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Abstract
In this work, a variety of optical soliton solutions are derived for a nonlinear generalized 
equation with variable coefficients. At first, a computational approach is used to obtain 
solutions for the proposed model for a particular case. After, a generalized approach is 
considered to obtain other type of solutions given in a more general form. From the model 
considered here, the classical perturbed Fokas-Lenells equation is obtained and new opti-
cal soliton solutions for this last case are presented. Finally, some conclusions are given.
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1 �  Introduction

A variety of important phenomena that appear in the real live are described by means of 
nonlinear partial differential eauations (NLPDEs), and depending on its nature, are studied 
in several areas of the science, particularly in a variety of branchs of the physics, commu-
nications, finance, biology, and many others. On the solutions of that models have great 
relevance the solitons, due to, only with them its possible understand many phenomena and 
construct new technology used wydely oround of the world, so that, the solitons theory, 
is today one of the most important lines of investigation of the applied mathematics. All 
investigationes with new resuts are very important to improved and help to construc this 
new branch of the science. The study of NLPDEs can be made using analytic tools, com-
putational methods, or from of point of view of numerical approximations. Actually, the 
analytic methods are used to prove existence of solutions, or obtain some characteristics of 
them, however, it must be complemented with computational methods to obtain exact solu-
tions, or numerical methods to obtainn approximations on the respective solution. Each 
day, appear new models or appear new applications for the models analyzed previously and 
join with this fact, new thechniques are developed to handel those models, or in its defect, 
some methods used previously are improved. For example, many of the most classics mod-
els used in appplied mathematics, was construct with constant coeffcients, however, after 
some time, application of such models with variable coeffcicients have relevance today, see 
for instance the references (Nirmala et al. 1986), (Miura 1968), (Yang 2012), (Salas and 
Gómez 2009), (Gómez and Cesar 2020). Clearly, the use of variable coefficients, give us 
a generalization of the classical models, in the sense, the coefficient constants appear as a 
particular case. Moreover, solutions with new structure are derived, which can be help us 
to understand in a better way the dynamical of the phenomena described by the respective 
NLPDE. In the same direction, computational methods as the tanh-coth method (Wazwaz 
2007), the Kudryashov method (Kudryashov 2012), was been implemented and use to 
obtain exact solutions for a variety of NLPDEs, however, the improved tanh-coth method 
was presented as a generaliztion of the two mentioned methods and has been used in a 
satisfactory way (Gómez and C. A., and Salas, A. H. 2008), (Salas 2010). We can men-
tined other additionally meethods such as the G�∕G2− method (Kaur and Wazwaz 2018), 
the Exp(−�(�) ) method (Kaur and Wazwaz 2018; Hafez et  al. 2015), the new extended 
auxiliary equation method (Zayed and Alurrfi 2016; Al-Ghafri et  al. 2020; Bansal et  al. 
2018; Biswas et al. 2018), and many others computational methods used widely by many 
researches (Ghanbari 2021; Ghanbari et al. 2020; Ghanbari 2021; Srivastava et al. 2019; 
Akinyemi et  al. 2021, 2021; Akinyemi 2021; Kumar 2021; Dhiman et  al. 2021; Kumar 
and Rani 2021; Chen et al. 2021; Khodadad et al. 2021; Zafar et al. 2022; Hashemi 2018). 
Recently, the NLPDEs with fractional derivative are taking relevance in novel applications, 
so that, for this type of equations new computational and numerical methods have been 
implemented, in the following references, appear some fractional models and the respec-
tive method used to handle it: (Iqbal et al. 2021; Wang et al. 2022; Hajiseyedazizi et al. 
2021; He et al. 2022; Rashid et al. 2022; Hasheimi and Baleanu 2020; Jin et al. 2022).

