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Abstract
In an elastic rod the longitudinal deformation wave propagation is modeled by the nonlin-
ear partial differential equation known as the Pochhammer-Chree equation. In this article, 
a conformable fractional order generalized Pochhammer-Chree equation with the n order 
term is studied for constructing some new analytical solutions by using a proficient ana-
lytical technique. The solitary wave solutions are established by using the Exp-function 
method for the presented model equation describing the longitudinal vibration of the mate-
rial in a thin, straight cylindrical rod. By considering the different parameter conditions, 
the existence of different kinds of solitary wave solutions is determined which are also 
presented in the form of 3D plots, contour plots, and 2D plots to visualize and explicate the 
physical structure of the problem.

Keywords  Fractional order generalized Pochhammer-Chree equation · Fractional wave 
transform · Conformable derivative · Exp-function method · Solitary wave solution

1  Introduction

The study of the exact solutions of nonlinear fractional partial differential equations 
(FPDEs) has become a wide area of research for many mathematicians. The nonlinear 
FPDEs have been used in the modeling of complex nonlinear aspects that defines some of 
our real-life problems in mathematical physics, engineering, distinct sciences, and other 
sciences including medical imaging, optical fiber, plasma physics, fluid dynamics, hydro-
dynamics, and many more. (Tarasov 2011; Das 2011; El-Nabulsi 2018, 2019; Hajipour 
et al. 2018; Zulfiqar et al. 2022; Aniqa and Ahmad 2021).

Closed-form analytical solutions make a substantial contribution to easily, more suitably 
and clearly expressing these phenomena. Different numerical and analytical methods have 
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been applied to investigate the behavior of these models (Baleanu et al. 2021; Zulfiqar and 
Ahmad 2020; Zulfiqar et al. 2019; Zulfiqar and Ahmad 2021; Rani et al. 2021; Akbar et al. 
2019; Goswami et al. 2019).

In an elastic rod, the longitudinal deformation wave propagation is modeled by the non-
linear partial differential equation known as Pochhammer-Chree (PC) equation and pre-
sented by Clarkson et al. as follows (Clarkson et al. 1986).

where u(x, t) represents the longitudinal displacement at time t, of a material point origi-
nally lying at the point x. Clarkson et al. (Clarkson et al. 1986) resolve the Eq. (1) by con-
sidering n = 3 or 5 for studying the interactions of solitary waves in elastic rods. Soliton-
type solutions have been obtained by Bogolubsky (Bogolubsky 1977) by considering n = 2, 
3, 5. Exact solutions of Eq.  (1) have been acquired by Triki et al. (Triki et al. 2015) for 
n = 6. The generalized Pochhammer-Chree equation is given by (Parand and Rad 2010; 
Yokus et al. 2021).

where μ, β, and ν are constants. Many authors studied Eq.  (2) for acquiring a variety of 
solutions by considering different analytical and numerical techniques. Explicit kink shape 
and bell shape solitary wave solutions of the GPC equation have been studied by Weiguo, 
and Wenxiu (Weiguo and Wenxiu 1999). The GPC equation has been studied for a class 
of nonlinear perturbation for obtaining blow-up solutions (Liu 1996). Different kinds of 
traveling wave solutions, namely kink shape, bell shape, and periodic solutions have been 
obtained by using two different analytical techniques (Wazwaz 2008). Li, & Zhang (Li and 
Zhang 2002) studied the bifurcation of kink wave and solitary wave for the GPC equa-
tion. Explicit power series solutions for the PC equation have been obtained by using the 
decomposition method (Shawagfeh and Kaya 2004). The first integral method has been 
utilized to get complex traveling wave solutions, complex rational function solutions, and 
complex periodic solutions for the GPC equation (El-Ganaini 2011). Mohebbi (Mohebbi 
2012) resolves the GPC equation to get the solitary wave solutions by using the discrete 
Fourier transform. Exp-function method has been applied to acquire some exact solitary 
wave solutions for the GPC equation (Parand and Rad 2010). Exact solutions including sin-
gular, kink shape, and periodic solutions have been obtained by using different analytical 
techniques (Zuo 2010; Zhang 2005; Zhang et al. 2010).

