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Abstract

In this present study, the modified generalized exponential rational function method
(mGERFM) and the Hirota bilinear method (HBM) are implemented to secure optical and
lump solutions to the fractional coupled nonlinear Schrodinger equations (FCNSE). These
problems are an appealing model to describe the modes in nonlinear optics and Bose-
Einstein condensation. Numerous novel soliton solutions are computed in distinct formats
such as periodic, exponential, dark and combo singular bright. In addition, we also evaluate
multi waves, periodic cross-kink, rational, and interaction solutions along with rational,
trigonometric, and various bilinear functions. The novel feature of this study is the acquired
solutions, which were not before constructed and signify a good balance between the
nonlinear physical components. The dynamical property of the retrieve solutions is also
depicted through some distinct graphs in 2-, 3-dimensional. The constructed outcomes are
auspicious, which present that the stated methods are categorical, robust, and efficient in
finding exact solutions to diverse complex nonlinear problems arising in the recent era of
nonlinear optics, applied sciences and engineering.

Keywords Optical solutions - Lump solutions - MGERFM - HBM

1 Introduction

In recent times, mathematical modeling of numerous complex nonlinear physical phe-
nomena formulates nonlinear partial differential equations (NLPDEs). These intricate
phenomena have a wide range of applications in several domains of sciences and their fields
such as biology, solid-state physics, ocean dynamics, geochemistry, photonics, magnetized
plasma, physics, optics, diffusion-reaction, plasma physics, shallow water waves, fiber
optics, water optical metamaterials and so forth. Seek the exact solutions to these NLPDEs
in nonlinear science, it is one of the critical problems. However, due to the intricacy of
NLPDEs, giving all the exact solutions of an NLPDEs with a unified technique appears to
be unfeasible. Diverse reliable techniques have been developed to construct exact solutions,
such as the modified exp(—¢(w))-expansion function method (Rehman and Ahmad 2022a),
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the (g—;)-expansion function method (Owyed et al. 2022), the first integral method (Aki-

nyemi et al. 2022¢), the Hirota bilinear method (Rehman and Ahmad 2022b), new ®°-
model expansion function method (Seadawy et al. 2021b) and several others (Arafat et al.
2022c; Akram et al. 2021; Tariq et al. 2021; Bilal et al. 2021; Rabie and Ahmed 2022;
Sulaiman et al. 2021; Rehman et al. 2022a, b; Raddadi et al. 2021; Aktar et al. 2022; Gomez
et al. 2022; Rahman et al. 2021; Akinyemi et al. 2022a, b, d; Inan et al. 2022; Kumar et al.
2022; Mirzazadeh et al. 2022). Recently, different approaches are also considered for
diverse lump solutions (Ma and Chen 2009; Ma and Lee 2009; Ma 2021, 2022a, b).

Optical solitons are one of the vital research frontiers of optics and optoelectronics due to
their unique property of capability of propagation of waves without scattering over long
distances i.e. they preserve their shape over long distances. The solitons in the fiber orig-
inated due to The delicate balance between nonlinearity and dispersion effects in the
medium. In the recent era of science and technology, the theory of solitons has crafted
innovative progress in the telecommunication industry and become the most sizzling
domain of research over the past few decades and surmise as to the technology of future
generations for high-speed communication systems. Therefore, the exploration and use of
optical soliton in fiber expedite a new field of long-distance and demonstrated significant
effects in the telecommunications engineering (Khater 2021; Pinar 2022; Sun 2021; Yusuf
et al. 2021).

Several researchers in a variety of fields have recently organized a study on NLPDES
with fractional order. Fractional nonlinear problems have great potential applications in the
multiple areas of applied science particularly in the field of optics which can describe lots of
physical nonlinear systems. These differential equations are generalizations of integer order
to fractional order. These equations are used to model problems in fluid dynamics, bio-
logical and physical processes and systems. Compared Fractional derivative to the integer
derivative, it is observed that fractional derivative not only describes the dependency pro-
cess of function development and also has a global correlation. Fractional derivatives can
better portray physical and engineering problems. It has not only very imperative theoretical
value but also extensive application value. Different fractional derivatives have been
investigated, such as Riemann-Liouville, Caputo, Atangana Baleanu, and conformable
fractional derivatives, which are the most used ones to transform the NLPDEs problem with
fractional-order into an ordinary differential equation with integer-order based on this
characteristic. The fractional derivative model overwhelms the theoretical and practical
inconsistencies of the classic integer derivative model, utilizes fewer parameters to achieve
the desired result and gives more perfect mathematical and physical models. Nowadays
fractional NLSE is one of the significant models and is extensively used in the region of
quantum mechanics and optics which has so many applications in diverse domains of
sciences, particularly in the field of optics, where the fractional order may be fractional
diffraction effect. In an optical fiber, the NLSE is regarded as the elementary model to
express soliton dynamics in optical fibers. in last two decades different schemes have been
established to get the soliton solutions of different NLSE (Riaz et al. 2022; Seadawy et al.
2021a; Zulfigar and Ahmad 2020, 2021; Rizvi et al. 2021; Jhangeer et al. 2021; Bilal et al.
2022; Younis et al. 2020; Khater et al. 2021; Rehman et al. 2021).

