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Abstract
In this article, we focus on securing the different soliton and other solutions in the magneto 
electro-elastic (MEE) circular rod. The abundant solutions of the nonlinear longitudinal 
wave equation (NLWE) with dispersion caused by the transverse Poisson’s effect in a long 
MEE circular rod are obtained using the modified Sardar sub-equation method (MSSEM). 
The study of optical solitons’ nonlinear dynamics in MEE media (such as sensors, actua-
tors, and controllers) has piqued researchers’ interest. The wave structures in different 
kinds of solitons, such as bright, dark, singular, bright-dark, bright-singular, complex, and 
combined, are extracted. In addition, hyperbolic, trigonometric, exponential type and peri-
odic solutions are guaranteed. Nonlinear partial differential equations (NLPDEs) are well-
explained by the applied technique since it offers previously derived solutions and also 
extracts new exact solutions by incorporating the results of multiple procedures. Moreo-
ver, in explaining the physical representation of certain solutions, we also plot 3D, 2D, 
and contour graphs using the corresponding parameter values. This paper’s findings can 
enhance the nonlinear dynamical behavior of a given system and demonstrate the efficacy 
of the employed methodology. We believe that a large number of specialists in engineering 
models will benefit from this research. The results indicate that the employed algorithm is 
effective, swift, concise, and applicable to complex systems.
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1 Introduction

Nonlinearity is an enticing aspect of nature, and a number of scientists see nonlinear 
science as the most critical frontier for gaining a fundamental knowledge of the uni-
verse. The exploration of many classes of nonlinear partial differential equations 
(NLPDE) is crucial for mathematical modeling of complex processes that vary over 
time. From the mid of the 18th century, different researchers have worked to formulate 
the complicated physical phenomena into NLPDEs (Iqbal et  al. 2018; Lu et  al. 2018; 
Iqbal et al. 2018; Seadawy et al. 2019; Bilal et al. 2021; Younas et al. 2021). Various 
nonlinear physical phenomena such as fluid mechanics, quantum mechanics, nonlinear 
optics, epidemiology, neural networks, thermodynamics, plasma wave, solid-state phys-
ics, etc., are obtained in different mathematical equations (Younas et  al. 2022; Sead-
awy et al. 2019; Iqbal et al. 2019; Seadawy et al. 2020; Bulut et al. 2018; Younas and 
Ren 2021). The nonlinear partial differential equations(PDEs) are used to express these 
phenomena. Looking for the exact solution of nonlinear PDEs has significance in the 
theory of nonlinear problems. The physical system described by nonlinear PDEs can 
be understood more clearly if the solution and properties of their corresponding equa-
tions are analyzed . There are various types of the solutions such as solitary wave solu-
tions and solitons. The solitary wave phenomena and soliton theory is linked with the 
above-mentioned fields. So, gaining the soliton solutions of the associated PDEs have 
become a very important chore to be undertaken (Guo et  al. 2018; Iqbal et  al. 2020; 
Seadawy et al. 2020, 2019; Seadawy and Iqbal 2020; Younas et al. 2022). Using sym-
bolic computations such as Mathematica, Matlab, and Maple, a number of potent tech-
niques have been developed for securing the different exact soliton solutions of NLP-
DEs. Every technique has its own flaws and criteria for application to governing models 
when discussing precise solutions (Bulut et  al. 2017; Khater et  al. 2018; Younas and 
Younis 2020; Younis et  al. 2017; Lu et al. 2018; Gao et al. 2020, 2020; Younis et  al. 
2018; Rizvi and Ahmad 2020)

Furthermore, the study of soliton propagation through MEE media includes as one of 
its fascinating topics the theory of optical solitons. A soliton is any optical field that does 
not change during propagation due to a delicate balance of nonlinear and linear effects 
in the medium. Solitons can be used in a variety of tools, including sensors, actuators, 
controllers, optical couplers, magneto-optic waveguides, and metamaterials, etc. The the-
ory of optical solitons has drawn the attention of researchers and the scientific community 
because it is an active research area in the fields of telecommunication engineering and 
mathematical physics. To put it another way, the shape of solitons is preserved even when 
they travel over long distances without scattering. It is essential, when studying these equa-
tions, to construct soliton solutions in order to comprehend their behaviour and the theory 
of solitons is an ever-changing field (Nawaz et al. 2019; Eslami and Neirameh 2018).

