton dynamics will encourage further studies.

The remaining part is arranged as follows: The algorithm of the method is described in 
Sect. 2. We apply the proposed method to perturbed CLL equation in Sect. 3. The results of 
the paper and the plots of the obtained solutions are explained in Sect. 4. We give a conclu-
sion in the final section.

2  Review of the enhanced modified extended tanh expansion method

Step 1: Let us deal with the general form of a NLPDE and the wave transformations, 
respectively:

(2)i
�u

�t
+ �1

�2u

�x2
+ i�2�u�2 �u

�x
= i

�
�1
�u

�x
+ �2

�
��u�2nu�
�x

+ �3
��u�2n
�x

u

�
, i =

√
−1,

(3)H

(
U,

�U

�t
,
�U

�x
,
�2U

�t2
,
�2U

�x2
,
�2U

�x�t
,…

)
= 0,

(4)U = U(x, t) = Y(�), � = p1x + p2t,
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where p1, p2 are the wave number and the velocity of the wave, respectively. Substitut-
ing the wave transformations in Eq.  (4) into Eq.  (3), we acquire a nonlinear ordinary 
differential (ODE) as follows:

where the sign ′ represents the derivatives of Y(�) w.r.t. �.
Step 2: The solutions of the ODE in Eq. (5) can be supposed by the following form:

Here, A0,A1,… ,Am,B1,… ,Bm are real parameters to be determined ( Am and Bm should 
not be zero, simultaneously) and m is a positive integer to be found by balancing the 
highest derivative term and the highest power nonlinear term in Eq. (5). Besides, Ψ(�) is 
a function that satisfies the following Riccati differential equation:

where � is a nonzero real value.
Step 3: Equation (7) admits the solutions which are given in Table 1.
where � , �, � and �0 are real values and � = ∓1.
Step 4: Substituting Eq. (6) and its related derivatives into Eq. 5 and considering Eq. (7), 
a polynomial in Ψ(�) are acquired. Collecting the coefficients of Ψ(�) with the same 
power and equating each coefficient to zero, an algebraic equations system are derived.
Step 5: When the set of algebraic equations in Step 4 is solved, the unknowns 
A0,A1,… ,Am , B1,B2,… ,Bm, p1, p2, � , �, � and �0 are determined. Substituting the val-
ues of the unknowns into Eq. (6) and considering Eq. (4), the solutions of the NLPDE in 
Eq. (3) are found.

(5)J
(
Y(�), Y �(�), Y ��(�),…

)
= 0,

(6)Y(�) = A0 +

m∑
i=1

AiΨ
i(�) +

m∑
i=1

BiΨ
−i(�).

(7)
dΨ(�)

d�
= � + [Ψ(�)]2,

Table 1  The solutions of Eq. (7)

Ψ1(�) = −
√
−� tanh

�√
−�

�
� + �0

��
, Ψ8(�) =

√
� tan

�√
�
�
� + �0

��
,

Ψ2(�) = −
√
−� coth

�√
−�

�
� + �0

��
, Ψ9(�) = −

√
� cot

�√
�
�
� + �0

��
,

Ψ3(�) = −
√
−�(tanh

�
2
√
−�

�
� + �0

��

+i� sech
�
2
√
−�

�
� + �

0

��
),

Ψ10(�) =
√
�(tan

�
2
√
�
�
� + �0

��

+ sec
�
2
√
�
�
� + �0

��
),

Ψ4(�) =
(�−

√
−� tanh (

√
−�(�+�0)))

(1+
√
−� tanh (

√
−�(�+�0)))

, Ψ11(�) = −
√
�(1−tan (

√
�(�+�0)))

(1+tan (
√
�(�+�0)))

,

Ψ5(�) =
√
−�(5−4 cosh (2

√
−�(�+�0)))

(3+4 sinh (2
√
−�(�+�0)))

, Ψ12(�) =
√
�(4−5 cos (2

√
�(�+�0)))

(3+5 sin (2
√
�(�+�0)))

,

Ψ6(�) =
�

√
−�(�2+�2)−�

√
−� cosh (2

√
−�(�+�0))