In this work, we will study, from of point of view of its exact solutions, the following 
perturbed Fokas-Lenells equation with variable coefficients

where, q = q(x, t) , and the coefficients in the equation are functions depending on t. 
In the case that that coefficients turn constant, the model reduce to classical perturbed 

(1)
�qt + A(t)qxx + B(t)qxt + C(t)|q|2q + �D(t)|q|2qx = �[H(t)qx + F(t)(|q|2mq)x + G(t)(|q|2m)xq],
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Fokas-Lenells (PFL) equation (Al-Ghafri et  al. 2020; Bansal et  al. 2018). As was men-
tioned early, the solitons have many applications in the modern industry, specially in those 
that use optic fibre. Several models have used to modelling optical solutions: The Chen-
Lee-Liu equation (Biswas et  al. 2018), the nonlinear Schrödinger type equation (NLS) 
(Zayed and Alurrfi 2016), the Manakov system (Yıldırım 2019), the Gerdjikov-Ivanov 
equation (Gomez et  al. 2021), the classical perturbed Fokas-Lenells equation (Al-Ghafri 
et al. 2020; Bansal et al. 2018) ,and many others. Many researches, from some year ago, 
was take the classical (PFL) as a important equation to modelling optical solitons and 
have used it to improved the technology that use optical fibres in the actuality: Internet, 
Facebook, email and many other fields of the industry of communications. The solutions 
obtained in this work, due to its variable coefficients, are clearly new in the literature, and 
therefore they are an important contribution to the solitons theory. Moreover, recently the 
study of nonlinear chirping for the NLS and generalizations of this equation, has become in 
a very important topic of study, due to widely applications in the industry of communica-
tions (Al-Ghafri et al. 2020). So that, from the results obtained here for the Fokas-Lenells 
equation, new chirped optical pulses ca be derived, and therefore, we are contributing to 
knowledge of this type of pulses, used widely in communications theory.

The paper is organized as follows: In Sect. 2, we use the tanh-coth method for solve Eq. 
(1), and we obtain exact solutions. In Sect. 3, we give a discussion on the results. Finally, some 
conclusions are given.

2 � Exact solutions for (1) using the tanh‑coth method

With the objective of find exact solutions for (1), we consider the wave transformation

which reduces (1), to following system where the first equation correspond to imaginary 
part, and the second to real part:

Here ε�ε is the ordinary derivation respect to � , and in (2), �0, �1 are constant. All coef-
ficients of the system (3), are depending on t, by simplicity we omit this notation in the 
follows.

2.1 � Particular case

We take Φ(�) = � , � = 0 and m = 1 , in (2), so that, (3), becomes

With the restriction

(2)
{

q(x, t) = u(�)e�(Φ(�)+∫ �(t)dt+�1),

� = x + ∫ �(t)dt + �0,

(3)

{
(� + B� − H)u�(�) + (2A + 2B�)u�(�)Φ�(�) + B�u(�)Φ��(�) − (2m + 1)Fu2m(�)u�(�) − 2mGu2m(�)u�(�) = 0,

(−H + � + B�)u(�)Φ�(�) − Fu
2m(�)Φ�(�) + �u(�) − (A + B�)u(�)(Φ�(�))2 − Cu

3(�) + Du
3(�)Φ�(�) = 0.

(4)
{

(� + 2A + 2B� − H)u�(�) + (D − 3F − 2G)u2(�)u�(�) = 0,

(−� − A − B� + H)u(�) + (A + B�)u��(�) + (C − D + F)u3(�) = 0.

(5)D = 3F + 2G,



	 C. Gomez S et al.

1 3

370  Page 4 of 10

we can take

for reduce (4), to the equation

In this step, we consider the solution for (7), in the following form:

where, �(�) satisfy the Riccati equation

Substituting (8), into (7), and balancing u3(�) with u��(�) , we obtain M = 1 . With this value, 
(8), converts to

where ai = ai(t), i = 0, 1, 2 are functions to be determinate latter. Now, replacing (10), into 
(7), and using (9), we obtain the algebraic system

Using Maple or Mathematica, the following solutions of previous system are obtained:

(6)� =
H − 2A

1 + 2B
, B ≠ −

1

2
,

(7)(−� − A − B� + H)u(�) + (A + B�)u��(�) + (C − D + F)u3(�) = 0.