The fractional coupled nonlinear Schrodinger equation (FCNLSE) is written in under-
neath (Tang and Chen 2022; Wang et al. 2020)
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iD!®y + D dy + 5(|®1|” + 9| Daf*) 01 =0, "
iD!®y + DY@y + 5(|® > + 7| @2*) 0, = 0,

where 0 <o, f<1, ®(x,¢) and P,(x,7) denotes the complex functions of x and t that
represents the amplitudes of circularly-polarized waves in a nonlinear optical fiber. y and o
are non-zero real numbers.

After inspecting the published work, it is surveyed that the stated model is not solved yet
by the proposed techniques. Keeping this idea in mind, the primary goal of this work is to
retrieve optical and lump solutions of a given model by engaging two mechanisms, the
modified generalized exponential rational function method (nGERFM) (Ghanbari 2021;
Nonlaopon et al. 2022) and the Hirota bilinear method (HBM) along with different test
functions (Alruwaili et al. 2022).

The layout of article is arranged as : In Sect. 2, basics of conformable derivative is
presented. In Sect. 3, mGERFM is implemented. In Sect. 4, various lumps solutions are
extracted. In Sect. 5, result and discussion is presented and at the end concluding remarks
are revealed in Sect. 6.

2 Conformable derivative

This section covers the basics of the fractional derivatives. In recent times, fractional calculus is a
unique topic and has gained prominence, therefore mathematician and researchers conduct a
study on fractional calculus and derive some new fractional derivative operators such as the
Caputo, the Riemann—Liouville, the Caputo—Fabrizio and the Atangana—Baleanu derivatives
which have been manipulating in various fields because effects or memory can be better
exemplified by fractional-order derivatives. Fractional order models representing certain real-life
problems and have significant applications in sciences such as fluid mechanics, biochemistry,
applied mathematics, viscoelastic materials, finance, polymers and several other subject areas.
The conformable fractional operator overwhelms some restrictions of other fractional operators
and its application is much easier and more proficient. This operator offers basic properties of
classical calculus such as derivative of the quotient of two functions, the chain rule, the product of
two functions, mean value theorem, Rolle’s theorem. Moreover, it permits us better grasp the
dynamics of physical phenomena. The conformable derivatives can be defined as

Definition 1 Let g : [0,+00) — R, 0<a <1 and V ¢ > 0. The conformable derivative of g
of order o is

Ty(2)(0) = lim S ) 8@ (2)

e—0 €

Theorem 1 Suppose g,h : (0,00) — R and o be differentiable functions, then chain rule
holds

Tu(g o h)(6) = ' *h(t)* K () Tulg (1))l o) (3)

For more detail see references Ghanbari et al. (2019), Khalil et al. (2014).
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3 Mathematical analysis

In this section the main focus is to gather multiple solutions of the given models. For the
solutions of Eq. (1) substituting the following complex wave transformations:

@y (x,1) = Q(c)e", (4)

(Dz(x, t) = Qz(g)eiw, (5)
and
B o p Ped
: :m<"——ct—),w = 2T a0y,
o p o

where m /. and u represents real constants while 0y denotes arbitrary constant. Substituting
the following complex wave transformation (4) and (5) into Eq. (1) , we get the real and
imaginary parts

m? Q) + 023 + 0930 — (A + W =0, ©
m?Q, + 023 + 0y Q2Qy — (A + W2 =0,
and
c= -2 (7
Putting
Q = kQ,. (8)
Then the Eq. (6) become
m* Q| + (6 4 09k*)2 — (2% + W)Q) = 0. (9)
3.1 mGERFM
Assume the trial solution of Eq. (9) as
T@Y N, (T
Qi(c) =10+ /( >+ 4 ; 10
5 0 j; J w(:) ; J w(g) ( )
where
0 ehs 4+ 0 e’
o() = ——>— (11)

