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Abstract
In nonlinear optics, photonics, plasma, condensed matter physics, and other domains, the 
space–time fractional nonlinear Fokas–Lenells and paraxial Schrödinger equations asso-
ciated with beta derivative have significant applications. The fractional wave transforma-
tion has been used to turn the space–time fractional nonlinear equations into integer order 
equations. To obtain optical soliton solutions relating to exponential, trigonometric, and 
hyperbolic functions and their integration with free parameters, the improved Bernoulli 
sub-equation function (IBSEF) scheme has been exploited. Different shapes of solitons 
have been extracted from the attained solutions, including kink, periodic, bell-shaped, anti-
kink, dark-bright soliton, single kink type soliton, etc. A kink soliton is an optical shock 
front that keeps its shape while traveling through optical fibers. The characteristics of the 
solitons have been studied by describing profiles in 3D, 2D, contour, and density plots. The 
results imply that the IBSEF technique is simple, efficient, and capable of generating com-
prehensive soliton solutions of nonlinear models related to telecommunication and optics.

Keywords Improved Bernoulli sub-equation function technique · Fractional nonlinear 
Fokas–Lenells equation · Paraxial Schrödinger equation

1 Introduction

The fractional nonlinear Schrödinger equation (FNSE) is crucial in optics. Nonlinear 
optics, which interprets the amplification of short pulses in optical fiber and is vital in 
ultra-fast signal routing, telecommunication systems, and other applications, is one of 
the main concerns. The nonlinear mathematical models in nonlinear optics, condensed 
matter physics and quantum mechanics are significantly influenced by the fractional 
nonlinear Schrödinger equation (Wang et al. 2022; Rezazadeh et al. 2018; Das and Saha 
Ray 2022). Solitons are used in optics to distinguish optical fields that do not change in 
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size or shape during propagation due to a balanced combination between linear and non-
linear impacts of the medium. Therefore, analytical soliton solutions to the FNSE are 
put to use frequently in a broad range of nonlinear fields, such as optics, signal process-
ing, control theory, plasma physics, astrophysics, probability, image processing, system 
identification and other areas (Akram et al. 2022; Mirzazadeh et al. 2021; Hashemi et al. 
2017). Thus, several approaches, notably, the reproducing kernel discretization tech-
nique (Arqub et al. 2020), the modified Kudryashov scheme (Darvishi et al. 2021), the 
tanh-coth method (Zulfiqar and Ahmad 2022), the new Kudryashov extension (Rezaza-
deh et al. 2021), the Hirota bilinear scheme (Wang et al. 2021), the directed extended 
Riccati method (Islam et al. 2022), the rational sine–Gordon expansion approach (Yel 
et  al. 2022), the improved Bernoulli sub-equation function (IBSEF) procedure (Islam 
and Akbar 2020, 2021; Demirbileko et al. 2021), the Lie group approach (Pashayi et al. 
2017), the Nucci’s reduction approach (Hashemi et al. 2014; Hashemi 2021; Xia et al. 
2022), etc., have been developed and exploited by physicists and mathematicians to 
determine the soliton solutions to the FNSE in the literature.

The space–time fractional nonlinear Fokas–Lenells (FL) equation (Zafar et al. 2021a) 
is:

where 0 < 𝜇, 𝛼 ≤ 1 , i =
√
−1 is the imaginary unit, v = v(x, t) , x is the spatial coordi-

nate and t  be temporal variable, n1 , � , n2 , � and � are the coefficients which represents 
the spatiotemporal dispersion (STD), inter-modal dispersion (IMD), group velocity 
dispersion (GVD), nonlinear dispersion (ND) coefficient and self-steepening perturba-
tion term respectively and iD�

t v be the linear fractional temporal evolution of the pulses 
in the nonlinear optics. The full nonlinearity is represented by the parameter n . Equa-
tion (1) is called the original Fokas–Lenells equation if � = � = 1 (Biswas et al. 2018a, 
b; Demiray and Bulut 2015). The classical form of Eq.  (1) has been investigated by 
means of several approaches, such as, the modified simple equation and trial equation 
approach (Biswas et al. 2018a), the extended trial function scheme (Demiray and Bulut 
2015; Biswas et al. 2018b), the generalized exponential function procedure (Osman and 
Ghanbari 2018), the sine–Gordon expansion process (Ali et al. 2020), the generalized 
Kudryashov method (Barman et al. 2021), etc. Further, the fractional form of the Eq. (1) 
has also been investigated by putting into use several methods, such as the fractional 
dual-function method (Wang et  al. 2020), the extended sinh-Gordon equation expan-
sion scheme (Bulut et al. 2018), the extended direct algebraic method (Sajid and Akram 
2019), the simplest Riccati equation scheme (Zafar et al. 2021b), the �6-model expan-
sion method (Sajid and Akram 2021), etc.