� sinh (2
√
−�(�+�0))+�

, Ψ13(�) =
�

√
�(�2−�2)−�

√
� cos (2

√
�(�+�0))

� sin (2
√
�(�+�0))+�

,

Ψ7(�) = �
√
−�

�
1 −

2�

�+cosh (2
√
−�(�+�0))−� sinh (2

√
−�(�+�0))

�
, Ψ14(�) = i�

√
�

�
1 −

2�

�+cos (2
√
�(�+�0))−i� sin (2

√
�(�+�0))

�
,

Ψ15(�) = −
1

�+�0
 where � = 0,
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3  Application of the method

Let us take n = 1 in the perturbed CLL equation that is given in Eq. (2) and consider the fol-
lowing wave transformation:

where U(�), �, v, �, k, � and � are the amplitude of the wave, the wave number, velocity, 
phase component, the frequency, the wave number and phase constant. Substituting the 
travelling wave transformation in Eq. (8) into Eq. (2), one can obtain real and imaginary 
parts as follows:

Integrating the Eq. 10 once and taking the integration constant as zero, we have:

From Eq. 11, one can get:

Under the constraints in Eqs. (12), (13), we take in to account the Eq. (9) as the ODE rep-
resentation of Eq. (2):

where U = U(�) . When we balance the terms U′′ and U3 in Eq. (14) by considering Eq. (6), 
(7), we attain m = 1.

So, the solutions of Eq. (14) are supposed to be a form as follows:

Substituting the Eq. (15) and its derivatives into Eq. (14), we attain the polynomial in Ψ(�) 
by taking Eq.  (7) a consideration. Gathering each term with the same power of Ψi(�) and 
equating each coefficient to zero, one can get a system of algebraic equation system as:

where � = �2 + �3.

(8)u(x, t) = ei�U(�), � = �(x − vt), � = −kx + �t + �,

(9)�2�1U
��(�) − U(�)

(
k
(
�2 − �2

)
(U(�))2 + k2�1 + k�1 + �

)
= 0,

(10)−2�
((
(3∕2)�2 + �3 − (1∕2)�2

)
(U(�))2 + k�1 + v∕2 + (1∕2)�1

)
U�(�) = 0.

(11)−�
(
3�2 + 2�3�2

)
(U(�))3 − 3�

(
2k�1 + v + �1

)
U(�) = 0.

(12)v = −2k�1 − �1,

(13)�2 = 3�2 + 2�3.

(14)�2�1U
�� − k

(
�2 − �2

)
U3 −

(
k2�1 + k�1 + �

)
U = 0,

(15)U(�) = A0 + A1Ψ(�) + B1

1

Ψ(�)
.

(16)

Ψ−3(�) ∶ B1

(
k�B1

2 + �2�2�1
)
= 0,

Ψ−2(�) ∶ kA0B1
2� = 0,

Ψ−1(�) ∶ −B1

(
k2�1 +

(
−6A1�B1 − 6A2

0
� + �1

)
k − 2��2�1 + �

)
= 0,

Ψ0(�) ∶ −A0

(
k2�1 +

(
−2�A2

0
− 12A1B1(�2 + �3) + �1

)
k + �

)
= 0,

Ψ1(�) ∶ −
(
k2�1 +

(
−6A1�B1 − 6A2

0
�) + �1

)
k − 2��2�1 + �

)
A1 = 0,

Ψ2(�) ∶ kA0A1
2� = 0,

Ψ3(�) ∶ A1

(
k�A1

2 + �2�1
)
= 0,
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When we solve the system above by Maple, the unknowns A0,A1,B1, �1, � , �1, �2, �3, k and 
� are determined. The some of solution sets are given below:

For j = 1, 2,… , 15 , substituting the Ψj(�) in Table  1 into Eq.  (15) and using the sets 
above, we get the solutions Ψj(�) of the ODE in Eq. (14). Then, using wave transformations in 
Eq. (8), we acquire the following solutions uj(x, t) of the perturbed CLL equation in Eq. (2):

(17)

Cset1 =
�
� = −4�2��1 − k2�1 − k�1,A0 = 0,A1 =

�

k�

√
−k��1,B1 = �A1

�
,

Cset2 =

�
� =

−�2
�
4��2A1

4 − �1�A1
2 + �2�1

2
�
�1

A1
4�2

, k = −
�2�1

A1
2�

,A0 = 0,B1 = �A1

�
,

Cset3 =

�
� =

�
8��2A1

4 + �1�A1
2 − �2�1

2
�
�2�1

A1
4�2

, k = −
�2�1

A1
2�

,A0 = 0,B1 = −�A1

�
.