03¢7% + gqelns

The values of unknown g, y;, 4; (1 <j<N) and g;, y; (1 <i<4) are computed and the
value of N will be calculated by utilizing homogeneous balance principle.
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By balancing Q] with @7 in Eq. (9), we get N = 1. So the Eq. (10) transform into
wl(€)> (wl(g))]
Qi1(¢) = xo + 1 +4 : (12)
1(6) =20+ 11 < ©) 1 ©

Family-1: On replacing ¢, = 0, =93 = 1,0, =0andy, =0,y, = —1,y; = 9, = 0, the
Eq. (11) converts into

w(g)=1+e". (13)

On inserting the Egs. (12) along with (13) into Eq. (9), we earn a set of algebraic poly-
nomials. On solving these polynomials through Mathematica we get following results.
Result-1:

_ m o V2m ’
NN e o=y MR ey M |

Corresponding to result-1, we secure following solutions.

ﬁm( (72 + 1>

. (em (=) _ 1) <,- (OM(,;;@)M?%))
@zﬁl(x,t):k[ . :| X e .

Result-2:

m? m?
= 1 =200, A =0, 0=—— " = —u-"0
Lo = Zos X1 Zos 11 220k 1+ 1) p=—a

We attain following exponential solutions corresponding to result-2.

2
Vot e

qsl,z(x,z)—(x()(pﬁ))xei(()” 7 ) (16)

]

c*

B

P22() "‘(“(1 _ﬁ» x (9 " ‘) (17)

Family-2: On replacing 0, =1,00 =—1,03 =—2,0,=0 and
Y1 =1,7, = —i,73 = 74 = 0, the Eq. (11) transform into
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sin(g
() = (5). (18)
Switching Egs. (18) along with (12) into Eq. (9), we earn following results.
Result-1:

2 2v2
XO=$7 =0, 4 =$,u=2mzfﬁ

O(—(pk* + 1)) O(—(pk* + 1))

We construct following periodic solutions corresponding to result-1.

| Van{eon(j - ) +1) ()
o 5(—(yk2+1))(cot(m(’%—%))—1)

Phiy3(x,t) = k< V2m (COt(m (x?ﬁ - %)) + 1) > y ei(60+(2"12;”12>'7,/‘.771/‘).
SR+ 1) (cot(m (3 —)) - 1)
(20)

Result-2:

N Vam
R e =y ) MR Te ey &

We construct trigonometric solutions corresponding to result-2.

P N
Dy 4(x, 1) = <— SR T ) X e .

Ay =0, =p=2m*— 7%

Dy 4(x, 1) = k( a - COt(m (%ﬁ - %)) ) x ei(90+w47_{/‘) . (22)
ST

Family-3: On replacing ¢; =0, =1,03 =2,0, =0 and y, =i,y, = —i,y;3 =7, =0,
the Eq. (11) transform into

@(g) = cos(g). (23)

Plugging Eqgs. (12) together with (23) into (9), we derive the results.
Result-1:

e L
R /T o (= ey ) RN/ = )

Replacing these unknown in Egs. (12) and (23) into Eq. (9), then we get

. u=8m* — 2.
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V2 oo i 0p+ 8= b
Bus(x,1) = (2 " 5(1(3'2(1 1))2 ) ) xe (i) )

B o e
2v/2m cot(Zm ();7 — %)) > . el,(t,w(smz;,,z), _T/;) (25)

Pos(x, 1) = k( O(—(yk2 + 1))

Result-2:

X0 =0, 1 =—\/§m
R T )

After putting these values of unknown in Egs. (12) and (23) into Eq. (9), then we get

Py g(x,1) = Vaman(n(i 7)) . (26)
)= - S+ 1)) )< |

Ay =0, u=2m*— 2%

Br(r,1) = k( Pmelnli %) ) o () @)
S+ 1)

Family-4: On replacing ¢; = 2,0, =0,03 =94 =1land y, =79, =0,9; = 1,9, = —1,
the Eq. (11) modify as
@(c) = sech(q). (28)

Putting Eqgs. (28) together with (12) into Eq. (9), we achieve
Result-1:

V2m
X0:07 11 :—27 Al
Vo(=(k? + 1))

We attain the dark solutions corresponding to result-1

v2mtanh (m )‘—ﬁ—"—o’: CREE L)
et = (7 5(—Evkgﬁ+ D) D) AL R

=0, p=—2*—2m>.

V2mtanh(m Lﬁf%ﬁ i( 0 (*12*12"12)1"7%/*
@27(x,1) =k(— :(_Eykgil))))> ><e( (“ )) (30)

Result-2:

V2m V2m

N=——F—m u:4m2722.