The space–time fractional nonlinear paraxial Schrödinger equation in the Kerr media 
(Tariq et al. 2021) is:

where v(y, z, t) is the function of complex wave envelope, q , r and s represent evolu-
tion, diffraction, and Kerr nonlinearity, respectively. If qr > 0 , then Eq.  (2) is called 
elliptical nonlinear Schrödinger equation (NSE) and Eq.  (2) is called hyperbolic NSE 
for qr < 0 . To our optimal knowledge, the classical form of Eq.  (2) has been investi-
gated by making use of the several approaches, such as, the  Hirota bilinear method 
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(Rizvi et al. 2021), the extended trial equation method (Ali et al. 2019), the Lie symme-
try scheme (Rizvi et al. 2019), the modified (1∕G�)-expansion and modified Kudryashov 
approach (Durur and Yokuş 2021), etc. Furthermore, the fractional form of Eq. (2) has 
been examined using several techniques, such as the modified simple equation method 
and auxiliary equation method (Tariq et  al. 2021), the modified exponential function 
(Gao et al. 2019), etc.

To the foremost of our review, the IBSEF approach has not formerly been exploited 
to assess Eqs. (1) and (2) in the sense of beta derivative. Therefore, our focus is to ascer-
tain typical and broad-ranging stable optical soliton solutions to the above-stated non-
linear fractional model through the IBSEF technique (Islam and Akbar 2020). Through 
this approach, we ascertain the exponential, trigonometric, hyperbolic, and rational form 
of solutions from which kink, periodic, bell-shaped multi-periodic, anti-kink, breathing, 
bright soliton, and other solitons are established with rich physical characteristics. The 
characteristics of the solitons have been studied by describing profiles in 3D, 2D, contour, 
and density plots.

The layout of the article is organized as: The introduction is described in Sect. 1. The 
Beta derivative is discussed in Sect. 2 of this article. The method is described in Sect. 3, 
and the extraction of solutions is presented in Sect. 4. To show the novelty of the attained 
results, we compared them in Sect. 5. The results and discussion are presented in Sect. 6, 
and conclusions are presented in the last section.

2  Beta derivative

Many academics have presented the definition of fractional derivative (Miller and Ross 
1993; Kumar et al. 2020; Khalil et al. 2014; Hashemi and Baleanu 2020). Most of them 
do not follow the chain rule; the derivative of a constant is zero, and the Leibnitz rule. 
Atangana et al. (Atangana et al. 2016) proposed a significant and advanced definition of 
the fractional derivative, called the beta derivative. This definition behaves well and fulfills 
all the properties of classical calculus, including Leibniz and chain rules  (Atangana and 
Alqahtani 2016).

Definition: Let a�ℝ and g be a function such that g ∶ [a,∞) → ℝ . Then the �-operator 
on g is defined as (Atangana and Alqahtani 2016):

From the definition, we have D�
y
g(y) =

d

dy
g(y) for � = 1.

Theorems: Consider g(y) and h(y) are �-order differentiable for all y > 0 and b1 and 
b2 are real constants. Then the subsequent characteristics are satisfied by this definition 
(Ismael et al. 2021).
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Because of its accessibility, simplicity, and usefulness, many researchers have employed 
this remarkable fractional derivative definition in many physical applications (Ismael et al. 
2021; Islam et al. 2021; Al-Amin et al. 2021).

3  The method

The main features of the improved Bernoulli sub-equation function (IBSEF) approach are 
briefly described (Islam and Akbar 2021; Demirbileko et al. 2021) in the underneath:

3.1  Step 1:

The nonlinear fractional equation is presumed as the subsequent form:

where Z is a polynomial of v , D�

t  be the fractional derivative of �-order and v(x, t) is an 
implicit function of coordinates x and t . The purpose is to transform (3) into the nonlinear 
equation using a suitable fractional transformation. The fractional wave transformation is 
considered as:

where � be the wave velocity, s be the wave number, � be the wave variable, � be the 
order of time fractional derivative and � be the order of space fractional derivative.