(8)u(�) =

M∑
i=0

ai(t)�(�)
i +

2M∑
i=M+1

ai(t)�(�)
M−i,

(9)��(�) = �(t)�2(�) + �(t)�(�) + �(t).

(10)u(�) = a0 + a1�(�) + a2�(�)
−1,

(11)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

3a1A�� + 6a0a
2

1
BC − 12a0a

2

1
BF − 12a0a

2

1
BG + 3a1�B�H + 3a0a

2

1
C − 6a0a

2

1
F − 6a0a

2

1
G = 0,

2a1A�
2 + 2a3

1
BC − 4a3

1
BF − 4a3

1
BG + 2a1B�

2
H + a

3

1
C − 2a3

1
F − 2a3

1
G = 0,

�a1A� + a2A�� + a0A + 2a3
0
BC + 12a1a2a0BC − 4a3

0
BF − 24a1a2a0BF − 4a3

0
BG − 24a1a2a0BG+

�a1�BH + a2�B�H + a0BH + a
3

0
C + 6a1a2a0C − 2a3

0
F − 12a1a2a0F − 2a3

0
G − 12a1a2a0G = 0,

2�a1A� + a1A�
2 + a1A + 6a2

0
a1BC + 6a2

1
a2BC − 12a2

0
a1BF − 12a2

1
a2BF − 12a2

0
a1BG − 12a2

1
a2BG+

2�a1B�H + a1�
2
BH + a1BH + 3a2

0
a1C + 3a2

1
a2C − 6a2

0
a1F − 6a2

1
a2F − 6a2

0
a1G − 6a2

1
a2G = 0,

3�a2A� + 6a0a
2

2
BC − 12a0a

2

2
BF − 12a0a

2

2
BG + 3�a2�BH + 3a0a

2

2
C − 6a0a

2

2
F − 6a0a

2

2
G = 0,

2�a2A� + a2A�
2 + a2A + 6a1a

2

2
BC + 6a2

0
a2BC − 12a1a

2

2
BF − 12a2

0
a2BF − 12a1a

2

2
BG − 12a2

0
a2BG+

2�a2B�H + a2�
2
BH + a2BH + 3a1a

2

2
C + 3a2

0
a2C − 6a1a

2

2
F − 6a2

0
a2F − 6a1a

2

2
G − 6a2

0
a2G = 0,

2�2
a2A + 2a3

2
BC − 4a3

2
BF − 4a3

2
BG + 2�2

a2BH + a
3

2
C − 2a3

2
F − 2a3

2
G = 0.

(12)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

� = −
i(a20(2B+1)(C−2(F+G))+A+BH)
a2

√
4B+2

√
A+BH

√
C−2(F+G)

,

� = −
ia2

√
2B+1

√
C−2F−2G√

2
√
A+BH

,

� = −
i
√
2a0

√
2B+1

√
C−2F−2G√

A+BH
,

a0 = a0, a1 = 0, a2 = a2.
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The general solution for (9), can be written as

however, an explicit classification of the solutions for (8), can be find in the reference 
(Salas 2010). We obtain u(�) , for the set of values given by (13), and (15): According with 
(13), (10), and (18), we have:

(13)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

� = −
ia1

√
2B+1

√
C−2F−2G√

2
√
A+BH

,

� = −
i(a20(2B+1)(C−2(F+G))+A+BH)
a1

√
4B+2

√
A+BH

√
C−2(F+G)

,

� = −
i
√
2a0

√
2B+1

√
C−2F−2G√

A+BH
,

a0 = a0, a1 = a1, a2 = 0.

(14)

⎧⎪⎪⎨⎪⎪⎩

� =
i
√
2A+2BH

2a2

√
2B+1

√
C−2F−2G

,

� =
ia2

√
2B+1

√
C−2F−2G√

2A+2BH
,

� = 0,

a0 = 0, a1 = 0, a2 = a2.