According to an exhaustive review of the published literature, the MSSEM (Akiny-
emi et al. 2022) has not been applied to the MEE circular rod. As a result, we are con-
centrating on utilizing this integrated strategy to identify a variety of solutions. This 
technique begins by establishing some basic connections between NLPDEs and other 
simple NLODEs. Using simple solutions and solvable ODEs, it is easy to construct dif-
ferent types of traveling wave solutions for some complex NLPDEs. This is the fun-
damental principle underlying the method being utilized. This technique enabled us to 
obtain a large number of new soliton solutions in a single step and also provided a struc-
ture for organizing the obtained solutions.
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The arrangement of the article is as follows: Description of the proposed method in Sect. 2, 
and the governing equation in Sect. 3, while the utilization of the methods in Sect. 4, while 
discussion in Sect. 5, lastly, the conclusion in Sect. 6.

2  Description of the proposed method (Akinyemi et al. 2022)

In this section, we discuss the main steps of the applied method. Assume a NLPDE with the 
following definition:

where Φ = Φ(x, t) is an unknown function. For solving the Eq. (1), we proceed by consid-
ering the following hypothesis

 where � is the wave number and � is the velocity. On using Eqs. (1) and (2) together, the 
following ODE is obtained

where � is a polynomial of � and its derivatives. While the superscripts indicate ordinary 
derivatives w.r.t to �.

Consider the solution of Eq. (3) is represented as:

where Ai (0 ≤ i ≤ m) are the constants that are found later, and R�

(�) satisfies the following 
equation

where � are real constants. Furthermore, the general solutions of Eq. (5) with � a constant 
are outlined as follows: ∙  1.   If 𝛾0 = 0, 𝛾1 > 0, and𝛾2 ≠ 0 , then

∙  2.  For constants �1 and �2 . If 𝛾0 = 0, 𝛾1 > 0 and �2 = 4�1�2 , then

∙  3.  If 𝛾0 =
𝛾2
1

4𝛾2
, 𝛾1 < 0 and 𝛾2 > 0 , with constants A1 , and A2 , then

(1)�(Φ,Φt,Φx,Φtt, �Φxt,Φxx,⋯) = 0,

(2)Φ = �(�), � = �(x − t�),

(3)�(�,��,���,����,⋯) = 0,

(4)Φ(�) = A0 +

m∑
i=0

AiR
i(�),

(5)(R
�

(�))2 = �0 + �2R(�)
2 + �2R(�)

4,

(6)R1(�) =

�
−
�1

�2
sech(

√
�1(� + �)),

(7)R2(�) =

�
�1

�2
csch(

√
�1(� + �)).

(8)R3(�) =
4�1

√
�1

(4�2
1
− �2) cosh(

√
�1(� + �0)) ± (4�2

1
+ �2) sinh(

√
�1(� + �0))

.
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∙  4.  If 𝛾0 = 0, 𝛾1 < 0 and �2 ≠ 0 , then

∙  5.  If 𝛾0 =
𝛾2
1

4𝛾2
, 𝛾1 > 0 and 𝛾2 > 0 , with A2

1
− A2

2
> 0 , then

(9)R4(�) =

√
−

�1

2�2
tanh

(√
−

�1

2�2
(� + �)

)
.

(10)R5(�) =

√
−

�1

2�2
coth

(√
−

�1

2�2
(� + �)

)
.

(11)R6(�) =

�
−

�1

2�2

�
tanh

√
−2�1(� + �) ± i sech(

√
−2�1(� + �)

�
.

(12)R7(�) =

√
−

�1

8�2

(
tanh

√
−�1

8
(� + �) + coth

√
−�1

8
(� + �)

)
.

(13)R8(�) =

�
−

�1

2�2

��
A2
1
+ A2

2
− A1 cosh(

√
−2�1(� + �))

A1 sinh(
√
−2�1(� + �)) + A2

�
.

(14)R9(�) =

�
−

�1

2�2

�
cosh(

√
−2�1(� + �))

sinh(
√
−2�1(� + �)) + i

�
.