Introducing the wave transformation (4) into the fractional nonlinear Eq. (3), we attain 
the subsequent nonlinear equation of integer order:

3.2  Step 2:

As per this method, the trial solution of the Eq. (5) can be assumed as:
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where P = P(� ) is the solution to the improved Bernoulli equation, a0 , a1 , a2,…,am and 
b0, b1, b2,… bl are later determined coefficients. l ≠ 0 , m ≠ 0 are arbitrary constants that 
can be determined through the balance principle. The general form of the improved Ber-
noulli equation can be presented as follows:

The homogeneous balancing of the highest order linear term with the highest order 
nonlinear term of the Eq. (4) can be used to determine the value of the unknown param-
eters l and m . This procedure yields the following l and m values.

Introducing solution (4) into (3) with the aid of Eq.  (5), it provides an equation of 
polynomial B(P(� )) of P(� ):

3.3  Step 3:

An algebraic system of equations can be gained by equalizing each coefficient of B(P(� )) 
coefficients to zero:�k = 0 , k = 0 , … , s.

We can attain the values of a0 , a1,… , am and b0 , b1,… , bl by unraveling this system 
algebraic equation.

3.4  Step 4:

We obtain the ensuing two conditions and solutions to Eq. (7) based on the values of d 
and h:

where E ∈ ℝ , be an integrating constant.
The analytical solutions of Eq. (5) are accomplished with the aid of Maple software 

program and categorize the analytical solutions to Eq. (5) using a whole distinction sys-
tem for polynomial of P(� ).
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4  Extraction of solutions

The objective of this module is to obtain the stable, broad-ranging, and typical soliton 
solutions to the space–time fractional nonlinear Schrödinger Fokas–Lenells and the 
fractional nonlinear paraxial Schrödinger equations using the IBSEF approach, from 
which some existing solutions can be re-established.

4.1  The space–time fractional nonlinear Fokas–Lenells (Wazwaz 2009) equation

Consider the complex wave transformation.

where � =
1
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�
+ �0 , where c is the wave velocity, k be the fre-

quency, � be the wave number and �0 be the phase parameter.
The wave transformation (11) remodels Eq. (1) into a nonlinear equation and equat-

ing real and imaginary parts, we attain.

and 

Setting n = 1 , to Eq. (1), Eqs. (12) and (13) become (Pashayi et al. 2017):

From Eq. (15), we achieve.

since V2V ′ ≠ 0 and V ′ ≠ 0 , where n2k ≠ 1 , c be the wave velocity and � represents a cou-
pled constraints relation between the parameters.

Balancing between V ′ ′ and V3 appearing in Eq. (16), we attain following relation.

Considering l = 1 , L = 3 , it is found m = 3.
Therefore, the trial solution of Eq. (16) can be written as.
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where P�(� ) = dP(� ) + hP3(� ) , a3 ≠ 0 , b1 or b0 ≠ 0 , d ≠ 0 , h ≠ 0.
Equation (16) becomes a polynomial in P when solution (18) and Eq. (7) are intro-

duced, and a group of over-determined processes is resulted by setting each coefficient 
to zero. We attain the coefficient values listed below by using Maple to unravel the 
group of algebraic equations.

4.2  Set 1:

4.3  Set 2:

where a3 , b0 and b1 are arbitrary parameters, A = 8�a2
3
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Case 1: For d ≠ h

We attain the exponential function solution to the space–time fractional nonlinear 
Fokas–Lenells model by introducing the estimations of the parameters indicated in (19) 
into solution (18), along with (9), the solution of the improved Bernoulli equation, and 
transformation (11):

where 
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where 

Simplifying (22), the hyperbolic function form solution is obtained as:

where R =

√
n1+(cn2k−c−2n1k+�n2)n2

(2�+2�+sn2)n2
 , and d , E , � , �0 are nonzero parameters.
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We can choose further values of E , since E is an integrating constant.
For E =

√
13 , we found from solution (28).

Changing arbitrarily the value of the free parameter E , we might establish a broad-spec-
trum soliton solution to the fractional nonlinear Fokas–Lenells model. For the sake of con-
ciseness, only a few solutions are recorded.