This paper is concerned with the conformable space–time fractional order GPC equa-
tion given by

where the exponent is the power-law nonlinearity parameter. To the knowledge of the 
author, the fractional order GPC equation has not been studied before in the literature. The 
Exp-function method has been used before for the GPC equation but not for the non-inte-
ger order (Parand and Rad 2010). Therefore, the study of the fractional order GPC equation 
is very reasonable for describing the physical functioning of a longitudinal wave in elastic 
rods.

The Exp-function method was introduced by J. H. He and Wu (He and Wu 2006; He 
2013). This technique is one of the competent techniques to resolve the nonlinear partial 

(1)utt − uttxx −
1

n
(un)xx = 0,

(2)utt − uttxx −
(
�u + �un+1 + �u2n+1

)
xx
= 0, n ≥ 1,

(3)D2𝛼
t
u − D4𝛼

ttxx
u − D2𝛼

x

(
𝜇u + 𝛽un+1 + 𝜈u2n+1

)
= 0, n ≥ 1, 0 < 𝛼 ≤ 1,
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differential equations (PDEs). However, this technique performs an exceptional role in 
resolving the problems of fractional calculus. Many authors studied the FPDEs by utilizing 
this technique. Exp- function has been used to resolve fractional modified Camassa-Holm 
equation (Zulfiqar and Ahmad 2020), generalized KdV and the modified KdV equations 
(Heris and Bagheri 2010), the Calogero-Bogoyavlenskii-Schiff equation (Ayub et al. 2017), 
fractional order Boussinesq-like equations (Rahmatullah et al. 2018), fractional modified 
unstable Schrödinger equation (Zulfiqar and Ahmad 2020), modified Zakharov Kuznetsov 
equation (Mohyud-Din et  al. 2010), improved Boussinesq equation (Abdou et  al. 2007), 
nonlinear evolution equations (El-Wakil et al. 2007), and for many other nonlinear FPDs 
(Guner and Bekir 2017; Yaslan and Girgin 2019; Guner and Bekir 2017).

The objective of this article is to study the fractional order GPC equation with the n 
order term for constructing some new analytical solitary wave solutions by using a profi-
cient Exp-function method in the sense of conformable fractional derivative. Khalil pro-
posed a thrilling definition of derivative known as conformable spinoff (Khalil 2014) along 
with a set of properties. Moreover, the conformable by-product satisfies all the properties 
of the same old calculus, for example, the chain rule. The conformable derivative of g hav-
ing order α for a function g(x) is defined by:

2 � The summary of method

Consider the general nonlinear FPDE

The fractional traveling wave transformation is given by

where and r are non-zero arbitrary constants. Inserting Eq. (6) into Eq. (5), yields

Suppose the solitary wave solution as

where q, s, g and h are constants. To compare the specific terms which are further solved 
for the required set of parameters.

3 � Solution of problem

Substituting the transformation in Eq. (6) into Eq. (3), we get

(4)(D𝛼g)(x) = lim
𝜀→0

g
(
x + 𝜀x1−𝛼

)
− g(x)

𝜀
, x > 0, 𝛼 ∈ (0, 1).

(5)R
(
u, ux, ut,D

𝛼

t
, ...

)
= 0, 0 < 𝛼 ≤ 1.

(6)u(x, t) = U(�), � = k
(
x�

�
− r

t�

�

)
,

(7)P
(
U,U�,U��,U���...

)
= 0.

(8)U(�) =

∑s

m=−q
am exp [m�]

∑h

l=−g
bl exp [l�]

,
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By using the transformation

By using the homogeneous balance principle, we get r = s = g = h = 1 and then 
Eq. (11) reduces to

By substituting Eq. (12) in Eq. (11) and equating the coefficients to zero with the help of 
symbolic computation, we have

(9)k2
(
r2 − �

)
U − k4r2U�� − �k2Un+1 − �k2U2n+1 = 0.

(10)Un = V .

