
Vol.:(0123456789)

Optical and Quantum Electronics (2022) 54:553
https://doi.org/10.1007/s11082-022-03984-2

1 3

Extracted different types of optical lumps and breathers 
to the new generalized stochastic potential‑KdV equation 
via using the Cole‑Hopf transformation and Hirota bilinear 
method

Rahaf Alhami1 · Marwan Alquran1 

Received: 26 April 2022 / Accepted: 7 July 2022 / Published online: 25 July 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
In this paper, we present a modified version of the potential-KdV equation by adding a new 
stochastic term. The new stochastic potential-KdV describes the propagation of nonlinear 
optical solitons and photons and appears in the applications of electric-circuits and multi-
component plasmas. By using the Cole-Hopf transformation and Hirota bilinear method, 
we derive novel multi-solitons, lumps, and breather wave-solutions to the proposed model. 
Also, we provide some graphical analysis to study the impact of the model’s coefficients on 
the propagation of the recovery solutions. Finally, all the reported solutions in this work are 
checked by direct substitution in the governing equation.

Keywords  Stochastic potential-KdV equation · Cole-Hopf transformation · Hirota bilinear 
method · Lumps · Breather waves

1  Introduction

Finding explicit solutions to nonlinear equations is one of the main pillars of under-
standing the dynamics of many physical applications and complex processes in chemis-
try, biology, geophysics, fluids, and nonlinear optical fibers. Over the past years, many 
effective schemes were used to solve nonlinear equations such as the tanh-method, sine-
cosine function method (Wazwaz 2007; Alquran and Al-Khaled 2011; Alquran 2012), 
exp-function method (He and Wu 2006; Jaradat and Alquran 2022; Inan et  al. 2022), 
mapping method El-Wakil and Abdou (2006), direct method Ma and Chen (2009), poly-
nomial method (Huang 2006; Alquran et al. 2021, 2022), Kudryashov-expansion (Jara-
dat et al. 2021; Jaradat and Alquran 2020; Alquran 2021), Riccati-expansion Conte and 
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Musette (1992), modified rational sine-cosine and sinh-cosh method (Ali et  al. 2022; 
Alquran and Alhami 2022; Alquran 2021; Alquran and Alqawaqneh 2022), and many 
others (Akinyemi et al. 2022, 2022; Arnous et al. 2022; Sulaiman 2020; Baskonus et al. 
2017; Alquran 2022).

Recently, W.X. Ma and other scholars implemented the Hirota bilinear form and 
Cole-Hopf transformation of the form u = �(ln�)x and u = �(ln�)xx to extract new types 
of singular solutions known as lumps and breather waves (Ma 2015, 2013; Ma et  al. 
2016; Ma 2013; Ma et al. 2009). For example, if the test function � is a quadratic poly-
nomial, the resulting solution is of type lump-soliton. While as, a linear combination 
of quadratic polynomial with the sine or cosine function will produce lump-periodic. 
Moreover, linear combinations of the sine or cosine with exponential function, trigono-
metric with hyperbolic functions, and combined exponential-trigonometric-hyperbolic 
functions, will produce different types of breather waves (Sulaiman et al. 2021, 2021; 
Alquran and Alhami 2022a, b; Feng and Bilige 2021; Sulaiman et al. 2021; Kumar et al. 
2022).

In this work, we present for the first time a modified version of the potential-KdV under 
the name stochastic potential-KdV (spKdV) which takes the following form:

where � is the stochastic parameter, � is the nonlinearity coefficient, and � refers to the 
dispersion coefficient. In the absence of the stochastic term, � = 0 , the above equation 
is known as the potential-KdV and generally seen during the study of water waves. The 
spKdV serves as an approximate model for the description of week dispersive effects on 
the propagation of nonlinear optical-soliton and photons, and appears in the applications of 
electric-circuits and multi-component plasmas.

The contribution of the current paper is threefold. First, we derive the Hirota bilin-
ear form of the new proposed model. Then, we construct multi-waves, lump-type. and 
breather-type solutions upon different selections of the Cole-Hopf test-function. Finally, 
we study the impact of the model’s coefficients acting on the propagation of the obtained 
solutions.