It can be derived further analytical wave solutions by interleaving the coefficients sorted 
out in set (2) into solution (18), along with the solutions (9) and (10). For d ≠ h , we attain 
the exponential function solution to the space–time fractional nonlinear Schrödinger FL 
equation by including the values of the parameters mentioned in (20) into solution (18), 
and (9), the estimation of the modified Bernoulli equation as follow:

where 

Diverse typical wave solutions can be originated from the general solution for specific 
values of the parameters, but these solutions are not specified here for terseness.

4.4  The space–time fractional nonlinear paraxial Schrödinger (Wazwaz 2009) 
equation

Consider the wave transformation.
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�

�
(t +

1

Γ(�)
)� + �0.

(31)v(y, z, t) = V(� )eik� ,

� =
1

�

(
y +

1

Γ(�)

)�

+
1

�

(
z +

1

Γ(�)

)�

−
�

�

(
t +

1

Γ(�)

)�

.

(32)
(
a�2 + b

)
V �� −

(
2k + ak2�2 + bk2

)
V + 2cV3 = 0,

(33)
(
1 + bk + ak�2

)
V

�

= 0.
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Inserting the value of b into (32) and after some simple calculation, we obtain.

Balancing between V ′′ and V3 , we obtain the relationship among l , L and M as 
follows:

Choosing l = 1 , L = 4 , we obtain m = 4.
The solution to the Eq. (35) can be presented as,

where P�(� ) = dP(� ) + hP4(� ) , a4 ≠ 0 , b1 or b0 ≠ 0 , d ≠ 0 , h ≠ 0.
Introducing solution (37) and (7) into Eq. (35) generates a polynomial in P , and set-

ting each coefficient to zero yields an over-determined group of equations. We deter-
mine the subsequent values of the coefficients by unraveling the algebraic group of 
equations with the help of Maple:

where b0 and b1 are arbitrary parameters.
Case 1: For d ≠ h

Interleaving the values of the parameters accumulated in (38) and (9), the solution 
of the modified Bernoulli equation into solution (37), the exponential function solution 
to the space–time fractional nonlinear paraxial Schrödinger equation in Kerr media is 
attained as follows:

where 

After simplifying solution (39), the hyperbolic function form of solution is attained as.

(34)V � ≠ 0, therefore, b =
−1 − ak�2

k
.

(35)V �� + k2V − 2ckV3 = 0,

(36)l + L = m + 1.

(37)V(� ) =
a0 + a1P(� ) + a2P

2(� ) + a3P
3(� ) + a4P

4(� )

b0 + b1P(� )
,

(38)
a0 = ±

21∕4
√
3

2

√
d∕sb0, a1 = ±

21∕4
√
3

2

√
d∕sb1, a2 = 0,

a3 = ±
21∕4

√
3√

ds
hb0, a4 = ±

21∕4
√
3√

ds
hb1, k =

3d√
2

,

(39)v(y, z, t) = ±
21∕4

√
3

2

√
d∕s

�
he

3

2
d� + dEe

−
3

2
d�

−he
3

2
d� + dEe

−
3

2
d�

�
eik� ,

� =
1

�

(
y +

1

Γ(�)

)�

+
1

�

(
z +

1

Γ(�)

)�

−
�

�

(
t +

1

Γ(�)

)�

.

(40)v1(y, z, t) = ±
21∕4

√
3

2

√
d∕s

⎧⎪⎨⎪⎩

(dE + h)cosh
�

3

2
d�

�
− (dE − h)sinh

�
3

2
d�

�

(dE − h)cosh
�

3

2
d�

�
− (dE + h)sinh

�
3

2
d�

�
⎫⎪⎬⎪⎭
eik� ,
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where E , d , s and h are nonzero parameters.
Inasmuch as E is an integral constant, one can pick out its value arbitrarily. There-

fore, when E = 4h∕d , from the solution (46), we attain.

Particularly, the solution (40) takes the subsequent form for E = −h∕d,

When E = h∕d , from solution (46), we extract.

Other forms of relevant solutions can be obtained by changing the values of the 
parameter E from the same general solution (40) but, for the sake of conciseness, these 
solutions are not presented.

