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Abstract
In this article, the propagation of pulses in optical fiber has been studied by considering the 
nonlinear partial differential equation (NPDE). The proposed model is investigated using 
two analytical techniques namely the Sine-Gordon expansion (SGE) procedure and the 
modified auxiliary equation (MAE) method. The trigonometric function, hyperbolic func-
tion, and rational function solutions have been extracted from the proposed methods. The 
employed procedures are compatible in obtaining traveling wave solutions. Moreover, the 
obtained results are assisted with 3D graphs to demonstrate the physical significance and 
dynamical behaviors by using different parameter values.

Keywords  Traveling wave transformation · Soliton · Sine-Gordon expansion method · 
Modified auxiliary equation method · Schrödinger equation

1  Introduction

Within the past few years, exact solutions of NPDEs have gained considerable attention. For 
this reason many distinct procedures have utilized by researchers. We can list some of them 
as follows. Wazwaz have derived periodic soliton solutions of the Dodd-Bullough-Mikhailov 
and the Tzitzeica-Dodd-Bullough equations by tanh technique Wazwaz (2005). Akbulut et al. 
employed the modified simple equation method to the the fifth-order KdV equation Akbulut 
et al. (2021a) and verified trivial conservation laws and solitary wave solutions for the fifth 
order Lax equation Akbulut et al. (2021b). Akinyemi et al. have implemented the improved 
Sardar sub-equation method to the perturbed nonlinear Schrödinger-Hirota equation with spa-
tio-temporal dispersion Akinyemi et al. (2021). Aksoy et al. utilized the exponential rational 
function method for space–time fractional differential equations Aksoy et al. (2016). Ma et al. 
have considered the Hirota-Maccari system via the first integral procedure to extract bright, 
singular, and dark soliton solutions Ma et al. (2021). Sun et al. have utilized the Hirota bilinear 
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technique to the (2+1)-dimensional B-Kadomtsev-Petviashvili equation to find M-lump solu-
tions Sun et al. (2022). Durur et al. sub-equation procedure to the KdV6 equation Durur et al. 
(2020). Hosseini et al. have analyzed soliton solutions of the Hirota-Satsuma-Ito equation via 
the linear superposition principle Hosseini et  al. (2021). Raza et  al. have applied the Pain-
leve approach to a nonlinear Kudryashov’s equation Raza et al. (2021). Kumar have founded 
travelling waves, kink waves, rational function, lump-type solitons, multi-solitons, hyperbolic 
function, and trigonometric solutions by generalised exponential rational function method 
Kumar (2021). Osman et al. verified some travelling wave solutions of the 2D-chiral nonlin-
ear Schrodinger equation Osman et  al. (2020). Inc et  al. have founded exact analytic solu-
tions for the (2+1)-dimensional Ito equation by using simplest equation technique Inc et al. 
(2021). Akbulut et al. obtained the conservation laws of time fractional modified Korteweg–de 
Vries (mkdv) equation Akbulut and Tascan (2017a), searched some soliton solutions for vari-
ous equations Akbulut et al. (2022), and applied conservation theorem and modified extended 
tanh-function procedure to nonlinear coupled Klein–Gordon–Zakharov equation Akbulut and 
Tascan (2017b). Mirzazadeh et al. employed the improved F-expansion method to find differ-
ent wave solutions Mirzazadeh et al. (2022). Hosseini et al. obtained conservation laws and 
kink solitons of the Sharma–Tasso–Olver–Burgers equation Hosseini et  al. (2022). In this 
paper, to explain the propagation pulse in optical fiber, we are considering a new NPDE, in the 
following form

In Eq. (1), the complex function f(x, t) representing optical wave, where m and n are usu-
ally rational numbers (not necessarily integers) �1 , �1 , �1 , and �1 are the parameters. Equa-
tion (1) is the generalization of the well known nonlinear Schrödinger equation. At m = 0 
Eq. (1) get the following form