(18)u1(x, t) = �

�
A0 − A1

√
−� tanh

�
Ψ�

�
−

B1√
−� tanh

�
Ψ�

�
�
,

(19)u2(x, t) = �

�
A0 − A1

√
−�coth

�
Ψ�

�
−

B1√
−�coth

�
Ψ�

�
�
,

(20)

u3(x, t) = �

�
A0 − A1

√
−�

�
tanh

�
2Ψ�

�
+ i� sech

�
2Ψ�

��
−

B1√
−�

�
tanh

�
2Ψ�

�
+ i� sech

�
2Ψ�

��
�
,

(21)u4(x, t) = �

�
A0 + A1

� −
√
−� tanh

�
Ψ�

�

1 +
√
−� tanh

�
Ψ�

� + B1

1 +
√
−� tanh

�
Ψ�

�

� −
√
−� tanh

�
Ψ�

�
�
,

(22)

u5(x, t) = �

�
A0 + A1

√
−�

�
5 − 4 cosh

�
2Ψ�

��

3 + 4 sinh
�
2Ψ�

� + B1

3 + 4 sinh
�
2Ψ�

�
√
−w

�
5 − 4 cosh

�
2Ψ�

��
�
,

(23)

u6(x, t) = �

�
A0 + A1

�
√
C1 − a

√
−� cosh

�
2Ψ�

�

a sinh
�
2Ψ�

�
+ b

+B1

a sinh
�
2Ψ�

�
+ b

�
√
C1 − a

√
−� cosh

�
2Ψ�

�
�
,

(24)

u7(x, t) = �

⎛⎜⎜⎝
A0 + A1

�
C2

a
−

2C2

a + cosh
�
2Ψ�

�
− � sinh

�
2Ψ�

�
�

+
B1

C2

a
− 2

C2

a+cosh (2Ψ�)−� sinh (2Ψ�)

⎞⎟⎟⎠
,

(25)u8(x, t) = �

�
A0 + A1

√
� tan

�
Ω�

�
+

B1√
� tan

�
Ω�

�
�
,
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where � = ei(�t−kx+�), v = −2k�1 − �1,C1 = −
�
a2 + b2

�
� ,C2 = �a

√
−� ,Ω� =

√
��(x − vt) 

and Ψ� =
√
−��(x − vt).

4  Results and discussion

In this paper, we have successfully produced some solutions of the considered equation 
via the enhanced modified extended tanh expansion method. Besides, the effects of the 
coefficients of inter-modal dispersion, self-steepening and the nonlinear dispersion terms 
have been investigated. The codes of the method’s algorithm have been written by Maple. 
Selecting appropriate parameters and using Matlab, we have plotted many graphs of the 
obtained solutions. To explain the behavior of the obtained solutions, we have created vari-
ous figures and have made detail interpretations. Each of the given graphics in Figs. 1, 2, 
3 and 4 contains 6 sub-figures. These are modulus part in 3D (sub-figure (a)), contour of 
modulus part in 3D (sub-figure (b)), 2D of modulus part for tf = 1, 2, 3 (solid black to dot-
ted lines), 2D of imaginary part for t = 1 (blue line) and 2D of the real part for t = 1 (green 
line), together in (sub-figure (c)), respectively. The sub-figures (d)–(e)–(f) are the graphs 
showing the effect of the �1, �2 and �3 on the obtained soliton in sub-figure (a).