(11)k2n2
(
r2 − �

)
V2 − k4r2nVV �� − k4r2(1 − n)V �2 − �k2n2V3 − �k2n2V4 = 0.

(12)V(�) = Un(�) =
a−1 exp [−�] + a0 + a1 exp [�]

b−1 exp [−�] + b0 + b1 exp [�]
.

A0 = −a2
−1
n2k2

(
a2
−1
� + �a−1b−1 − b2

−1

(
r2 − �

))
= 0,

A1 = −nk2a−1

⎛⎜⎜⎝

��
�b0 + 4�a0

�
a2
−1

− 2b−1

�
−
3�a0

2
+ b0

�
r2 − �

��
a−1 − 2b2

−1
a0
�
r2 − �

��
n

+k2b−1r
2
�
a−1b0 − a0b−1

�
⎞⎟⎟⎠
= 0,

A2 = −4k2a−1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎝

�
�b1

4
+ �a1

�
a3
−1

+

⎛⎜⎜⎜⎝

3�a1b−1

4
+

3�a2
0

2
+

3�a0b0

4
−

�
r2 − �

��
b−1b1 +

b2
0

2

�

2

⎞⎟⎟⎟⎠
a2
−1

−
1

2

�
b−1

�
b−1

�
r2 − �

�
a1 + 2

�
−
3�a0

4
+ b0

�
r2 − �

��
a0

�
a−1

�
−

a2
0
b2
−1

�
r2 − �

�
4

n2

⎞
⎟⎟⎟⎟⎟⎟⎠

+k2a−1b−1r
2
�
a−1b1 − a1b−1

�
n −

k2r2
�
a−1b0 − a0b−1

�2
4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0,

A3 = −4k2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎝

�
3�b0

4
+ 3�a0

�
a1 −

�
−

3�a0

2
+ b0

�
r2 − �

��
b1

2

⎞⎟⎟⎟⎠
a2
−1

+

�
−b−1

�
−
3�a0

2
+ b0

�
r2 − �

��
a1

�
−

�
−�a2

0
−

3�a0b0

4
+
�
r2 − �

��
b−1b1 +

b2
0

2

�
a0

�
a−1

−
1

2

�
b−1a0

�
b−1

�
r2 − �

�
a1 + a0

�
−
�a0

2
+ b0

�
r2 − �

����
n2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+
1

4
k2r2

�
a2
−1
b0b1 +

�
−6a1b−1b0 + a0

�
6b−1b1 − b2

0

��
a−1 − a0a1b

2

−1
+ a2

0
b−1b0

�
n

−k2r2
�
a−1b0 − a0b−1

��
a−1b1 − a1b−1

�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0,
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By solving these equations we acquire the following form of solutions.