(15)

⎧⎪⎪⎨⎪⎪⎩

� = −
i
√
A+BH

4a2

√
4B+2

√
C−2(F+G)

,

� = −
ia2

√
2B+1

√
C−2F−2G√

2A+2BH
,

� = 0,

a0 = 0, a1 =
−A−BH

4a2(2B+1)(C−2F−2G)
, a2 = a2.

(16)

⎧⎪⎪⎨⎪⎪⎩

� = −
ia1

√
2B+1

√
C−2F−2G√

2A+2BH
,

� = −
i
√
2A+2BH

2a1

√
2B+1

√
C−2F−2G

,

� = 0,

a0 = 0, a1 = a1, a2 = 0.

(17)

⎧⎪⎪⎨⎪⎪⎩

� =
a1

√
(2B+1)(C−2(F+G))√

2
√
−A−BH

,

� = 0,

� = −
√
2,

a0 = −
√
−A−BH√

2BC−4BF−4BG+C−2F−2G
, a1 = a1, a2 = 0.

(18)

𝜙(𝜉) = −

√
𝛽2(t) − 4𝛼(t)𝛾(t) tanh[

1

2

√
𝛽2(t) − 4𝛼(t)𝛾(t)𝜉] − 𝛽

2𝛾
, 𝛽2(t) − 4𝛼(t)𝛾(t) > 0,

(19)u(�) = −

tanh

�
x√
2

�√
−A − BH

√
2B + 1

√
C − 2(F + G)

.
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In the same way, for the values given by (15):

The following are the graphics, for u(�) given by (19), and given by (20), in the interval 
(x, t) ∈ [−2, 2] × [0, 3] (Fig. 1):

The figures ( u1 ) and ( u3 ) correspond to (19) and (20) for the values: 
H = −3,B = 1,C = 5,F = 1,G = 1,A = 1 . The figure ( u2 ) and ( u4 ) correspond to (19) and 
(20) for the values: H = −3t2,B = t2,C = 5t,F = t2,G = t,A =

t3

2
.

Finally, solutions for Eq. (1), in the particular case considered here, with the restriction 
(5), is given by:

where u(�) , given as in (19), or (20). Using (12), (14), (16), and (17), can be construct more 
solutions for u(�) (and therefore for (1)), however, as it have the same structure of those 
showed here, we omit it.

(20)u(�) = −

coth

�
x√
2

�√
−A − BH

√
2B + 1

√
C − 2(F + G)

.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

q(x, t) = u(�)e�(�)

� = x + ∫ � dt + �0,

� = H−2A
1+2B

, B ≠ − 1
2
,

Fig. 1   .
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2.2 � General case

We consider the system (3). Multiplying the first equation by u�(�) , and integrating the 
resultant equation with respect to � , and taking the integration constant as zero, we 
obtain

We take m = 1 . So that, (21), becomes

Now, we replace (22), into second equation in the system (3). We have

Multiplying (23), by u�(�) , and Integrating respect to � , setting the integration constant as 
zero, finally we have an equation of the form

where

Solutions for equation u�(�)2 = r2(t)u(�)
2 + r4(t)u(�)

4 + r6(t)u(�)
6 can be expressed as:

Here, ri = ri(t) , r2 > 0 . In this case, the solutions for (1), are determined by (2), with u(�) 
given by (25) or (26).

(21)

� + B� − H

2
u2(�) + (A + B�)u2(�)Φ�(�) +

D

4
u4(�) −

(2m + 1)F + 2mG

2m + 2
u2m+2(�) = 0.

(22)Φ�(�) =
H − � − B�

2(A + B�)
+

3F + 2G − D

4(A + B�)
u2(�).