N R N e )
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According to result-2, we retrieve the following mixed solutions

o oo e
Prg(x.) = (ﬁmCSCh(m(ﬁa(—iy)kztci()rn(ﬂ ))) B CY)

Drg(x,1) = k( V2mesch (m ();_f _ %) ) sech (m ();_f _ %>) ) X ei(oww_ix’_‘ﬂ) )

o(=(k* +1))

(32)
Result-3:

2
Wm0 =0 A= a2
S~k + 1))

According to result-3, we formulate singular soliton solutions as

o B v2m coth (m (% - %)) 1<90+M7,7_fﬁ) (33)
N G e AL |

V/2m coth (m (x_" - %)) i(0 (a2 ,;z>,x_M)
Byo(x,1) = k( 4 > x e\ T (34)
o(—(rk* +1))
Family-5: On replacing ¢; = 2,0, =0,03 =90, =1landy, = 1,79, =0,79; =i,y, = —i,
the Eq. (11) becomes
~ cos(¢)’

@ (c)

(35)

Imposing Egs. (35) and (12) into Eq. (9), we acquire
Result-1:

2 2
XOZ_—fm ; xl:—fm , A =0, p=2m’ = 2.
S(=(yk + 1)) S(=(yk + 1))

Periodic solutions correspond to result-1 can be compiled as

euten= () A,

D, 10(x,1) = k( - vam tan(m ();_f B %)) ) % e"("“fw—%) . (37)
o(—=(k* +1))
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Family-6: On replacing 9, =0, =903 =1,04=0 and y, =1,9, =0,7; =2,7, =0,

the Eq. (11) changes into

1+¢°

w(c) = =

Substituting Eqgs. (38) and (12) into Eq. (9), we gain the following result
Result-1:

_ 3m o \/§m
A ) T e )

We get exponential function solution from result-1

m(en (%) -
- ()

VAR T () 1)

<i (00+7(722;%)ﬂ—’7—f> )
X e .

A =0, u=—)*—

m(em(xl_/:*%) - 1)
452,11(x,t) =k<

S(—(R +1)) (e’"(‘%%) n 1) >
X e(i <90+ﬂ_7_’ﬁ>) .

Family-7: On replacing 0 =2,0,=0,03=04=1
Y1 =—2,7,=0,9; =1,y, = —1, the Eq. (11) transform into

e

cosh(¢)”

2s) =

Inserting Egs. (41) and (12) into Eq.(9), we get
Result-1:

:_2\/*# vi=0 A :_% 22
N ) MRV e ) M

We attain dark soliton solutions correspond to result-1.
\/im(Ztanh(m(%ﬁ — %)) + 1)
Py 12(x, 1) = <— T )
5=k + 1)) (tanh (m (% — ) ) +2)

—2oom?)
(100222 st}
X e .

(38)

(40)

and

(41)

(42)
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Vam(2tanh (m(5 - <)) +1) )

O(—(yk2 + 1)) (tanh(m (% - %)) + 2)

Family-8: On replacing ¢, =90, =1,0; =2, 0, =0 and y, =i,y, = —i,7; = —1,
y4 = 0, the Eq. (11) takes the following form

@2_]12()6, t) =k —
( (43)

@(c) = €° cos(g). (44)
Inserting Eqgs. (44) and (12) into Eq. (9), we earn
Result-1:
2 242
on_ﬂa n =0, 4 :$, w=2m>— 2.
o(=(rk* + 1)) S(—(k* + 1))

After Insert these values in Egs. (12) and (44), we get mixed periodic solutions as

(Sl 2) +en(n(-2)))
@1,13( ,f) = < 5(—("//(2 + 1))(cos(m<’;—f—c—5)) - Sin(”’l(%‘_%))) )

. o —2)* B
« el (90+—( " 7/ ) *%)

(45)

@zg(x,z)zk( ﬂm(sin(m(%—%»+cos(m(%’_%))) >
., =GR+ 1) (cos (m(5—<)) —sin(m(3-=))) ) (46)

. (2m?=22)* B
xel(eﬁ -

Family-9: On replacing ¢; =2,0, =0,03 =94 =1landy, =1,9, =0,7; =1,7, =0,
then Eq. (11) can be written as
s

w(s) = : (47)

~ cos(¢)

On switching Egs. (47) and (12) into Eq. (9), we secure
Result-1:

o 2\/§m Y0 A — — 5\/§m
YT e ey ) M/ = )

Insert these values in Egs. (12) and (47), we derive the trigonometric solutions as

L p=2m* — 2%
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D 14(x,1) = (7 \/zm(2sin(m();—f—%:)) —&-cos(m();_f_%))) )
, o(—(vk* + 1))(2cos(m(%_%)) —sin(m();—f_%))) (48)

. om?—2)% B
« 61(00+—( - X/ ) —%)

Vam(2sin(m (% <)) + cos (m (% — ) ))

R D) (2c0s(m(5 - £)) —Sin(’"(%”—%)))> ()

i (00 LA *’T;ﬁ)
7
X e .