Case 1 

A4 = 4k2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
3�a2

1

2
+

3�a1b1

4
−

b2
1

�
r2 − �

�

4

�
a2
−1

+

⎛
⎜⎜⎜⎜⎝

3�a2
1
b−1

4
+ a1

⎛
⎜⎜⎜⎜⎝

3�a2
0
+

3�a0b0

2

−

�
r2 − �

��
b−1b1 +

b2
0

2

�
⎞
⎟⎟⎟⎟⎠
−

�
−
3�a0

4
+ b0

�
r2 − �

��
a0b1

⎞
⎟⎟⎟⎟⎠
a−1

−
b2
−1

�
r2 − �

�
a2
1

4
−

�
−
3�a0

4
+ b0

�
r2 − �

��
b−1a0a1

−
1

2

�
−
�a2

0

2
−

�a0b0

2
+

�
r2 − �

���
b−1b1 +

b2
0

2

�
a2
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n2 − k2r2

⎛
⎜⎜⎜⎝

a−1a1b
2
0

−b−1b1a
2
0

⎞
⎟⎟⎟⎠
n

−

⎛⎜⎜⎜⎜⎝

a2
−1

b2
1
+

��
−2b−1b1 −

b2
0

2

�
a1 +

b1a0b0

2

�
a−1+

b−1

�
a2
1
b−1 +

1

2
a0a1b0 −

1

2
b1a

2
0

�

⎞⎟⎟⎟⎟⎠
r2k2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0,

A5 = −4k2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2

��
3�b0

4
+ 3�a0

�
a2
1
−

�
−
3�a0

2
+ b0

�
r2 − �

��
b1a1 −

1

2

�
a0b

2

1

�
r2 − �

���
a−1

−

�
b−1

�
−
3�a0

2
+ b0

�
r2 − �

���
− −�a2

0
−

3�a0b0

4
+
�
r2 − �

��
b−1b1 +

b2
0

2

�
a0a1

−
1

2

�
b1a

2

0

�
−
�a0

2
+ b0

�
r2 − �

���

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

n2

+
1

2
− 3k2r2

�
b1

�
a1b0 +

a0b1

6

�
a−1 −

a2
1
b−1b0

6
− a0

�
b−1b1 −

b2
0

6

�
a1 −

a2
0
b0b1

6

�
n

+k2r2
�
−a0b1 + a1b0

��
a−1b1 − a1b−1

�
= 0,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

A7 = −k2
⎛⎜⎜⎝

��
�b0 + 4�a0

�
a2
1
− 2

�
−
3�a0

2
+ b0

�
r2 − �

��
b1a1 − 2a0b

2
1

�
r2 − �

��
n

−nk2a1b1r
2
�
−a0b1 + a1b0

�
⎞⎟⎟⎠
= 0,

(13)A8 = −a2
1
n2k2

(
a2
1
� + �a1b1 − b2

1

(
r2 − �

))
= 0.

(14)

� = 0,� = −
r2
(
k2 − 2

)
2

, n = 1, � =
b2
−1
k2r2

2a2
−1

, a−1 = a−1, a0 = a0, a1 =
a2
−1
b2
0
− a2

0
b2
−1

4a−1b
2
−1

,

b−1 = b−1, b0 = b0, b1 =
a2
−1
b2
0
− a2

0
b2
−1

4a−1b
2
−1

.

(15)u1(x, t) =

⎛
⎜⎜⎜⎝

a−1 exp
�
−k

�
x�

�
−

rt�

�

��
+ a0 −

a2
−1
b2
0
−a2

0
b2
−1

4a−1b
2
−1

exp
�
k
�

x�

�
−

rt�

�

��

b−1 exp
�
−k

�
x�

�
−

rt�

�

��
+ b0 +

a2
−1
b2
0
−a2

0
b2
−1

4a−1b
2
−1

exp
�
k
�

x�

�
−

rt�

�

��
⎞
⎟⎟⎟⎠

1

n

.
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Case 2 

Case 3 

Case 4 

Case 5 

(16)
� = 0, � = −

r2
(
k2 − 2

)
2

, n = 1, � =
b2
1
k2r2

2a2
1

, a−1 = 0, a0 = a0, a1 = a1,

b−1 = 0, b0 = −
a0b1

a1
, b1 = b1.

(17)u2(x, t) =

⎛
⎜⎜⎜⎝

a0 + a1 exp
�
k
�

x�

�
−

rt�

�

��

−
a0b1

a1
+ b1 exp

�
k
�

x�

�
−

rt�

�

��
⎞
⎟⎟⎟⎠

1

n

.

(18)

� = 0,� =
r2
(
k2 + 4

)
4

, n = 2, � = −
b2
1
k2r2

4a2
1

, a−1 = 0, a0 = a0, a1 = a1,

b−1 = −
a0
(
a0b1 − a1b0

)

a2
1

, b0 = b0, b1 = b1.

(19)u3(x, t) =

⎛
⎜⎜⎜⎝

a0 + a1 exp
�
k
�

x�

�
−

rt�

�

��

−
a0(a0b1−a1b0)

a2
1

exp
�
−k

�
x�

�
−

rt�

�

��
+ b0 + b1 exp

�
k
�

x�

�
−

rt�

�

��
⎞
⎟⎟⎟⎠

1

n

.