Figure 1 is the graph of the combination of u3(x, t) in Eq. (20) and Cset1 in Eq. (17) for 
the parameter values � = −0.1, �1 = �2 = �3 = � = � = 1, �1 = 2, k = −1 . Fig. 1a–c (black 

(26)u9(x, t) = �

�
A0 − A1

√
� cot

�
Ω�

�
−

B1√
� cot

�
Ω�

�
�
,

(27)

u10(x, t) = �

�
A0 + A1

√
�
�
tan

�
2Ω�

�
+ � sec

�
2Ω�

��
+

B1√
� tan

�
2Ω�

�
+ � sec

�
2Ω�

�
�
,

(28)u11(x, t) = �

�
A0 − A1

√
�
�
1 − tan

�
Ω�

��

1 + tan
�
Ω�

� − B1

1 + tan
�
Ω�

�
√
�
�
1 − tan

�
Ω�

��
�
,

(29)u12(x, t) = �

�
A0 + A1

√
�
�
4 − 5 cos

�
2Ω�

��

3 + 5 sin
�
2Ω�

� + B1

3 + 5 sin
�
2Ω�

�
√
�
�
4 − 5 cos

�
2Ω�

��
�
,

(30)

u13(x, t) = �

⎛⎜⎜⎜⎝
A0 + A1

�

��
a2 − b2

�
w − a

√
w cos

�
2Ω�

�

a sin
�
2Ω�

�
+ b

+ B1

a sin
�
2Ω�

�
+ b

�

��
a2 − b2

�
w − a

√
w cos

�
2Ω�

�
⎞⎟⎟⎟⎠
,

(31)

u14(x, t) = �

⎛⎜⎜⎜⎝
A0 + A1

�
i�
√
� −

2i�a
√
�

a + cos
�
2Ω�

�
− i� sin

�
2Ω�

�
�
+

B1�
i�
√
� −

2i�a
√
�

a+cos (2Ω�)−i� sin (2Ω�)

�
⎞⎟⎟⎟⎠
,

(32)u15(x, t) = −
1

x − vt
,
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solid to dotted lines) represents the bright soliton plot for ||u3(x, t)|| . From Fig.  1c, it can 
be seen that the soliton has traveling wave property and moves to the right. Figure 1d is 
the first graph created to examine the effects of the coefficients ( �1, �2, �3 ) of inter-modal 
dispersion, the self-steepening and nonlinear dispersion terms on soliton behavior, respec-
tively, which is the main purpose of this study. It is aimed to examine the effect of the �1 on 
the bright soliton presented with Fig. 1a. For this purpose, 0.30, 0.60 and 0.90 values (dot-
ted lines for negative values, solid lines for positive values) are assigned to the coefficients. 

(a) (b)

(c) (d)

(e) (f)

Fig. 1  Some graphical representations of u
3
(x, t) in Eq. (20) by selecting Cset1 in Eq. (17) for the parameters 

� = −0.1, �
1
= �

2
= �

3
= � = � = 1, �

1
= 2, k = −1 and the effects of �

1
, �

2
, �

3
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From Fig. 1d, it is observed that there is no change in the vertical amplitude of the soliton 
when the �1 is both negative or positive, the soliton maintains its bright soliton character, 
its skirts remain on the horizontal axis, and the horizontal distance between the soliton’s 
skirts is preserved. When �1 is negative and increasing, the soliton changes position to the 
left depending on the increase in �1 (dashed orange to black lines). In case the �1 is posi-
tive and increasing, the soliton shows a similar position change to the left depending on 

(a) (b)

(c) (d)

(e) (f)

Fig. 2  Some graphical representations of u
5
(x, t) in Eq. (22) by selecting Cset2 in Eq. (17) for the parameters 

� = −0.1, �
1
= 0.1, �

2
= 2, �

3
= 3, �

1
= 2, � = 1,A

1
= 1,� = −1 and the effects of �

1
, �

2
, �

3



 M. Ozisik et al.

1 3

792 Page 10 of 16

the increase in �1 (solid black to orange lines). Thus, in both cases ( �1 negative or positive) 
the coefficient of inter-modal dispersion term has a similar effect on the bright soliton. 
Figure  1e includes review belongs to �2 which is the coefficient of the self-steepening 
dispersion term. The value for �2 is also chosen as 0.30, 0.60 and 0.90 (dotted lines for 