The motivation of this paper is to study Eq. (1). For investigating Eq. (1), two partial dif-
ferential equations have been obtained from Eq. (1) by taking m = n and m = 2n . Upon 
putting m = n , Eq. (1) becomes

and when we consider m = 2n , we obtain the equation with polynomial nonlinearity in the 
following expression

The paper consists of the following sections: We presented the mathematical analysis of 
the considered model in Sect. 2. Then, we gave a description of utilized techniques, respec-
tively the SGE and the MAE techniques in Sect. 3. The extraction of soliton solutions for 
the proposed models was given in Sect.  4. Section  5 gives graphical illustrations of the 
obtained results. Finally, the conclusion of the whole research in Sect. 6.

2 � The mathematical analysis

In order to find the exact soliton solution of Eqs. (3) and (4), the following traveling wave 
transformation is considered, as

(1)ift + fxx + �1f |f |2m−2n + �1f |f |2m−n + �1f |f |2m + �1f |f |2m+n + �1f |f |2m+2n = 0.

(2)ift + fxx + �1f |f |−2n + �1f |f |−n + �1f |f |n + �1f |f |2n = 0.

(3)ift + fxx + �1f + �1|f |nf + �1|f |2nf + �1|f |3nf + �1|f |4nf = 0,

(4)ift + fxx + �1|f |2nf + �1|f |3nf + �1|f |4nf + �1|f |5nf + �1|f |4nf = 0.
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where c is the speed and Υ is the amplitude of traveling wave. Using the transformation Eq. 
(5), the real parts of Eqs. (3) and (4) have been transformed into following ODEs, respec-
tively as,

and

The imaginary parts of Eqs. (3) and (4) gives the speed of traveling wave as

In order to obtain the closed form solutions for Eq. (6), apply the following transformation

Eq. (6) takes the following form

For obtaining closed form solutions for Eq. (10), the constraint conditions �1 = �1 = 0 have 
been imposed. Equation (10) becomes

In order to obtain the closed form solutions for Eq. (7), apply the following transformation

Eq. (7) takes the following form

For obtaining closed form solutions for Eq. (13), the constraint conditions �1 = �1 = �1 = 0 
have been imposed. Equation (13) becomes

3 � Description of utilized techniques

In this section, we gave a description of utilized techniques, SGE Alquran and Krishnan 
(2016)- Inc et al. (2018) and MAE Khater et al. (2019) respectively.

(5)f (x, t) = F(Υ)ei(kx−wt), Υ = x − ct,

(6)F�� −
(
w − k2 + �1

)
F + �1F

n+1 + �1F
2n+1 + �1F

3n+1 + 2�1F
4n+1 = 0.

(7)F�� −
(
w − k2

)
F + �1F

2n+1 + �1F
3n+1 + �1F

4n+1 + �1F
5n+1 + 2�1F

6n+1 = 0.

(8)c = 2k.

(9)F = V
1

2n
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1

2n

(
1
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− 1
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1
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1
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3 + �1V

10

3 + �1V
11

3 + �1V
4 = 0.
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1
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3.1 � The Sine‑Gordon expansion method

We take into consideration:

where f = f (x, t) and a ≠ 0.
Then, we apply the traveling wave transformation Eqs. (5), (15) reduces to

Integrating the above equation gives,

Here X is an integration constant. If we set X = 0 , F
2
= �(Υ) and h2 = a2

1−c2
 , then Eq. (17) 

becomes

If we take h = 1 in Eq. (18), then we find

Afterwards, we solve Eq. (19) to find

We predict the solution as follows:

Using Eqs. (20), (21), (22) becomes

Here N is the balancing number, which will be determined according to the homogenous 
balance technique. Then, we insert Eq. (23) into ODE to find an equation system for A0 , Ai , 
Bi . This system is founded if we equate the coefficients of each power of sinp(�) cosq(�) to 
zero. Solving the resulting system for A0 , Ai , Bi.