(20)
� = 0,� =

r2
(
k2 + 4

)
4

, n = 2, � = 0, a−1 =
a2
0

4a1
, a0 = a0, a1 = a1,

b−1 = 0, b0 = b0, b1 = 0.

(21)u4(x, t) =

⎛
⎜⎜⎜⎝

a2
0

4a1
exp

�
−k

�
x�

�
−

rt�

�

��
+ a0 + a1 exp

�
k
�

x�

�
−

rt�

�

��

b0

⎞
⎟⎟⎟⎠

1

n

.

(22)
� = 0,� = −r2

(
2k2 − 1

)
, n = 1, � =

2b2
1
k2r2

a2
1

, a−1 = a−1, a0 = 0, a1 = a1,

b−1 = −
a−1b1

a1
, b0 = 0, b1 = b1.

(23)u5(x, t) =

⎛
⎜⎜⎜⎝

a−1 exp
�
−k

�
x�

�
−

rt�

�

��
+ a1 exp

�
k
�

x�

�
−

rt�

�

��

−
a−1b1

a1
exp

�
−k

�
x�

�
−

rt�

�

��
+ b1 exp

�
k
�

x�

�
−

rt�

�

��
⎞
⎟⎟⎟⎠

1

n

.
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Case 6 

Case 7 

Case 8 

Case 9 

(24)

� = �,� = �, n = 1, � = �, a−1 = a−1, a0 = a0, a1 = a1, b−1 =
a−1b1

a1
, b0 =

a0b1

a1
, b1 = b1.

(25)u6(x, t) =

⎛
⎜⎜⎜⎝

a−1 exp
�
−k

�
x�

�
−

rt�

�

��
+ a0 + a1 exp

�
k
�

x�

�
−

rt�

�

��

a−1b1

a1
exp

�
−k

�
x�

�
−

rt�

�

��
+

a0b1

a1
+ b1 exp

�
k
�

x�

�
−

rt�

�

��
⎞
⎟⎟⎟⎠

1

n

.

(26)

� = �,� = �, n = n, � = −
b−1

(
−b−1r

2 + �a−1 + b−1�
)

a2
−1

, a−1 = a−1, a0 = a0, a1 = 0,

b−1 = b−1, b0 =
a0b−1

a−1
, b1 = 0.

(27)u7(x, t) =

⎛
⎜⎜⎜⎝

a−1 exp
�
−k

�
x�

�
−

rt�

�

��
+ a0

b−1 exp
�
−k

�
x�

�
−

rt�

�

��
+

a0b−1

a−1

⎞
⎟⎟⎟⎠

1

n

.

(28)
� = �,� = �, n = n, � = −

b1
(
−b1r

2 + �a1 + b1�
)

a2
1

, a−1 = a−1, a0 = a0,

a1 = a1, b−1 =
a−1b1

a1
, b0 =

a0b1

a1
, b1 = b1.

(29)u8(x, t) =

⎛
⎜⎜⎜⎝

a−1 exp
�
−k

�
x�

�
−

rt�

�

��
+ a0 + a1 exp

�
k
�

x�

�
−

rt�

�

��

a−1b1

a1
exp

�
−k

�
x�

�
−

rt�

�

��
+

a0b1

a1
+ b1 exp

�
k
�

x�

�
−

rt�

�

��
⎞
⎟⎟⎟⎠

1

n

.

(30)

� =
r2k2

(
b1a−1n − b0na0 + 2a−1b1 − 2a0b0

)

n2a2
0

,� =
r2
(
k2 + n2

)
n2

, n = n,

� = −

(
a−1b1 − a0b0

)
r2k2

(
b1a−1n − b0na0 + a−1b1 − a0b0

)

a4
0
n2

, a−1 = a−1, a0 = a0,

a1 = 0, b−1 = −
a−1

(
a−1b1 − a0b0

)

a2
0

, b0 = b0, b1 = b1.