(15)R10(�) =

�
−
�1

�2
sec(

√
�1(� + �)),

(16)R11(�) =

�
�1

�2
csc(

√
�1(� + �)).

(17)R12(�) =

√
�1

2�2
tan

(√
�1

2�2
(� + �)

)
.

(18)R13(�) =

√
�1

2�2
cot

(√
�1

2�2
(� + �)

)
.

(19)R14(�) =

�
�1

2�2

�
tan

√
2�1(� + �) ± sec(

√
2�1(� + �)

�
.

(20)R14(�) =

√
�1

8�2

(
tan

√
−�1

8
(� + �) − cot

√
�1

8
(� + �)

)
.
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 For more detail, see the reference (Rizvi and Ahmad 2020).

3  The governing model

Solid mechanics has paid a lot of attention to nonlinear elastic effects on solitary waves 
over the last two decades. MEE structures (such as sensors, actuators, etc.) are increasingly 
being used in various engineering fields, which has enticed a large amount of research 
interested in wave propagation in MEE media. Xue et al. (2011) recently derived a longi-
tudinal wave equation with dispersion caused by the transverse Poisson’s effect in a MEE 
circular rod, where �0 and Θ represent the linear longitudinal wave velocity and disper-
sion parameter, respectively, both dependent on the material properties and geometry of a 
MEE circular rod. The circular rod consists of BaTiO3 and C0Fe2O4 with different values of 
volume fractions (vf ) of BaTiO3 with radius R = 0.05 m. Using the simple rule of mixture 
based on volume fraction, the material characteristics of the composite are estimated.

The NLWE in MEE circular rod reads (Xue et al. 2011)

 where � and Θ represent linear longitudinal wave velocity and dispersion parameter for a 
MEE circular rod which depend on the material property and geometry of the rod.

4  Extraction of solutions

In order to secure different solutions, we’ll apply MSSEM in this section. We proceed with 
the wave transformation: Φ = �(�), � = �(x − t�), where � is the wave number and � is 
the velocity. By using the above relation into Eq. (23), we get the following result from the 
real part as shown below:

 On applying the balance principle between the terms �2 and �′′ in Eq. (24) gives, n = 1 . 
Based on n = 1 , the solutions of (24) is expressed as:

 On solving Eqs. (25) and (24), we get Family-1

(21)R15(�) =

�
�1

2�2

��
A2
1
− A2

2
− A1 cos(

√
2�1(� + �))

A1 sin(
√
2�1(� + �)) + A2

�
.

(22)R16(�) =

�
�1

2�2

�
cos(

√
2�1(� + �))

sin(
√
2�1(� + �)) + 1

�
.

(23)Φtt − �2Φxx −

(
�2

2
Φ2 + ΘΦtt

)

xx

= 0,

(24)2Θ�2�2�
��

− 2�
(
�2 − �2

)
+ �2�2 = 0.

(25)�(�) = A0 + A1�(�) + A2�
2(�).
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 For famiy-1, the solutions of Eqs. (24) as well as Eq. (23) are discussed as:
∙ For 𝛾0 = 0, 𝛾1 > 0 and �2 ≠ 0 , we get
The bright soliton solution

 The singular soliton solution

∙ For 𝛾0 = 0, 𝛾1 > 0 and �2 = 4�1�2 , we obtain
The combined bright-singular soliton solution

∙ For 𝛾0 =
𝛾2
1

4𝛾2
, 𝛾1 < 0 and 𝛾2 > 0 , we obtain

The dark soliton solution

 The explicit hyperbolic function solution

⎧
⎪⎪⎨⎪⎪⎩

A0 =
(�2−�2)

�√
(�21−3�0�2)(−Θ2)�4−i�1Θ�

2

�

�2
√
(�21−3�0�2)(−Θ2)�4

,A1 = 0,

A2 =
3i�2Θ�

2(�−�)(�+�)

�2
√
(�21−3�0�2)(−Θ2)�4

, � = −
(−1)3∕4

√
(�−�)(�+�)

2
4
√
(�21−3�0�2)(−Θ2)�4

.