4 Extraction of lump solutions

By the implementation of following logarithmic transformation,

Q, =2(In®©) (50)

Equation (50) converts Eq. (9) into bilinear form as

4(0.)* (2(0 +y0k*) +m?) + 20 (m* O, — (> + 1)O.) — 6m*@0.0,. =0. (51)
4.1 M-form solutions

To seek M-form rational solutions for Eq. (51), we implement the following test function
0 = (¢o1 + 02)> + (03 + 04)” + 05, (52)

where a1, ..., 05 are constants to be determined later. Switching Eq. (52) into Eq. (51) and
equating all same power of ¢ to zero, we attain the proper solutions sets as follows:
Set-1:

26 + m? ,
o M T —72 (53)

g1 =i03,y = —

Plugging Eq. (53) into (52), we earn,
. 4i0'3(0'2 — i64)
 2ico302 +2¢0304 + 03 + 03 + 05

Thus,

Ql 4i0'3(0'2 — i0'4)

2ico305 + 260304 + 03 + 6% + 05

By using Eq. (55), we obtain solutions of Eq. (1)
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4ios(0oy — io
Pris(x, 1) = ( . b x o2 ﬁ4) ; 2 2 )
2imo30; (X— - %) + 2ma304 (% - %) + 05+ 05+ 0s (56)
X ei(OO_/zTﬂ_);_fﬁ)
4ic3(0y — io.
@2,15(x,t):k( : — 32 /{4)& )
2ima30, (% — %) + 2mo304 (’“[7 — %) + 6%+ 62 + o5 (57)
X ei(()n*ﬂ,ﬂ*}‘;—;ﬁ) .
Set-2:
0104 80 + m2 12
=" = = — = )% 58
%) o , 05 Oa Y 85]{2 y U A ( )
Substitute the values of Eq. (58) into (52), we secure,
o_ AT Aot (59
03
Thus,
4
= (60)

' co3+ 04’
By imposing Eq. (60), we earn the solution of Eq. (1)

40 i w2
Dy 56(x,2) = < - 3 ) « o (t5—55") 61)
mos (’% - %) + 04

4 . w28
D16(x, 1) = k( & ) X el(eo+/77 ! ) (62)
maos (%ﬁ - C—f) + 04
4.2 1-kink soliton
In order to find the 1-kink soliton of Eq. (1), we exercise following test function
O = cexp(cas + a6) + (a1 + 02)* + (o3 + 04)* + a7, (63)

where g1, . .., 07 are unknown to be computed. Plugging Eq. (63) into Eq. (51) and equating
all coefficients of similar powers of exp function and others to 0, we achieve the following
solutions set:

Set-1

g1 = 10 04 = —10; o5 =———, 07 = Y= — .
1 3, 04 2, 05 m y 07 y ¥ 85k2
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Taking values of Eq. (64) into account in Eq. (63),we attain

0= ceﬁ; ';,;27,466. (65)
So,
2 cos
o ="7 (66)
ces% + og

By inserting Eq. (66), we conceive

2¢as exp (mas (“/—f — %) + i(90 + "—; — A;‘—f))

(D1717(x, t) = f o (67)
e (%) 4 g,
2¢a5 exp (mas (ﬁ — ﬁ) + i(Go Sy M))
Py17(x,1) = k( . i = ! ) (68)
Cemﬂ's (7*‘7) + o6
4.3 Periodic waves
To derive the periodic solution of Eq. (1), we implement the following test function
© = (¢o1 + 62)> + (503 + 04)* + cos(cos + 06) + 7, (69)

where 71, .. ., 07 are unknown. Plugging Eq. (69) into Eq. (51) and equating all coefficients
of similar powers of trigonometric function and others to 0, we achieve the following
solutions set:

Set-1

26 + m?
%,H = 2me? — 2. (70)

Taking values of Eq. (70) into account in Eq. (69), we attain

0y = i04,03 = —ioy,07 =0,y = —

® = cos(cas + ag). (71)
So,
Q = —205tan(cas + g5). (72)