2 � Cole‑Hopf transformation

To find a suitable Cole-Hopf transformation to (1.1), we apply the bilinear method which 
requires that the function

satisfies the linear terms of (1.1). As a result, we get the dispersion relation:

Then, we assume the solution of (1.1) in the following form

Substitute (2.3) in (1.1) to obtain

(1.1)�t + ��x + �
(
�x

)2
+ ��xxx = 0,

(2.1)g(x, t) = eax−bt,

(2.2)b = a� + a3� .

(2.3)G(x, t) = R
(
ln(1 + A eax−(a�+a

3�)t)

)
x
.
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Finally, we assign the following Cole-Hopf transformation

where f(x, t) is known as the test function.

3 � One‑soliton and two‑soliton solutions

To extract one-soliton and two-soliton solutions to (1.1), we consider the following steps:

•	 Generalize the dispersion relation (2.2) into 

•	 Choose the function f(x, t) as 

•	 Substitute (2.5) and (3.2) in (1.1) to get the one-soliton solution labeled as �1

•	 Consider the following two dispersion relations: 

•	 Consider the new form of f(x, t), 

•	 Substitute (2.5) and (3.5) in (1.1) to get the two-soliton solution labeled as �2

 where �i = −�t + x − �a2
i
t and � = �1 + �a1a2t − �a2

2
t.

4 � Hirota bilinear equation

In this section, we construct the Hirota bilinear form to the proposed spKdV (1.1). First, 
we recall the definition of the Hirota operator D

(2.4)R =
6�

�
.

(2.5)�(x, t) =
6�

�
(ln(f (x, t)))x,

(3.1)bi = ai� + a3
i
� .

(3.2)f (x, t) = 1 + ea1x−(a1�+a
3

1
�)t.

(3.3)�1(x, t) =
6�a1e

a1x

�(ea1(�+a
2

1
�)t + ea1x)

.

(3.4)
b1 =a1� + ca3

1
� ,

b2 =a2� + ca3
2
� .

(3.5)f (x, t) = 1 + ea1x−b1t + ea2x−b2t +
(a1 − a2)

2

(a1 + a2)
2
e(a1x−b1t)+(a2x−b2t).

(3.6)�2(x, t) =

6�

(
a1e

a1�1 + a2e
a2�2 +

(a1−a2)
2

a1+a2
e(a1+a2)�

)

�

(
1 + ea1�1 + ea2�2 +

(a1−a2)
2

(a1+a2)
2
e(a1+a2)�

) ,
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where p, q ∈ C
∞
(ℝ2) . Next, we consider the following assumption

Insert (4.2) in (1.1) to get

Then, the function v(x, t) is to be assumed as

Substitution of (4.4) in (4.3), produces the Hirota’s form to spKdV as

which is equivalent to

5 � Lump solutions

The aim of this section is to derive two types of lump solutions to the spKdV.

5.1 � Lump‑soliton

To obtain lump-soliton, we choose the test-function �(x, t) to be a quadratic polynomial as:

where

The parameters ai,j, (i, j = 1, 2, 3) and � are real constants to be determined. Substitute 
(5.1) in (4.5), equate the coefficients of different polynomials of x, t to zero, then solve the 
resulting system to get two solution’s sets:

Set I:

(4.1)Di
x
D

j

tp.q =

(
�

�x
−

�

�x∗

)i( �

�t
−

�

�t∗

)j

p(x, t)q(x∗, t∗)|x∗=x,t∗=t,

(4.2)�(x, t) = vx(x, t).

(4.3)vxt + �vxx + �v2
xx
+ �vxxxx = 0.

(4.4)v(x, t) =
6�

�
ln(�(x, t)).

(4.5)−�t�x + ��xt − ��2

x
+ ���xx + 3��2

xx
− 4��x�xxx + ���xxxx = 0,

(4.6)
(
DxDt + �D2

x
+ �D4

x

)
� ⋅ � = 0.