(a) (b)

(c)
(d)

(e) (f)

Fig. 3  Some graphical representations of u
10
(x, t) in Eq. (27) by selecting Cset1 in Eq. (17) for the param-

eters � = −0.1, �
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negative values, solid lines for positive values). Unlike the previous review, it is seen that 
the change in the self-steepening dispersion term coefficient has a significant effect on the 
bright soliton obtained in the Fig. 1a. At first glance, this effect is observed as the change 
in the vertical amplitude of the soliton. When Fig. 1 is examined in detail, when �2 gets 
negative and increasing values, the soliton maintains its bright soliton character, but there 

(a) (b)

(c)
(d)

(e) (f)

Fig. 4  Some graphical representations of u
14
(x, t) in Eq. (31) by selecting Cset3 in Eq. (17) for the param-

eters � = 0.1, �
1
= 1, �

2
= 2, �

3
= 3, �

1
= 2, � = 1, k = −1,� = 1 and the effects of �

1
, �

2
, �
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is a change in its vertical amplitude (position of the peak), and this change is observed in 
the form of a decrease in amplitude (vertical downward displacement of the peak point) 
depending on its increasing values (dashed orange to black lines). In the case that �2 takes 
positive and increasing values, the soliton maintains its bright soliton character, there is 
a change in its vertical amplitude (position of the peak), and this change is a decrease in 
the amplitude (vertical downward displacement of the peak) depending on the increasing 
values of �2 (solid black to orange lines). Therefore, for the self-steepening term coefficient 
�2 , if it continues to take increasing values in both cases (negative or positive) for the exam-
ined case, the amplitude of the soliton will continue to decrease, in other words, the peak 
of the soliton will approach the horizontal axis and the soliton will become flattered. We 
can say that it will evolve into a new appearance, and if the increase in �2 continues, the 
soliton will gradually lose its bright soliton feature. Therefore, in terms of soliton transmis-
sion, it has an important effect in terms of preserving the character and amplitude of the 
soliton signal (soliton pulse) to be transmitted, and it is of great importance to select and 
control this coefficient depending on the interaction with other nonlinear terms. Figure 1f 
shows the effect of our analysis for the nonlinear dispersion term coefficient �3 . If Fig. 1f is 
examined in detail, we can categorically make similar comments made for �2 . When �3 is 
both negative and positive, the soliton shows a position change to the left depending on the 
increasing values of �3.

Figure 2 is the graph of the combination of u5(x, t) in Eq.  (22) and Cset2 in Eq.  (17) 
for the parameters � = −0.1, �1 = 0.1, �2 = 2, �3 = 3, �1 = 2, � = 1,A1 = 1,� = −1 . Fig-
ure 2a–c (black lines) are 3D, contour 2D graphics of ||u5(x, t)|| . As in the previous section, 
Im(u5(x, 1)) (blue line), Re(u5(x, 1)) (green line) are given by Fig.  2c. All three graphics 
reflect the singular soliton character. This singularity is up directional ( +∞ ) for both sides 
of the singular point for ||u5(x, t)|| . Im(u5(x, 1)) and Re(u5(x, 1)) are down directional ( −∞ ) 
on the left of the singular point, and up directional ( +∞ ) on the right of the singular point. 
2d reflects the effect on the singular soliton obtained in Fig. 2a with the inter-modal disper-
sion term coefficient �1 . Similarly, the values 0.30, 0.60 and 0.90 are chosen. In both cases 
of �1 (negative or positive), the singular soliton character is preserved and the soliton is 
shifted to the left depending on the increase. 2e shows the examination of the case where 
�2 is 0.50, 1.00 and 2.00 (dotted lines for negative, solid lines for positive). In case �2 is 
both negative and positive, the soliton shows a position change to the left depending on the 
increasing values of �2 . In Fig. 2f, the similar analysis is made for �3 for values of 0.50, 1.50 
and 3.00. When �3 is negative and increasing (dashed lines), the soliton behavior does not 
show a behavior similar to the previously examined cases. For �3 = −3.0 , it is on the far 
left (dashed black), for �3 = −1.5 it is on the far right (dashed green) and then for �3 = −0.5 
it is dashed orange. As it can be seen from the graph, when �3 is positive and increasing, it 
shifts to the left between graphs �3 = −3.0 and �3 = −1.5 with smaller amounts depending 
on the increasing values of �3 (solid black to orange lines). With Fig.  2f, we can attrib-
ute this situation, which occurs especially when �3 is negative, to the interaction between 
nonlinear terms in such problems and the difficulty of controlling these terms during this 
interaction.