Case 2: For d = h

By combining the values of the parameters stated in (38) into solution (37), and (10), 
the solution of the improved Bernoulli equation, the hyperbolic function solution of 
Eq. (2) is originated as.

where 

We can randomly choose the values of E as it is an integrating constant. Therefore, 
we gained from solution (44) for E =

√
13,

Other sorts of solutions to Eq. (2) can be obtained by arbitrarily picking different val-
ues of the arbitrary parameter E . But, for simplicity, only a few are displayed.

(41)v11(y, z, t) = ±
21∕4

√
3

2

√
d∕s

⎧
⎪⎨⎪⎩

5cosh
�

3

2
d�

�
− 3sinh

�
3

2
d�

�

3cosh
�

3

2
d�

�
− 5sinh

�
3

2
d�

�
⎫
⎪⎬⎪⎭
eik� .

(42)v12(y, z, t) = ±
21∕4

√
3

2

√
d∕stanh

�
3

2
d�

�
eik� .

(43)v13(y, z, t) = ±
21∕4

√
3

2

√
d∕scoth

�
3

2
d�

�
eik� .

(44)v2(y, z, t) = ±
21∕4

√
3

2

√
d∕s{

(E + 1) − (E − 1)tanh
�

3

2
d�

�

(E − 1) − (E + 1)tanh
�

3

2
d�

�}eik� ,

� =
1

�
(y +

1

Γ(�)
)
�

+
1

�
(z +

1

Γ(�)
)
�

−
�

�
(t +

1

Γ(�)
)
�

.

(45)v21(y, z, t) = ±
21∕4

√
3

2

√
d∕s{

�√
13 + 1

�
−
�√

13 − 1

�
tanh

�
3

2
d�

�
�√

13 − 1

�
−
�√

13 + 1

�
tanh

�
3

2
d�

�}eik� .
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5  Comparison of the results

We compare the results of the space–time fractional nonlinear Fokas–Lenells (FL) and 
paraxial Schrödinger equations obtained in this study using the IBSEF approach with 
the solutions reachable in the existing literature to show the novelty of the established 
solutions. We compare the obtained results of the space–time fractional nonlinear FL 
equation in Table  1 to those of Bulut et  al. (2018) solutions and the solutions of the 
space–time fractional paraxial Schrödinger equation with the solutions attained by Gao 
et al. (Gao et al. 2019) in Table 2. It is observed that some of the achieved results are 
similar to the results developed previously by other methods and some solutions are 
fresh.

It is noteworthy to observe that the attained solutions v13(x, t) , v14(x, t) and v12(x, t) 
of the space–time fractional FL equation are similar to some solutions of Bulut et  al. 
(2018) for definite values of arbitrary constants, whereas the other solutions, v1(x, t) , 
v11(x, t) , v2(x, t) , v21(x, t) and v3(x, t) are new and might be significant to analyze the tan-
gible phenomena.

From the above Table 2, we see that the obtained solutions v12(y, z, t) and v13(y, z, t) of 
the space–time fractional paraxial Schrödinger equation are similar to some solutions of 
Gao et al. (2019) But, the soliton solutions v1(y, z, t) , v11(y, z, t) , v2(y, z, t) and v21(y, z, t) , 
of the space–time fractional paraxial Schrödinger equation are not found in the prior 
literature. The achieved solutions might be useful in nonlinear optics, signal processing, 
control theory, plasma physics, image processing, system identification, etc.

Table 1  Comparison of the obtained solutions to the space–time fractional nonlinear FL equation with the 
solutions found by Bulut et al. in (Bulut et al. 2018)

Bulut et al. (2018) solutions The obtained solutions

If the fractional order derivative � = 1 and � = 1 , 

then the solution (3.15) becomes:

�1,1(x, t) = 

±Atanh(�(x − ct))ei(−kx+�t+�)

If the fractional order of derivative � = 1 and � = 1, 

then the solution (25) becomes:

v13(x, t) = ±Rtanh(d(x − ct))ei(−kx+�t+�0)

If the fractional order derivative � = 1, � = 1 , then 

the solution (3.16) becomes:

�1,2(x, t) = 

±Acoth(�(x − ct))ei(−kx+�t+�)

If the fractional order of derivative � = 1 and � = 1, 

then the solution (25) becomes:

v14(x, t) = ±Rcoth(d(x − ct))ei(−kx+�t+�0)