(5.1)�(x, t) = �1(x, t) = XTAX + �,

(5.2)A =

⎡
⎢⎢⎣

a1,1 a1,2 a1,3
a2,1 a2,2 a2,3
a3,1 a3,2 a3,3

⎤⎥⎥⎦
, X =

⎡⎢⎢⎣

1

x

t

⎤
⎥⎥⎦
.

a2,2 =0,

a3,3 = − �
(
a2,3 + a3,2

)
,

� =
�a2

1,2
+ a1,2

(
2�a2,1 + a1,3 + a3,1

)
+ �a2

2,1
+ a1,3a2,1 − a1,1a2,3 + a2,1a3,1 − a1,1a3,2

a2,3 + a3,2
.
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Thus,

Accordingly, the first lump-soliton solution labeled as �L1
 is

Set II:

Therefore,

and the second lump-soliton solution labeled as �L2
 is

5.2 � Lump‑periodic

Linear combination of quadratic and trigonometric functions produces lump-periodic solu-
tion. Therefore, the test function is to be chosen as:

where Y =

⎡⎢⎢⎣

1

t

x

⎤
⎥⎥⎦
 . Now, insert (5.7) in (4.5) leads to:

Set I:

Let △ = p1(x − �t) + �p3
1
t + p3 , then

(5.3)�1(x, t) =

(
t
(
a2,3 + a3,2

)
+ a1,2 + a2,1

)(
�a1,2 + �a2,1 − �ta2,3 − �ta3,2 + xa2,3 + xa3,2 + a1,3 + a3,1

)
a2,3 + a3,2

.

(5.4)�L1
(x, t) =

6�
(
a2,3 + a3,2

)

�
(
�a1,2 + �a2,1 − �ta2,3 − �ta3,2 + xa2,3 + xa3,2 + a1,3 + a3,1

) .

a2,1 = − �(a1,2 + a2,1) − a1,3,

a3,2 = − a2,3,

a2,2 =a3,3 = 0.

(5.5)�1(x, t) = � + a1,1 + (x − �t)(a1,2 + a2,1),

(5.6)�L2
(x, t) =

6�(a1,2 + a2,1)

�(� + a1,1 + (x − �t)(a1,2 + a2,1))
.

(5.7)�(x, t) = �2(x, t) = � sin(xp1 + tp2 + p3) + YTAX + �,

(5.8)

a1,3 = − �a1,2 + 3�p2
1
a1,2 − a2,1 − �a3,1 + 3�p2

1
a3,1,

� = ∓
a1,2 + a3,1

p1
,

p2 = − �p1 + �p3
1
,

a3,3 = − a2,2,

a2,3 =a3,2 = 0.

(5.9)�2(x, t) = � + a1,1 ∓
(sin(△) ± p1(�t − x) ∓ 3�p3

1
t)(a1,2 + a3,1)

p1
,
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and the first lump-periodic solution labeled as �L3
 is

Set II:

Accordingly, the test function �2 is of the form

Thus, the second lump-periodic solution labeled as �L4
 is

6 � Breather wave solutions

Different types of breather wave solutions can be constructed based on the selection of 
the test function �(x, t) . Here, we derive three types of breather solutions.

6.1 � Type‑1

This type is constructed by a linear combination of cosine and exponential functions 
defined as:

Substitute (6.1) in (4.5) to get

As a result, the breather type-1 solution is

(5.10)

�L3
(x, t) = −

6�(±1 + cos(△))p1(a1,2 + a3,1)

�(sin(△)(a1,2 + a3,1) ∓ p1(� + a1,1 − (�t − x − 3�tp2
1
)(a1,2 + a3,1)))

.

p2 = − �p1 + 4�p3
1
,

a1,2 = − a3,1,

a1,3 = − a2,1,

a3,3 = − a2,2,

� = − a1,1,

a2,3 =a3,2 = 0.

(5.11)�2(x, t) = � sin((x − �t)p1 + 4�p3
1
t + p3).

(5.12)�L4
(x, t) = −

6�p1 cot((x − �t)p1 + 4�p3
1
t + p3)

�
.

(6.1)�(x, t) = �3(x, t) = �1 cos (k2(b2t + x)) + �2e
k1(b1t+x) + e−k1(b1t+x).

(6.2)

b1 = − � − �k2
1
+ 3�k2

2
,

b2 = − � − 3�k2
1
+ �k2

2
,

�2 = −
k2
2
�2

1

4k2
1

.
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where T = k1(x − (� + �k2
1
− 3�k2

2
)t) and P = k2(x − (� + 3�k2

1
− �k2

2
)t).

6.2 � Type‑2

This type is a linear combination of trigonometric and hyperbolic functions, i.e.,

Substitution of (6.4) in (4.5) produces the following outputs:

Thus, the breather type-2 solution is

where Y = k1x + k3 − (�k1 + �k3
1
− 3�k1l

2

1
)t and Z = l1x + l3 − (�l1 + 3�k2

1
l1 − �l3

1
)t.