Figure 3 is the graph of the combination of u10(x, t) in Eq. (27) and Cset1 in Eq. (17) for 
the parameters � = −0.1, �1 = 0.1, �2 = 2, �3 = 3, �1 = 2, � = 1, k = � = −1 and the effects 
of �1, �2, �3 . Figure 3 generally reflects the periodic singular soliton image. The effect of �1 
is examined in Fig. Fig. 3d, and the soliton shows a position change to the left depending 
on the increasing values of �1 , both positive and negative. Figure 3e, f are graphs that reflect 
the effects of �2 and �3 , respectively. In both graphs, depending on the increasing values 
(negative or positive) for both �2 and �3 , no horizontal position change is observed for the 
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soliton, but there is a change in its vertical amplitude. It is possible to see this change from 
the skirt parts of the soliton. When �2 and �3 are negative and increasing, the amplitude 
decreases (dashed orange to black lines). And when the parameters are positive, the ampli-
tude decreases. But this effect is observed as a smaller change (solid black to orange lines).

Lastly, Fig. 4 is the graph of the combination of u14(x, t) in Eq. (31) and Cset3 in Eq. (17) 
for the parameters � = 0.1, �1 = 1, �2 = 2, �3 = 3, �1 = 2, � = 1, k = −1,� = 1 . Periodic 
bright soliton character is generally observed in Fig. 4. Similarly, the graph of Fig. 4d is 
divided into the effect of �1 and when �1 is both positive or negative, the position of the 
solution changes to the left depending on the increasing values of �1 . Figure 4e shows the 
effect of �2 . When �2 gets negative and increasing values, there is a change in the horizon-
tal position of the soliton, but this change does not occur regularly (regularly to the left or 
right) depending on the increasing values of �2 . Because if the graph of �2 = −2.00 (dashed 
black line) is on the left, the graph of �2 = −1.00 (dashed green line) is on the right, and 
the graph of �2 = −0.50 (dashed orange line) is observed between these two graphs. This 
does not happen when �2 takes positive and increasing values (solid black to orange lines). 
4f shows the effect of �3 and the soliton changes to the left depending on the increasing val-
ues of �3 when �3 is both negative and positive. We would also like to emphasize here that 
all solution functions obtained between Eqs. (18), (32) satisfy the main equation, Eq. (2), 
with each solution set given in Eq. (17).

5  Conclusion

The existing studies in the literature focus on obtaining solutions of the perturbed 
Chen–Lee–Liu equation. In addition to obtaining the soliton solution of the perturbed CLL 
equation, the main purpose of this work is to investigate the impact of inter-modal, self-
steepening, and nonlinear dispersion components on the soliton behavior represented by 
the considered equation. In this study, we have successfully obtained the bright, singular, 
periodic singular and periodic bright solitons of the perturbed Chen–Lee–Liu equation 
by applying the modified extended tanh expansion method. After obtaining the specified 
soliton types, 2D graphs of soliton behaviors have been drawn by giving different values to 
the coefficients of these terms in order to examine the effect of each term. It should also be 
noted that the numerical values given to the coefficients have been assigned to ensure both 
the limitations of the problem and the method and to preserve the soliton shape obtained 
within the area of the study. Therefore, making this choice often involves many difficulties 
and complexities in itself. In this aspect, the investigation of the effect of the inter-modal, 
self-steepening and nonlinear dispersion terms on soliton behaviors for the perturbed 
Chen–Lee–Liu equation has not been studied and the results within the scope of this study 
have not been presented. We believe that the gained results within the scope of the study 
will be useful for studies on problems modeling many physical phenomena in this area.
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