(26)

Φ1(x, t) =

�
�2 − �2

���
�2
1

�
−Θ2

�
�4 + i�1Θ�

2

�
3sech

2

�
√
�1

�
� −

(−1)3∕4
√
(�−�)(�+�)(x−t�)

2
4
√

�2
1 (−Θ2)�4

��
− 1

��

�2
�

�2
1

�
−Θ2

�
�4

.

(27)

Φ2(x, t) =

i(� −�)(� +�)

�
�1Θ�

2

�
3csch

2

�
√
�1

�
� −

(−1)3∕4
√
(�−�)(�+�)(x−t�)

2
4
√

�2
1 (−Θ2)�4

��
+ 1

�
+ i

�
�2
1

�
−Θ2

�
�4

�

�2
�

�2
1

�
−Θ2

�
�4

.

(28)

Φ3(x, t) =

�
�2 − �2

���
�2
1

�
−Θ2

�
�4 − i�1Θ�

2

�
+

12i�1�2�1Θ�
2 (�−�)(�+�) exp

⎛
⎜⎜⎜⎜⎝
2
√
�1

⎛
⎜⎜⎜⎜⎝
�−

(−1)3∕4
√
(�−�)(�+�)(x−t�)

2
4

�
�2
1

�
−Θ2

�
�4

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎝
�2−�1 exp

⎛⎜⎜⎜⎜⎝
2
√
�1

⎛⎜⎜⎜⎜⎝
�−

(−1)3∕4
√
(�−�)(�+�)(x−t�)

2
4

�
�2
1

�
−Θ2

�
�4

⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎠

2

�2
�

�2
1

�
−Θ2

�
�4

.

(29)

Φ4(x, t) =

�
�2 − �2

�
⎛
⎜⎜⎜⎜⎝

�
�2
1

�
−Θ2

�
�4 − i�1Θ�

2

⎛
⎜⎜⎜⎜⎝
3 tanh2

⎛
⎜⎜⎜⎜⎝

√
−�1

⎛
⎜⎜⎝
�−

(−1)3∕4
√
(�−�)(�+�)(x−t�)

√
2
4
√

�2
1(−Θ2)�4

⎞
⎟⎟⎠√

2

⎞
⎟⎟⎟⎟⎠
+ 2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

�2
�

�2
1

�
−Θ2

�
�4

.
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 The combo bright-dark soliton solution

 The explicit soliton solution

 The hyperbolic function solution

∙ For 𝛾0 = 0, 𝛾1 < 0 and �2 ≠ 0 , we obtain
The trigonometric function solutions

(30)

Φ5(x, t) =

�
�2 − �2

�
⎛
⎜⎜⎜⎜⎝

�
�2
1

�
−Θ2

�
�4 − i�1Θ�

2

⎛
⎜⎜⎜⎜⎝
3 coth2

⎛
⎜⎜⎜⎜⎝

√
−�1

⎛
⎜⎜⎝
�−

(−1)3∕4
√
(�−�)(�+�)(x−t�)

√
2
4
√

�2
1(−Θ2)�4

⎞
⎟⎟⎠√

2

⎞
⎟⎟⎟⎟⎠
+ 2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

�2
�

�2
1

�
−Θ2

�
�4

.

(31)

Φ6(x, t) =
i(� −�)(� +�)

�2
�

�2
1

�
−Θ2

�
�4

×

�
i

�
�2
1

�
− Θ2

�
�4 + 2�1Θ�

2 + 3�1Θ�
2

�
sech

�√
2
√
−�1

�
� −

(−1)3∕4
√
(� −�)(� +�)(x − t�)

√
2

4

�
�2
1

�
− Θ2

�
�4

��

+ i tanh

�√
2
√
−�1

�
� −

(−1)3∕4
√
(� −�)(� +�)(x − t�)

√
2

4

�
�2
1

�
− Θ2

�
�4

���2�
.

(32)

Φ7(x, t) =

�
�2 − �2

�
⎛
⎜⎜⎜⎜⎝

�
�2
1

�
−Θ2

�
�4 + i�1Θ�

2

⎛
⎜⎜⎜⎜⎝
1 − 3csch2

⎛
⎜⎜⎜⎜⎝

√
−�1

⎛
⎜⎜⎝
�−

(−1)3∕4
√
(�−�)(�+�)(x−t�)

√
2
4
√

�2
1(−Θ2)�4

⎞
⎟⎟⎠√

2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

�2
�

�2
1

�
−Θ2

�
�4

.