By inserting Eq. (72), we conceive

2m2 62—

@ 15(x, 1) = < — 205 tan <m0'5 <x—ﬁ - c—ﬁ) + 66>> X e(i(gﬁu7%>) . (713)

p o

b (g Cr?)
@2_’18()6,[):k(—205tan(m05<%—c—> +O’6)> ><e((oJr * ﬁ)), (74)
o
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4.4 Multiwave solutions

To retrieve the multiwave solutions of Eq. (1), we apply the following test function
® = a; cos(¢o3 + g4) + ag cosh(coy + a2) + az cosh(cas + ag), (75)

where o1, ..., 06 are real unknown. Inserting Eq. (75) into Eq. (51) and equating all coef-
ficients of same powers of trigonometric, hyperbolic and other functions to 0, we achieve
the following solutions set:

Set-1
Pap -
0] = —0s5, 03 = i05 y:éag N m= _AZ_M. (76)
) b 4k2 b \/EO_S
Taking values of Eq. (76) into account in Eq. (75), we construct
® = g cos(o4 + icos) + ap cosh(aa — ¢as) + az cosh(cos + ag). (77)
So,
0 205(—iay sin(oy4 + icos) + ap(— sinh(a; — ¢as)) + ap sinh(¢as + g¢)) (78)
L=

ajy cos(oy + icos) + ag cosh(ay — ¢os) + ap cosh(cos + a¢)
By inserting Eq. (78), we conceive

2 (e S (o e N2 (o e
205 (ag sinh (# — Jz) + ay sinh (# - im) + ay sinh (M + a},))
@1‘19()(, t) - < 7).2*A1(‘—/{—£) 7/»_27N(\7/L¢) =2l ’ﬁ) >
ag cosh <# - az) + aj cosh (# - ia4) + aj cosh <T’ + 06>

S

V2
. i
xé ((’u +%—#) .

(79)

TR (L TR (L TR (L
T 205 <a0 sinh<$”) - 02> + @) sinh (% - im) + aj sinh (% + 05>>
2,10(%, 1) = /2 Pt /2 o /2 b )
ag cosh <7ﬂ' “nlg%) 02> + aj cosh (77/‘ “ulg%) im) + a; cosh <77/‘ (%) + :76>

V2 2 V2
% ei(()ﬁ%—’%)_
(80)
4.5 Homoclinic breather approach
© = e Plerrtor) 4 p P44 by cos(py (o5 + a6)), (81)
where 71, . .., 06 are unknown constants. Inserting Eq. (81) into Eq. (51) and equating all

coefficients of same power of trigonometric and exp functions to 0, we have the solutions
sets as follows.
Set-1:

A

j 20 2
0] = 03, 0-5:10-3p~ y=- o ) .u:720-§m2p27;“25 by = .
ﬂ\/og(—mz)pz (203b02%p + i)

P 20k

(82)
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By imposing Eq. (82) into Eq. (81), we secure
JePlo3étos)

©— + by cosh(a3Ep — ioepy) + e P17, (83)
f\/ 20'3b()) P + l)
So,
J;)pe”(q +04) b inh incte)
<\/‘\/ 203bo?2p+1) s (G3£p laGpl) ’ G3p( )
Q= »
se(o3étas)

b h — —p(03¢+02)
NN 20;b07p+1)+ o cosh(o3ép — iogp1) + e

(84)
With the assistance of Eq. (84), we get the solution of Eq. (1) as

R P("J”’ (‘%f%) +"4) ” P
ap | o~ _~_ 1 3pysinh (a3 mp (*ﬂ - ) ia@pl) 3¢ r(am(F-£) )

2(—m?)p? (2ughg/izp+l) [

Dy 0(x, 1) =

)

( \//e z(aw <7iT) m) + bg cosh (a3mp (%ﬂ - %> - iaspl) +e? (asm (5-5) Hz))

p2 2azbo /. p+z)

( ( (zU AlrriR) 7%))
X e .

(85)

asp Q + 3bg sinh <a3mp(“ﬂ - ”’1) ia6p1> —3e” (”‘”’(// )*“2)
& (—m?)p? (203}70/ p+1) B

6T o)
3 < ’ + by cosh (agmp ("Fﬂ — %) — iagpl) +e? (s (-£) +a)

D3 00(x,t) = k<

\/_\/ 2 (—m?)p 2(43170/ p+1)

o (cRne ) "
N0
X e .