3.2 � Modified auxiliary equation (MAE) method

According to MAE method the solution of transformed ODE has the following form

(15)fxx − ftt = a2 sin f ,

(16)F
��

=
a2

1 − c2
sinF.

(17)
[(

F

2

)�]2
=

a2

1 − c2
sin

2
(
F

2

)
+ X,

(18)�
�

= h sin(�).

(19)�
�

= sin(�).

(20)sin � = sin(�(Υ)) =
2deΥ

d2e2Υ + 1
|d=1 = sech (Υ),

(21)cos � = cos(�(Υ)) =
d2e2Υ − 1

d2e2Υ + 1
|d=1 = tanh(Υ).

(22)F(Υ) =

N∑
i=1

tanh
i−1(Υ)

[
Bisech(Υ) + Ai tanh(Υ)

]
+ A0.

(23)F(�) =

N∑
i=1

cosi−1(�)
[
Bi sin(�) + Ai cos(�)

]
+ A0.
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p0 , qk and rk are constants. G(Υ) satisfies the differential equation

� , � , � are constants along with w > 0 and w ≠ 1 . The differential equation (25) has three 
types of solutions which are given below
Type 1:

When 𝛽2 − 4𝛼𝜎 < 0 and � ≠ 0 then

or

Type 2:
When 𝛽2 − 4𝛼𝜎 > 0 and � ≠ 0 then

or

Type 3:
 When �2 − 4�� = 0 and � ≠ 0 then

4 � Construction of solutions using proposed methods

This section gives the extraction of soliton solutions for the proposed models Eqs. 
(3) and (4) by employing the most efficient analytical procedures, SGE and the MAE 
techniques.

(24)F(Υ) = p0 +

N∑
k=1

[
qk(w

G)k + rk(w
G)−k

]
,

(25)G
�
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� + �w−G + �wG

lnw
,
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√
4�� − �2 tan
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√
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2�
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2

�

2�
.
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2 + ��
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4.1 � Method‑I (SGE) method

In this subsection, we will obtain soliton solutions of Eqs. (3) and (4) via the SGE pro-
cedure. For this purpose, we balance V ′2 with V4 in Eq. (11) and find N = 1 . Therefore, 
the solution takes the form:

Then, we use the solution procedure as explained earlier in Sect. 3. The values of unknowns 
A0 , A1 , B1 are calculated as:
SET 1:

SET 2

SET 3

Bright-dark soliton solutions can be founded for SET 1 as

Bright soliton solutions can be founded for SET 2 as follows

Dark soliton solutions are obtained for SET 3 as follows

Moreover, we will also find soliton solutions of Eq. (4) via SGE technique. If we balance 
V ′2 with V4 in Eq. (14), we find as N = 1 . The values of unknowns A0 , A1 , B1 are calculated 
as:
SET 1:

Dark soliton solutions can be founded for SET 1 as

(26)V(Υ) = B1 sech (Υ) + A1 tanh(Υ) + A0.

A0 =
1 + n

4n2�1
, A1 =

1 + n

4n2�1
, B1 =

i(1 + n)

4n2�1
, �1 = −

n2(1 + 2n)�2
1
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, w = k2 −

1

4n2
− �1.
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1 + n

n2�1
, A1 = −

1 + n

n2�1
, B1 = 0, �1 = −

n2(1 + 2n)�2
1

4(1 + n)2
, w = k2 −

1

n2
− �1.

A0 =0, A1 = 0, B1 = ±

√
1 + 2n

2n
√
�1

, w = k2 −
1

4n2
− �1.

(27)f1(x, t) = ei(kx−wt)
[(

�(1 + n)

4n2�1

)
sech (Υ) +

(
1 + n

4n2�1

)
tanh(Υ) +

1 + n

4n2�1

] 1

2n

.

(28)f2(x, t) = ±ei(kx−wt)

��√
1 + 2n

2n
√
�1

�
sech (Υ)

� 1

2n

.