(33)

Φ8(x, t) =

�
�2 − �2

�
⎛
⎜⎜⎜⎜⎝

�
�2
1

�
−Θ2

�
�4 +

i�1Θ�
2

⎛
⎜⎜⎝
sinh

⎛
⎜⎜⎝
√
2
√
−�1

⎛
⎜⎜⎝
�−

(−1)3∕4
√
(�−�)(�+�)(x−t�)

√
2
4
√

�2
1(−Θ2)�4

⎞
⎟⎟⎠

⎞
⎟⎟⎠
+5i

⎞
⎟⎟⎠

sinh

⎛
⎜⎜⎝
√
2
√
−�1

⎛
⎜⎜⎝
�−

(−1)3∕4
√
(�−�)(�+�)(x−t�)

√
2
4
√

�2
1(−Θ2)�4

⎞
⎟⎟⎠

⎞⎟⎟⎠
−i

⎞
⎟⎟⎟⎟⎠

�2
�

�2
1

�
−Θ2

�
�4

.

(34)

Φ9(x, t) =

�
�2 − �2

���
�2
1

�
−Θ2

�
�4 + i�1Θ�

2

�
3sec2

�
√
−�1

�
� −

(−1)3∕4
√
(�−�)(�+�)(x−t�)

2
4
√

�2
1 (−Θ2)�4

��
− 1

��

�2
�

�2
1

�
−Θ2

�
�4

.
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∙ For 𝛾0 =
𝛾2
1

4𝛾2
, 𝛾1 > 0 and 𝛾2 > 0 , we obtain periodic wave solutions in different forms as:

∙ For �0 = 0 and 𝛾1 > 0 , we obtain exponential functional solution

(35)

Φ10(x, t) =
i(� −�)(� +�)

�2
�

�2
1

�
−Θ2

�
�4

×

�
�1Θ�

2

⎛⎜⎜⎜⎝
3csc2

⎛⎜⎜⎜⎝

√
−�1

⎛⎜⎜⎜⎝
� −

(−1)3∕4
√
(� −�)(� +�)(x − t�)

2
4

�
�2
1

�
−Θ2

�
�4

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠
+ 1

⎞⎟⎟⎟⎠
+ i

�
�2
1

�
−Θ2

�
�4

�
.

(36)

Φ11(x, t) =

�
�2 − �2

�
⎛
⎜⎜⎜⎜⎝

�
�2
1

�
−Θ2

�
�4 − i�1Θ�

2

⎛
⎜⎜⎜⎜⎝
3 tan2

⎛
⎜⎜⎜⎜⎝

√
�1

⎛
⎜⎜⎝
�−

(−1)3∕4
√
(�−�)(�+�)(x−t�)

√
2

4
√

�2
1(−Θ2)�4

⎞
⎟⎟⎠√

2

⎞
⎟⎟⎟⎟⎠
+ 2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

�2
�

�2
1

�
−Θ2

�
�4

.

(37)

Φ12(x, t) =

�
�2 − �2

�
⎛
⎜⎜⎜⎜⎝

�
�2
1

�
−Θ2

�
�4 − i�1Θ�

2

⎛
⎜⎜⎜⎜⎝
3 cot2
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5  Results and discussion

Several scientific and technological disciplines profit from the investigation of optical soli-
tons. In Xue et al. (2011), based on the constitutive relation for transversely isotropic piezo-
electric and piezomagnetic materials, combined with the differential equations of motion, 
the longitudinal wave motion equation in a long circular rod has been derived and solitary 
wave solutions were extracted by Jacobi elliptic function expansion method, while different 
solutions were found to the studied model in Ma et al. (2013). The MME circular rod with 
M-derivative has been discussed and a variety of solutions were recovered by the assis-
tance of Bernoulli sub-equation function method Baskonus and Gomez-Aguilar (2013) and 
in Hashemi et al. (2016), the soliton solutions were extracted to the MEE circular rod by 
the assistance of first integral method. A variety of solutions were extracted in different 
forms by applying expansion function method to the MEE circular rod (Baskonus et  al. 
2016), while by using semi-inverse variational principle, sine-cosine function method, and 
rational sine-cosine function method to the studied model different solutions were recov-
ered (Darvishi et al. 2018). Topological, non-topological and singular soliton solutions are 
extracted by using the extended sinh-Gordon equation expansion method to the govern-
ing equation (Bulut et al. 2018), and in Zhou (2016), soliton solutions were recovered by 
applying G