(86)
4.6 Interaction via double exponential form
To obtain the interaction, using the following test function
® = by exp(01¢ + 02) + by exp(as¢ + 04), (87)

where a1, ..., 04 are unknown to be calculated later. Employing Eq. (87) into Eq. (51) and
equating all coefficients of similar powers of exp function to 0, we recover

26 + m?

2602 (58)

p=—20m* — 2 o1 =—03, y=—
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By engaging Eq. (88) into Eq. (87), we acquire
O = b %¢ + b2653g+04. (89)
So,

0_3bzengg+a4 _ 0_3bleﬂz—03§)
bleUZ*Usg + b2303€+64

o =2 (90)

By imposing Eq. (90), we gain the solution of Eq. (1) as

o 203m (ﬂ,ﬁ) +04
205 | €%2by — bye " \F s 2n§m2u‘2)

)xe(‘f(iﬂ(« i) o)

Do (x, 1) = (—

B

bzez‘”m(7 2)-+ou +enb;

B
203 (eazbl _ bzeztr;m (T*fT) +J4) ( (ﬂ(zf,gmzwz) oo /;))
—i 2 —y+2E
452721(x,t):k(— >><€ l * o .

o
7]

bzezo}m(T*—) +04 + eu—zbl

(92)
4.7 Periodic cross-kink wave solutions

To get the periodic cross-kink wave solution, using the following test function

® = a; exp(co1 + 02) + az cos(cas + 04) + a3 cosh(cas + a6) + exp(—(co1 + 02)) + a7,
(93)
where g, . .., g7 are unknown parameters to be calculated. Employing Eq. (93) into Eq. (51)

and equating all coefficients of similar powers of exp, hyperbolic and trigonometric func-
tions to zero, we recover

mZ

5:—m, u:2m20§—12, o1 = —io3, 05 = —ig3, o7 = 0. (94)

By engaging Eq. (94) into Eq. (93), we acquire
O = a1e™ 7% 1 ay cos(cas + a4) + a3 cosh(cas + ag) + e 2T, (95)
So,

. 2(azos sinh(cas + ag) + 03(—ia1e® 7% — ay sin(gos + g4) + ie"%2T3)) (96)
' a1e”~% + g, cos(¢o3 + 04) + az cosh(cas + g¢) + e~o2+ico '

By inserting Eq. (96), we gain the solution of Eq. (1) as

i B . ~ . oyt L
2 <a3a5 sinh(mA) + o3 (71'4119”27"””3 (777) ) sm(mg3 (X/—f — %) + 0-4) +ie ‘7~+’m“3(/f x )))
4)1722()6,[)\/: < )

P b e
i

aleazfim'ﬂ (7’7) + a cos (mag (j—f — %) + 64) +az cosh(mA) + g ortimas (T’T)

2 (2m2e2 12
<i<ﬂo+—( M )—%’))
X e .

©7)

@ Springer



Dynamics of optical and multiple lump solutions to the fractional... Page 17 of 26 640

. - oaimoy () . P . —artimay (L)
azos sinh(mA) + o3 —ia1e™ "5~ <) — a; sin(mos Fo%)tos)tie ™ Fe >

2(
Drm(x,t) = k( — ; (P
a ™" () +ay cos (ma3 (% - *"ﬂ) + 04) + a3 cosh(mA) + e~ " ()

o
o (2m2e2 -2
(i(()o+ ( Z ) ,,”))
X e .

(98)

where 4 = o5 (7—?—%) + 06

5 Results and discussion

In this section, a detail comparison of acquired solutions is made with the previously
evaluated results which reflects the novelty of this work. L. Tang and S. Chen constructed
The classification of single traveling wave solutions by the virtue of the complete dis-
criminant system method (Tang and Chen 2022). In Wang et al. (2020), B.H. Wang et al.
computed Vector optical soliton and periodic solutions of the governing model by capi-
talizing two methods fractional Riccati method and fractional dual-function method. Our
research manipulated this study to exercise two methods, modified generalized exponential
rational function method (nGERFM) and the Hirota bilinear method (HBM). Comparing
our outcomes with their outcomes display the novelty of our outcomes where it has not been
gained in the previous published literature. The discovered results are novel and fresh and to
the best of our knowledge these achievements have not been submitted to the literature
beforehand. We observe that the retrieved solutions could be beneficial to understand the

AN 0.5 s
S 00 2
\; -0.5 Re[®4(x,t)] &

-1.0 g

2N d’{:::,’l’,
X2 oo
N\ S = Im[®y 4(x, 1)]

Im[®4 4(x, t)]

t -4 -2 0 2 4

Fig. 1 Dynamics of Re and Im parts of Eq. (14) under parametric values
m=1,.=2,00=05,c=004u=0450=18,0=096,=09,A=1,k=15y=2
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Re[®43(x, t)]
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Im[®43(x, t)]