(23)

−4[H2 + �2 − 2B�� − 2H(� + B�) + �(−4A + B2�)]u(�)

−8[2AC + FH + 2BC� − F� − BF� + 2D(−H + � + B�)]u3(�)

−[7D2 − 22DF + 3F2 − 12DG − 4FG − 4G2]u5(�)

−16(A + B�)2u��(�) = 0.

(24)u�(�)2 = r2u
2(�) + r4u

4(�) + r6u
6(�),

r2(t) = −
H2+�2−2B��−2H(�+�|rho)+�(−4A+B2�)

4(A+B�)2
.

r4(t) = −
2AC+FH+2BC�−F�−BF�+2D(−H+�+B�)

4(A+B�)2

r6(t) = −
7D2−22DF+3F2−12DG−4FG−4G2

48(A+B�)2

(25)

u(�) = ±
√
2

���������
r2

�
r4sech

2
�
2
√
r2�

�
+

��
r2
4
− 4r2r6

�
tanh

2
�
2
√
r2�

��
−sech2

�
2
√
r2�

���

4r2r6 tanh
2
�
2
√
r2�

�
− r2

4

.

(26)

u(�) = ±
√
2

���������
r2

�
r4sech

2
�
2
√
r2�

�
−

��
r2
4
− 4r2r6

�
tanh

2
�
2
√
r2�

��
−sech2

�
2
√
r2�

���

4r2r6 tanh
2
�
2
√
r2�

�
− r2

4

.
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3 � Results and Discussion

We have obtained exact solutions for the Fokas-Lenells equation with variable coeffi-
cients. The solution are new in the literature due to use of variable coefficients. Clearly, 
solutions for the standar model (constant coefficients) are derived as particular case. As 
was mentioned in the introduction, we have used the tanh-coth method due to several 
reasons: It is a generalization of the two classical methods, the tanh-coth method and 
the Kudriashov method; can be implemented computationally without the use of many 
resources; can be applied directly on a system, avoid in this way the reduction to only 
one equations as other methods; can be used to solve equations with variable coeffi-
cients. We have illustrate the type of solutions using some graphs: u1 and u3 illustrate the 
solutions (19), and (20), in the case of some constant coefficients. We can note that, the 
two solutions are plotted in the same interval, u1 a smooth wave, and u3 a solitary wave 
type dark soliton. In the same way, we have used variable coefficients in the same inter-
val: u2 and u4 . We note the two solutions are different, and compared with u1 and u3 , the 
new waves are smooth and truncated. We note the use of variable coefficients, give us 
waves with new structures compared with the case of variable coefficient. Finally, we 
have solved (1), in a more general form, where we have used (24), from which, we 
obtain solutions that compared with those obtained in Al-Ghafri et al. (2020), are new, 
complementing in this way the results obtained by the authors in that reference. The 
generalization of a chirp pulse is defined as �w(x, t) = −

�

�x
[Φ(�) − ∫ �(t)dt] = −Φ�(�) , 

(a definition is given by the authors in Al-Ghafri et al. (2020)), therefore, for each solu-
tion obtained here, the corresponding chirped pulse can be derived, complementing in 
this way the results obtained, for instance in Al-Ghafri et al. (2020).

4 �  Conclusions

A new generalized model with variable coefficients given by Eq. (1) is studied, from 
the point of view of its exact solutions. Two approximations to this task have been pre-
sented. First, we consider a particular case, where a condition (given by (5)) it necessary 
to construct the solutions. In this case, using the computational method (improved tanh-
coth method) are derived soliton solutions, and some graphics corresponding to u(�) 
have been showed to illustrate the case in which the coefficients are constant or variable. 
Second, a more general approximation is considered, obtaining an equation which have 
special solutions, which we use to construct the solutions using the transformation (2). 
In this second case, all variables used are arbitrary, as well the function Φ(�) , taking 
into account that the coefficient given by r2 , must by positive. As the coefficients are 
variable, those include the constants, so that, from the solutions presented here, solu-
tions of the standard perturbed Fokas-Lenells equation can be obtain.
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