(31)u9(x, t) =

⎛
⎜⎜⎜⎝

a−1 exp
�
−k

�
x�

�
−

rt�

�

��
+ a0

−
a−1(a−1b1−a0b0)

a2
0

exp
�
−k

�
x�

�
−

rt�

�

��
+ b0 + b1 exp

�
k
�

x�

�
−

rt�

�

��
⎞
⎟⎟⎟⎠

1

n

.
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Case 10 

4 � Results and discussion

This article is about finding the solitary wave solutions for fractional order GPC equation 
with the n order term by the implementation of the Exp-function method with the help of 
a conformable derivative. Because of its wide range of applications, the fractional order 
GPC equation is the most extensively used nonlinear model in applied research. The pre-
sented model equation describes the longitudinal vibration of the material in a thin, straight 
cylindrical rod. In the literature, many authors studied the PC equation and GPC equation 
for integer order. Exp-function method has been applied to resolve the GPC equation for 
integer-order as given in Parand and Rad (2010) but this paper presents only numerical 
results no graphics of the problem have been discussed. For the comparison, we consider 
a recent article (Yokus et al. 2021) in which the GPC equation with n order term has been 
resolved by using an analytical technique. By comparing graphs for integer-order there 
exist similarity to some extent which shows that our results are correct and new for non-
integer as well as integer order.

By considering the different parameter conditions, the existence of differ-
ent kinds of solitary wave solutions are determined which are also presented 
in the form of 3D plots, contour plots, and 2D plots as given in Figs.  (1–10) 
at � = 0.5, � = 0.7 and � = 1. Figure  1 indicates the solution of u1(x, t) for  
a−1 =

1

2
, a0 =

2

3
, b−1 =

1

2
, b0 =

1

3
, k = 0.75. Figure  2 indicates the solution of u2(x, t) 

at a1 = 1, a0 =
2

3
, b1 = −

1

5
, b0 =

1

3
, k = 0.5. Figure  3 reveals the solution of u3(x, t) for 

a1 = 1, a0 =
2

3
, b1 = −

1

5
, b0 =

1

3
, k = 0.75, r = 1.25. Figure  4 indicates the solution of 

(32)

� =

(
r2k2 − 2r2 + 2�

)
b0
(
r2k2 + r2 − �

)

a0
(
r2k2 − r2 + �

) ,� = �, n = 1, � =

(
r2k2 − 2r2 + 2�

)
b2
0(

r2k2 + r2 − �
)2

a2
0

(
r2k2 − r2 + �

)2 ,

a−1 =
b0a0

(
r2k2 − 2r2 + 2�

)

8b1
(
2r2k2 − r2 + �

) , a0 = a0, a1 = −
b1a0

(
2r2k2 − r2 + �

)

b0
(
r2k2 + r2 − �

) ,

b−1 = −
b2
0

(
r2k2 − 2r2 + 2�

)(
r2k2 − r2 + �

)

8b1
(
2r2k2 − r2 + �

)2 , b0 = b0, b1 = b1.

(33)

u10(x, t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0a0
�
r2k2 − 2r2 + 2�

�

8b1
�
2r2k2 − r2 + �

� exp
�
−k

�
x�

�
−

rt�

�

��
+ a0

−
b1a0

�
2r2k2 − r2 + �

�

b0
�
r2k2 + r2 − �

� exp
�
−k

�
x�

�
−

rt�

�

��

−
b2
0

�
r2k2 − 2r2 + 2�

��
r2k2 − r2 + �

�

8b1
�
2r2k2 − r2 + �

�2 exp
�
−k

�
x�

�
−

rt�

�

��
+ b0

+b1 exp
�
k
�
x�

�
−

rt�

�

��

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

n

.
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Fig. 1   Associated graphs of u1(x, t) in Eq. (15) obtained using the Exp-function method: a, b, c 3D plots: d, 
e, f demonstrate the contour comparison: g specifies the comparison in the form of a 2D plot
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Fig. 2   Associated graph of u2(x, t) in Eq. (17) obtained using the Exp-function method: a, b, c 3D plots: d, 
e, f illustrate the contour comparison: g indicates the comparison in the form of a 2D plot
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Fig. 3   Associated grap of u3(x, t) in Eq. (19) obtained using Exp-function method: a, b, c 3D plots: d, e, f 
illustrate the contour comparison: g indicates the comparison in the form of 2D plot
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Fig. 4   Associated graphs in Eq. (21) obtained using the Exp-function method: a, b, c 3D plots: d, e, f illus-
trate the contour comparison: g indicates the comparison in the form of a 2D plot
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Fig. 5   Associated graphs of u5(x, t) in Eq. (23) obtained using the Exp-function method: a, b, c 3D plots: d, 
e, f illustrate the contour comparison: g indicates the comparison in the form of a 2D plot
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Fig. 6   Associated graphs of u6(x, t) in Eq. (25) obtained using the Exp-function method: a, b, c 3D plots: d, 
e, f illustrate the contour comparison: g indicates the comparison in the form of a 2D plot
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Fig. 7   Associated graphs of u7(x, t) in Eq. (27) obtained using the Exp-function method: a,b, c 3D plots: d, 
e, f illustrate the contour comparison: g indicates the comparison in the forma of 2D plot
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Fig. 8   Associated graphs of u8(x, t) in Eq. (29) obtained using the Exp-function method: a, b, c 3D plots: d, 
e, f illustrate the contour comparison: g indicates the comparison in the form of a 2D plot
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Fig. 9   Associated graphs of u9(x, t) in Eq. (31) obtained using the Exp-function method: a, b, c 3D plots: d, 
e, f illustrate the contour comparison: g indicates the comparison in the form of a 2D plot
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Fig. 10   Associated graphs of u10(x, t) in Eq. (32) obtained using the Exp-function method: a, b, c 3D plots: 
d, e, f illustrate the contour comparison: g indicates the comparison in the form of a 2D plot
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u4(x, t) for  a1 = 1, a0 =
2

3
, b0 =

2

3
, k = 0.75, r = 1.5. Figure 5 indicates the solution of u5(x, t) 

for a1 = 1, a−1 =
1

2
, b1 = −

1

5
, k = 0.5, r = 1.25. Figure  6 indicates the solution of u6(x, t) 

for  a−1 =
1

2
, a0 = −

2

3
, a1 = 1, b1 = −

1

5
, k = 0.5, r = 1.25. Figure  7 indicates the solution 

of u7(x, t) for  a−1 =
1

2
, a0 =

2

3
, b−1 =

1

2
, k = 0.5, r = 1.25. Figure 8 indicates the solution 

of u8(x, t) for  a−1 = 1

2
, a0 =

2

3
, a1 = −0.1, b1 = −

1

5
, k = 0.5, r = 1.25, n = 1. Figure 9 indicates the solu-

tion of u9(x, t) for  a−1 =
1

2
, a0 =

2

3
, b1 = −

1

5
, b0 =

1

3
, k = 0.5, r = 1.25, n = 1. Figure  10 

indicates the solution of u10(x, t) for a0 =
2

3
, b1 = −

1

5
, b0 =

1

3
, k = 0.5, r = 1.25,� = 1.2.

This section concludes that the results for solving the presented model are investigated 
for various values of α to prove the effectiveness and validity of the proposed algorithm. 
The attained results are more generic, novel, and have not been previously described in the 
literature.

5 � Conclusion

The main concern of the presented article is to obtain the new analytical solutions in the 
form of solitary waves by considering the fractional order generalized Pochhammer-Chree 
equation. In this work, we efficaciously discover the solitary wave solutions of the frac-
tional order GPC equation with the n order term by applying the Exp-function method with 
fractional traveling wave transform by the use of conformable fractional derivative. The 
fractional wave transformation is used for the conversion of the presented fractional order 
nonlinear partial differential equation into an ordinary differential equation. The obtained 
results are presented in the form of 3D plots, contour plots, and 2D plots. All the acquired 
results are new and have not been explored before in the literature. These new results have 
many applications in physics and many other areas of physical science. The obtained 
results also show the stability of the applied method and elucidate that this technique is 
direct, simple, competent, and maintains the exactness of the analytically computed results. 
Maple software is used for performing computational work.
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