Im[®, 5(x, 1)]

|
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]
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Fig. 2 Dynamics of Re and [Im parts of Eq. (19) under parametric values
m=15521=15,00=045,c=0.09,4=0.550=18,0=0.9,=0.89,1=0.99,k=15,y=04

0.015]
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Fig. 3 Dynamics of Re and Im parts of Eq. (29) under parametric values m = 0.65, 1 =2.35, 6, =
0.5, ¢c=0.05 ©u=0.55 6=1, =085 =08, A=13, k=13, y=0.85
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Fig. 4 Dynamics of Re and Im parts of Eq. (31) under parametric values m = 0.25, 1 =2.5, 0, =
05, c=0.07, u=058, d=1.2, 2 =095 =093, A=13, k=13, y=085

Re[®, o(x, t)]
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Fig. 5 Dynamics of Re and Im parts of Eq. (33) under parametric values m = 0.002, 1 = 0.04, 6, =
0.5, ¢c=0.08, u=059, 6=12, a=093, =095, 1=13, k=13, y=0.86
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Fig. 6 Dynamics of Re and Im parts of Eq. (42) under parametric values m = 1.55, 1 =1.15, 6, =
0.8, c=—0.04, u=2.65 a3 =1.8, g4 =0.85, =093, =09, o, = 1.75, a5 = 0.95
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Fig. 7 Dynamics of Re and Im parts of Eq. (56) under parametric values m =19, 1=2.8, 0, =
2.08, ¢ =0.08, £ =265 o3=18, o4 =085 a=096 =09, o, = 1.75, 55 = 0.85, 56 = 0.05
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Fig. 8 Dynamics of Re and Im parts of Eq. (67) under parametric values m = 1.35, 1 =0.88, 0, =
09, c =004, p =255 a3=1.8, 64 =0.75, 2= 0.99, f =098, 65 =35, 75 = 0.95
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Fig. 9 Dynamics of Re and Im parts of Eq. (73) under parametric values =1, u=3, 0 =093, =
0957 C=1.57 0'2=—57 G4=5, 05 =2, a0=—2, a) =17 a2=—2, G'(,=3, 9():3
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Fig. 10 Dynamics of Re and Im parts of Eq. (79) under parametric values m = 1.8, 1 =2.98, 0, =
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Fig. 11 Dynamics of Re and Im parts of Eq. (85) under parametric values m = 0.75, 1 = 0.55, 0y =
0.9, c=-0.04, u=2.55 03=18, 64 =0.75, 0 =099, =098, 0, =2, g =0.95, by =0.25,
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Fig. 13 Dynamics of Re and /m parts of Eq. (97) under parametric values m =045, 1=1, pu=3, a =
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various physical behaviors. For Instance the hyperbolic sine function appears in the grav-
itational potential of a cylinder and the calculation of the Roche limit, the hyperbolic cosine
function appears in the shape of a hanging cable (the so-called CATENARY), the hyperbolic
tangent appears in the calculation of magnetic moment and special relativity rapidity, and
the hyperbolic cotangent appears in the Langevin function for magnetic porosity (Weisstein
2002). The exponential functions are shown in Fig. 1. The Fig. 2 exhibit the periodic
solutions. Singular bright solution is depicted in Fig. 3. The singular and dark solutions are
exhibited in Figs. 4 and 5 respectively. The M-shape and 1-kink solutions are appeared in
the Figs. 6 and 7. In Figs. 8 and 9, we present periodic waves and multiwaves solutions
subsequently. Figures 10, 11, 12 and 13 indicate the homoclinic, interaction and periodic
cross solutions, respectively.

6 Conclusion

In this work, two effective techniques namely, the modified generalized exponential rational
function method (mGERFM) and Hirota bilinear method (HBM) along with different test
functions are employed to construct to the fractional nonlinear Schrodinger equation which
is an example of a universal nonlinear model that describes many physical nonlinear sys-
tems. The observed solutions are devised as exponential, dark, periodic and combo singular
bright. Besides, rational, periodic, multiwaves, multi-kink with their interaction solution are
also derived, which seems as far as we know, not available in the literature. To interpret the
dynamics of some of these reported solutions, we provided supportive graphical depictions
for the simulated numerical results of the governing model described pulse interactions in
terms of the soliton parameters which set forth the reliability and well-productivity of the
proposed methods. These computed results will expedite the analysis and optimization of
the performance of the wave solutions in fiber optics.
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