If the fractional order derivative � = � = 1 , then the 

solutions (3.17) and (3.18) becomes:

�1,3(x, t) = 

±Asech[�(x − ct)]ei(−kx+�t+�)

�1,4(x, t) = 

±Acsch[�(x − ct)]ei(−kx+�t+�)

If the fractional order of derivative � = � = 1, then 

the solution (24) becomes:

v12(x, t) = 

±R
(

13csch[d(x−ct)]+11sech[d(x−ct)]

11csch[d(x−ct)]+13sech[d(x−ct)]

)
 

ei(−kx+�t+�0)
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6  Results and discussion

Using the symbolic computation tool Mathematica, the characteristic of the obtained 
analytical solutions for different parametric values have been explored and illustrated 
through the graphics in this section.

Table 2  Comparison of the obtained solutions to the space–time fractional paraxial Schrödinger equation 
with the solutions found Gao et al. (2019)

Gao et al. (2019) solutions The obtained solutions

If � = 3 , � = 1 and � = fractional order of 

derivative then the solution (28) converts to:

u(y, z, t) =

−tanh(y
�+z�−ct�

�
)
ie

i
√
2

�
−ct�+y�+z�

�

�

21∕4
√
3

If � = 1 , the above solution becomes:

u(y, z, t) =

−
iei

√
2(y+z−ct)

21∕4
√
3

tanh(y + z − ct)

If k =
√
2 and � = � = fractional order of derivatives 

then the solution (42) becomes:

v12(y, z, t)

= ±
21∕4

√
3

2

√
d∕stanh(

3

2
d(

1

�

�
y +

1

Γ(�)

��

+
1

�

�
z +

1

Γ(�)

��

−
�

�

�
t +

1

Γ(�)

��

))e
i
√
2(

1

�

�
y+

1

Γ(�)

��

+
1

�

�
z+

1

Γ(�)

��

−
�

�

�
t+

1

Γ(�)

��

)

If � = � = 1 , the above solution becomes:

v12(y, z, t) =

±
21∕4

√
3

2

√
d∕stanh

�
3

2
d(y + z − �t)

�
ei
√
2(y+z−�t)

If � = 3 , � = 1 and � = fractional order of 

derivative then the solution (28) converts to:

u(y, z, t) =

−
ie

i
√
2

�
−ct�+y�+z�

�

�

21∕4
√
3

coth(−ct
�+y�+z�

�
)

If � = 1 , the solution becomes:

u(y, z, t) =

−
iei

√
2(y+z−ct)

21∕4
√
3

coth(y + z − ct)

In particular, if � = 1 , then the solution (30) 

converts to

u(y, z, t) = −
ei
√
2(y+z−ct)

21∕4
√
3
coth(y + z − ct)

If k =
√
2 and � = � = fractional order of derivative, 

then the solution (43) becomes:

v13(y, z, t) =

±
21∕4

√
3

2

√
d∕scoth(

3d

2
(
1

�

�
y +

1

Γ(�)

��

+
1

�

�
z +

1

Γ(�)

��

−
�

�

(
t +

1

Γ(�)

)�

) ) ei
√
2(

1

�

�
y+

1

Γ(�)

��

+
1

�

�
z+

1

Γ(�)

��

−
�

�

�
t+

1

Γ(�)

��

)

If � = � = 1 , the above solution becomes:

v13(y, z, t) =

= ±
21∕4

√
3

2

√
d∕scoth(

3

2
d(y + z − �t))ei

√
2(y+z−�t)

Fig. 1  Graph displaying the solution (22)’s absolute part
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6.1  The sketch and explanation of the solutions to the fractional nonlinear FL 
equation

This section discusses the graphical representations of the derived solutions to the frac-
tional nonlinear Fokas–Lenells equation for various parametric variables. There are two 
components to the solutions that have been found: real and imaginary parts.