′

G
 - expansion method. The solitary wave ansatz has been used to construct the 

different solution (Younis and Ali 2015). The nonlinear longitudinal wave equation has 
been discussed by using extended form of two methods, auxiliary equation mapping and 
direct algebraic method (Iqbal et al. 2019).

We have identified various wave structures in the form of exact solitary wave solutions, 
including bright, dark, singular and combined forms to the MEE circular rod, using a new 
computational integration scheme. Additionally, we’ve found solutions to the hyperbolic 
and periodic functions. Nonlinear dispersive media allow for the propagation of bright and 
dark solitons.

We may further demonstrate the uniqueness of our results by comparing our accom-
plishments to those that have been studied in the past. For example, some of their solutions 
are comparable to ours by assigning specific parameter values. We can clearly distinguish 
our work from previous research because other solutions are so drastically different from 
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ours. Many nonlinear science fields may find this article’s findings useful in clarifying the 
precise underlying nature of a variety of nonlinear advancement situations. The physical 
movement of some of the obtained solutions have been depicted 3D, 2D, and contour in 
Figs. (1, 2, 3, 4, 5, 6, 7, 8 and 9) by allotting different values to parameters.

6  Concluding remarks

We have discussed propagation of waves in the MEE circular rod which is modeled by 
nonlinear longitudinal wave equation. A recently developed method called MSSEM has 
been considered for recovering various forms of solutions. A variety of soliton solutions 
as well as exponential, hyperbolic and periodic functions are extracted. The results are 
remarkable and significantly different from those previously reported. Bright soliton solu-
tions will facilitate the regulation of soliton clutter. When the solitons are switched from 
being attracted to being detached, the clutter is eliminated. Innovative soliton solutions will 
be required to resolve the current soliton conundrum. This demonstrates that solitons can 
transition from an attracted to a separated state, which would clean up the mess.

For some nonlinear models, the results show that the proposed strategy is a promis-
ing instrument because it can provide a wide range of new wave results. This method’s 
simplicity and power are demonstrated by the solutions obtained. Nonlinear PDEs can 
be easily applied to this method, and the majority of the solutions satisfy the PDEs by 

Fig. 1  Plots of solution (26) under parameters � = 0.9, �1 = 0.2,Θ = 0.2,� = 0.1,� = 1.2

Fig. 2  Plots of solution (27) under parameters � = 0.2, �1 = 1.7,Θ = 2, � = 1,� = 1
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substituting. To address a wide range of NLPDEs, each of our discoveries provides a 
different way for different analysts to use this method.

This article’s findings may be useful for clarifying the exact nature of a variety of 
nonlinear advancement situations that arise in numerous nonlinear science fields. The 

Fig. 3  Plots of solution (29) under parameters � = 0.9, �1 = −1.2,Θ = 0.79,� = 0.1,� = 1.

Fig. 4  Plots of solutions (31) under parameters � = 3, �1 = −2,Θ = 1, � = 2,� = 1.8

Fig. 5  Plots of solutions (33) under parameters � = 0.05, �1 = −10,Θ = 1.9,� = 0.4,� = 0.08
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physical movement of some of the obtained solutions have been depicted 3D, 2D, and 
contour in figures (1-9) by allotting different values to parameters.

It is anticipated that the solutions will play a crucial role in describing and comprehend-
ing the physics of how things change with time.

Fig. 6  Plots of solution (34) under parameters � = 0.98, �1 = −0.8,Θ = 0.2,� = 1,� = 1.8

Fig. 7  Plots of solution (39) under parameters a2 = 2, a1 = 3, �1 = 2, � = 7.9,Θ = 4, � = 3,� = 5

Fig. 8  Plots of solution (41) under parameters � = 0.7, �1 = 2, �2 = 0.2,Θ = 1.2,� = 0.4,� = 0.1
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