6.3 � Type‑3

This type is a linear combination of three functions; exponential, trigonometric and hyper-
bolic, i.e.,

Substitution of (6.7) in (4.5) gives three cases.
Case I: �3 = 0 and � = �2 = −(� + 4�) . Then,

Case II: �2 = −
�2

4

4�1
, �3 = 0, �2 = −2� − 8� − � . Then,

Case III: �2 = −
�2

3

4�1
, �4 = 0, � = −(� − 2�) and �1 = −(� + 2�) . Then,

(6.3)�(x, t) = �B1
(x, t) = −

6�k1(4k
2

1
+ 4k1k2�1e

T sin(P) + k2
2
�2

1
e2T )

�(−k2
2
�2

1
e2T + 4k2

1
(1 + �1e

T cos (P)))
,

(6.4)
�(x, t) = �4(x, t) = cosh (k1x + k2t + k3) + �1 cos (l1x + l2t + l3) + �2 sinh (k1x + k2t + k3).

(6.5)

k2 = − �k1 − �k3
1
+ 3�k1l

2

1
,

l2 = − �l1 − 3�k2
1
l1 + �l3

1
,

�2 = ∓

√
k2
1
+ l2

1
�2

1

k1
.

(6.6)�(x, t) = �B2
(x, t) =

6�k1(±k1 sinh (Y) ∓ l1�1 sin (Z) +

√
k2
1
+ l2

1
�2

1
cosh (Y))

±bk1(cosh (Y) + �1 cos (Z)) + b

√
k2
1
+ l2

1
�2

1
sinh (Y)

,

(6.7)�(x, t) = �5(x, t) = �1e
�t+x + �2e

−(�t+x) + �3 sin (�1t + x) + �4 sinh (�2t + x).

(6.8)�(x, t) = �B3
=

−6�(2�2 − �4)e
2(�+4�)t + 6�(2�1 + �4)e

2x

�(2�2 − �4)e
2(�+4�)t + �(2�1 + �4)e

2x

(6.9)�(x, t) = �B4
(x, t) =

6�

�

(
4�1

2�1 − �4e
2(�+4�)t−2x

− 1

)
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7 � Graphical analysis

The aim of this section is twofold. First, we plot the obtained solutions to recognize the 
physical structures of (1.1). Second, we study the impact of the stochastic, nonlinearity, 
and dispersion parameters, � , � , � , being acting on the propagation of the stochastic poten-
tial-KdV. Figure 1, shows the one- and the two-soliton solutions. Figure 2, shows the lump-
soliton and the lump-periodic. Figure 3, shows three different types of breather waves.

To investigate the impact of the aforementioned parameters on the propagation of (1.1), 
we study the solution-function �B5

(x, t) , see Fig. 4, where we observe the following physi-
cal properties:

•	 The propagation is transitive when � changes its sign.
•	 The propagation has a reflexive relation when � changes its sign.
•	 The propagation is symmetric due to the sign of �.

8 � Conclusion

This work included the study of a new extension of the potential KdV model by adding 
a new stochastic term ��x(x, t) . The new model describes the propagation of nonlin-
ear optical solitons and photons and appears in the applications of electric-circuits and 
multi-component plasmas. Several solutions of types multi-waves, lumps, and breathers 
are generated to the proposed model by means of Cole-Hopf transformation and Hirota 

(6.10)

�(x, t) = �B5
(x, t) =

6�(4�2

1
e4�t+2x + 4�1�3e

�t+2�t+x cos ((� + 2�)t − x) + �2

3
e2�t)

�(4�2

1
e4�t+2x + 4�1�3e

�t+2�t+x sin (x − (� + 2�)t) − �2

3
e2�t)

.

Fig. 1   One-soliton solution as depicted in �1(x, t) , and two-soliton solution as depicted in �2(x, t)
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bilinear method. Also, we performed a graphical analysis to study the impacts of the 
model’s parameters acting on the propagations of the recovery solutions.

For future work, we aim to extract lumps, breathers, and rogue-wave solutions to 
nonlinear models involving complex-valued field-functions. Moreover, we may study 
systems of nonlinear equations and investigate the possibility of having such types of 
solutions similar to those reported in this work.
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