The 3D graph in Fig. 1a depicts the kink shape soliton attained for the absolute compo-
nent of the solution (22) for the parametric valuesn1 = −4.55,n2 = −1.2,d = 8.25,h = −3.5

,E = 10,� = −6.05,� = −1.5,k = −5.1,s = −1.4,� = −1.7,� = 0.6 , � = 0.9 with wave 
velocity c = 0.7 between the intervals0 ≤ x ≤ 10,0 ≤ t ≤ 10 ; the 2D plot for t = 5.5 is pre-
sented in Fig. 1b, and the contour graph in Fig. 1c. Kink solitons are solitons that change 
asymptotic states. Kink waves are further stable as they get closer to infinity (Hashemi 
and Baleanu 2020). The kink soliton, in the concept of optical fibers, is an optical shock 
front that maintains its form while propagating through the fiber (Atangana et al. 2016). 
Furthermore, by only altering the value of h from −3.5 to0.1 , the singular kink type soliton 
is generated for the modulus of same solution (22) as shown in Fig.  2. Furthermore, 
whenE = −10 , this singular soliton may be shown. We ignore it for brevity. The real part 
of the solution (22) illustrates the periodic bell shape soliton with distinct amplitudes for 
the valuesn1 = −0.41,n2 = −0.61,d = −0.52,h = −0.305,� = 0.57,� = 0.55,e = −2,� = −2

,� = −2,k = −2,s = −2,� = 2 , �0 = −2 with wave velocity c = −2 throughout the inter-
vals0 ≤ x ≤ 10 , 0 ≤ t ≤ 10 as shown in the 3D graph in Fig.  3a; the 2D graph for t = 6 
is given in Fig. 3b and the contour graph in Fig. 3c. The 3D, 2D, and contour plots of the 
real portion of the solution (22) are displayed the periodic soliton with small wavelength 

Fig. 2  Graph presenting the solution (22)’s absolute part

Fig. 3  Graph displaying the solution (22)’s real part
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Fig. 4  Graph displaying the solution (22)’s real part

Fig. 5  Graph displaying the solution (22)’s real part

Fig. 6  Graph displaying the solution (22)’s imaginary part

Fig. 7  Graph displaying the solution (22)’s imaginary part
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or large frequency, shown in Fig. 4 for the fractional order � = 0.99 and� = 0.99 , assum-
ing other parameters remain unchanged. It is compatible with the classical solution i.e.; 
the fractional form solution is converted to the classical form solution (Zafar et al. 2021a). 
Assuming that others are the same, the breathing type soliton for c = 1.2 of the real part 
of solution (22) is constructed, and shown in Fig. 5. The imaginary part of the solution 
(22) illustrates the parabolic soliton (Hashemi and Baleanu 2020) forn1 = 2.16,n2 = −3.72

,d = −3.24,h = 3 , E = −2.24,� = −2.24,� = −2.24,k = 0.05,s = −1.7,� = .83,�0 = −4.49

,� = 0.67 , � = 0.61 with travelling wave velocity c = −0.2 within the same intervals as 
shown in Fig. 6. Further, Fig. 6b: 2D plot is attained fort = 3.25 . The periodic type soliton 
is illustrated forc = 1.31 , � = 0.9 and � = 0.9 of the imaginary part of solution (22) as pre-
sented in Fig. 7. By increasing the value of frequency k, we get multi-periodic soliton of 
the imaginary part of the solution (22) that is not presented here for brevity. In particular, 
Fig.  8 depicts the singular periodic soliton formed by the real part of the solution (24) 
forn1 = −0.41,n2 = −0.61,d = −0.52,� = 0.8,� = 0.79,

Fig. 8  Graph portraying the solution (24)’s real part

Fig. 9  Graph displaying the solution (24)’s imaginary part

Fig. 10  Graph displaying the solution (28)’s real part
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Fig. 11  Graph displaying the solution (28)’s imaginary part

Fig. 12  Graph displaying the solution (30)’s absolute part

Fig. 13  Graph displaying the solution (30)’s absolute part

Fig. 14  Graph displaying the solution (30)’s absolute part
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For the sake of brevity and to avoid the duplication of analogous solitons, other 
derived solutions to this equation generate identical solitons for varying values of the 
free parameters, which are not displayed. The soliton changes form primarily depends 
on the values of fractional order, phase shift, wave number, and velocity as shown in the 
previous illustration of the soliton profiles. The other coefficients of this solution to the 
equation have no effect on the wave’s speed in this case, but the Bernoulli parameters d 
and h , as well as the integrating constants, often do (Figs. 9, 10, 11, 12, 13, 14, 15, 16, 
17).