(29)f3(x, t) = ei(kx−wt)
[
−

(
1 + n

n2�1

)
tanh(Υ) +

1 + n

n2�1

] 1

2n

.

A0 =
4 + 6n

9n2�1
, A1 = ±

4 + 6n

9n2�1
, B1 = 0, �1 = −

9n2(1 + 3n)�2
1

4(2 + 3n)2
, w = k2 −

4

9n2
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4.2 � Method‑II (MAE) technique

In this subsection, we will find soliton solutions of Eq. (3) via MAE technique. Since N is 
founded as 1, Eq. (24) takes the following form

where p0, q1 and r1 are constants to be determined by Inserting Eq. (31) in the Eq. (11). 
Then assemble all the coefficients of the powers of wG(�) and put them equal to zero. This 
leads to construction of set of algebraic equations. Upon solving the obtained system gives 
the value of arbitrary parameters p0, q1 and r1 , which are summarized in the following sets 
of solutions as 
SET 1:

SET 2:

The solutions corresponding to SET 1: are evaluated below.
Type 2:

 When 𝛽2 − 4𝛼𝜎 > 0 and � ≠ 0 then

or

The solutions corresponding to SET 2: are evaluated below.
Type 1:

 When 𝛽2 − 4𝛼𝜎 < 0 and � ≠ 0 then

(30)f4(x, t) = ei(kx−wt)
[
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9n2�1
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] 1
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.
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4�� − 1

4n2
.
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�
)
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⎥⎥⎥⎦

1

2n
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⎡
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�
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or

Type 2:
 When 𝛽2 − 4𝛼𝜎 > 0 and � ≠ 0 then

or

We wil find soliton solutions of Eq. (4) via MAE procedure.
SET 1:

SET 2:

The solutions corresponding to SET 1: are evaluated below.
Type 2:

 When 𝛽2 − 4𝛼𝜎 > 0 and � ≠ 0 then

(36)f7(x, t) = ei(kx−wt)
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or

The solutions corresponding to SET 2: are evaluated below.
Type 1:

 When 𝛽2 − 4𝛼𝜎 < 0 and � ≠ 0 then

or

Type 2:
 When 𝛽2 − 4𝛼𝜎 > 0 and � ≠ 0 then

or

5 � Graphical illustrations

In this section, we provide the graphical illustrations of few of the determined solutions. 
It is important to mention here that explicit and consistent wave solutions are extracted by 
applying two different reliable schemes. Figures 1, 2, 3 and 4 represents the 3D and 2D 
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plots of Eqs. (29), (30), (35) and (44) respectively by taking �1 = 2 , k = 1 , w = 2 , � = 1 , 
� = 1 and �1 = 2.

6 � Conclusion

In this work, the trigonometric function solutions, hyperbolic function solutions, and 
rational function solutions have been analyzed to investigate the propagation of pulses 
in optical fiber. These results are beneficial and useful in optical fibers and nonlinear 

Fig. 1   a is 3D plot of Eq. (29) for n = 2 , b is 2D line plots of Eq. (29) with respect x 

Fig. 2   a is 3D plot of Eq. (30) for n = 2 , b is 2D line plots of Eq. (30) with respect x 
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wave phenomena. We have successfully implemented the SGE and the MAE technique 
with the help of computerized symbolic computation. The outcomes of the present man-
uscript affirmed the capacity of the schemes in handling a broad diverseness of NPDEs. 
Moreover, for future works, super nonlinear, quasi-periodic, chaotic, and solitonic 
waves can be founded.

Funding  The authors have not disclosed any funding.

Fig. 3   a is 3D plot of Eq. (35) for n = 2 , b is 2D line plots of Eq. (35) with respect x 

Fig. 4   a is 3D plot of Eq. (44) for n = 2 , b is 2D line plots of Eq. (44) with respect x 
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