Fig. 15  Graph displaying the solution (30)’s real part

Fig. 16  Graph displaying the solution (30)’s real part

Fig. 17  Graph displaying the solution (30)’s imaginary part



Optical soliton solutions to the fractional nonlinear Fokas–…

1 3

Page 19 of 23 764

Fig. 18  Graph displaying the solution (45)’s absolute part

Fig. 19  Graph displaying the solution (45)’s real part

Fig. 20  Graph displaying the solution (45)’s real part

Fig. 21  Graph displaying the solution (45)’s real part
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6.2  The sketch and explanation of the solutions to the fractional paraxial 
Schrödinger equation

The graphical representations of the instigated solutions to the fractional nonlinear paraxial 
Schrödinger equation for various parametric variables are discussed in this section. Real 
and imagined parts combine with the solutions that have been established.

The modulus of the solution (39) represents the kink type soliton for � = 1.4 , E = −5 , 
d = −0.28 , h = −5 , z = 1 , s = −0.28 , � = 0.85 , � = 0.85 within intervals 0 ≤ y ≤ 10 , 
0 ≤ t ≤ 10 and displayed in Fig.  18. Also, 18b: 2D plot is portrayed for t = 3.45 . By 
varying the values of � , various kink shape soliton could be drawn and by altering the 
values of E , several singular shape solitons can be illustrated. For brevity, the figure 
is not illustrated. The periodic soliton is depicted of the real part of the solution (39) 
for E = −3.59 , d = −0.46 , h = −.8 , z = 1 , s = −0.28 , � = 0.775 , � = 0.775 k = −2 with 
travelling wave velocity � = −1.18 throughout the intervals 0 ≤ y ≤ 10 , 0 ≤ t ≤ 10 and 
shown in Fig. 19. Further, 19b: 2D graph is displayed for t = 3.45 . Simply, increasing 
the value of the travelling wave velocity � from −1.18 to −0.26 , the periodic soliton 
is attained of the real part of (39) shown in Fig. 20, others shapes are same as Fig. 19. 

Fig. 22  Graph displaying the solution (45)’s imaginary part

Fig. 23  Graph displaying the solution (45)’s imaginary part

Fig. 24  Graph displaying the solution (45)’s imaginary part
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Figure 21 represents periodic soliton with large frequency of the real part of the solution 
(39) for � = 1.5 preserving the monotony of others. The compacton like soliton is illus-
trated of the imaginary part of the solution (39) for k = −.62 preserving the sameness of 
others as Fig. 19 as depicted in Fig. 22. Further, the 2D plot is displayed for t = 5.02 . 
The compacton soliton for k = 0.14 and the periodic bell shape soliton for k = 1.5 is 
depicted of the imaginary part of the solution (39) respectively as portrayed in Figs. 23 
and 24.The 2D graph is attained at t = 3.45 as shown in Figs. 23b and 24b respectively.

Other resulting solutions to this equation produce similar solitons for varied values 
of the free parameters, which have been omitted strategically. As demonstrated in the 
preceding representation of the soliton profiles, the values of fractional order, phase 
shift, and wave velocity influence how the soliton changes form. In this context, the 
remaining coefficients in this equation’s solution have no influence on the waves speed, 
but the Bernoulli coefficients d and h , as well as E contribute.

7  Conclusions

In this article, the optical soliton solutions to the space–time fractional nonlinear 
Fokas–Lenells and the space–time fractional Schrödinger equations, which are of inter-
est to physicists, mathematicians, and engineers, have been successfully originated 
through the IBSEF approach. The Bernoulli equation of order 3 and 4 has effectively been 
exploited for the considered models. The portrayal of the solutions comprises the anti-
kink, kink, singular-periodic, periodic, breather, singular kink type soliton, dark-bright 
soliton, and some other distinctive solitons that may be used in research on nonlinear 
optics, plasmas, photonics, condensed matter physics, etc. We have instigated Maple soft-
ware package to compute the related computational operations and Wolfram Mathematica 
has been used to portray the 2D, density or contour and 3D surfaces. All the solutions 
obtained in this article for suitable parameter values are useful to characterize the physi-
cal characteristics of the phenomena. This research demonstrates that the IBSEF approach 
is effective, straightforward, and rationally capable and can be used to establish optical 
soliton solutions to other fractional nonlinear Schrödinger type equations in optics, quan-
tum physics, and engineering.
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