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Abstract
This paper carries out the analytical optical soliton solutions of perturbed Radhakrishnan–
Kundu–Lakshmanan (pRKL) equation with Kerr law nonlinearity using an efficient modi-
fied extended tanh expansion method, enhanced with the new Riccati solutions (eMETEM). 
In this study, we have established robust solutions for the pRKL by using the eMETEM 
method for the first time. We have focused to construct the effective scheme for the solu-
tion of governing model. Bright, dark, combined bright-dark, singular, multiple singular, 
flat kink-like, breather-like, periodic, different periodic optical solitons have been success-
fully obtained and confirmed with the help of Maple and Matlab symbolic computation 
packages. The physical properties of the data have been discussed and presented in 3D, 2D 
and contour graphics. The results have also been interpreted in the relevant sections.
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1 Introduction

There has been significant and thorough research into the generation of soliton waves and 
their applications in recent decades. Optical solitons, which are made up of soliton trans-
mission technology and soliton molecules, are one sort of this research. They can trans-
port information across intercontinental distances all over the world. Optical solitons are 
confined electromagnetic waves with constant intensity due to dispersion and nonlinearity 
effects. For example, parabolic law nonlinearity (Triki and Biswas 2011), dual-power law 
nonlinearity (Triki and Biswas 2011; Zhang and Si 2010), power law nonlinearity (Biswas 
2001), cubic-quintic-septic nonlinearities (Mirzazadeh et al. 2021), non-Kerr law nonlin-
earity (Biswas 2003), various polynomial nonlinearities (Kudryashov 2020), Kudryashov’s 
sextic power-law of refractive index (Zayed et al. 2021) and so on.

Nonlinear complex physical processes are vital in physics, chemistry, biology, plasma, 
fibers, nonlinear optics, geochemistry, illumination, energy transmission, and communica-
tions, among other fields of science. There has been a review of nonlinear Schrödinger 
equations (NLSEs) with group velocity dispersion (GVD) (Baskonus et  al. 2021), Kerr 
nonlinearities (Houwe et al. 2020), spatio-temporal dispersion (Yildirim et al. 2017), self-
steepening (Seadawy et al. 2022), and other solutions. Optical solitons are seen in nonlinear 
models such as nano-fibers (Biswas et al. 2016), optical fibers (Hasegawa and Matsumoto 
2003), quantum electronics, optoelectronics, and photonics (Zhou et  al. 2014; Karasawa 
2012; Husko et al. 2016).

Breather solutions for NPDEs in addition to solitons are among the important models 
for exploring nonlinear wave solutions, since breather synchronization associated with 
their self-oscillating properties is complicated and has great challenges  in many cases.

Recently, due to this perspective, phase-sensitive breather interactions have been one of 
the most studied areas. Some interesting studies that can easily be found on internet search, 
such as heart-cusp and bell-shaped-cusp optical solitons of an extended two-mode version 
of the complex Hirota model (Alquran et al. 2021), dynamics of optical solitons and non-
autonomous complex wave solutions for the nonlinear Schrödinger  equation with vari-
able coefficients (Sulaiman et al. 2021), the nonautonomous complex wave solutions of the 
(2 + 1)-dimensional variable-coefficients nonlinear chiral Schrödinger equation (Sulaiman 
et al. 2020), exact solution of time-dependent Ginzburg–Landau equations, specifying the 
superconducting-normal interface propagation speed in superconductors (Panna and Islam 
2013), the phase-dependent appearance of optical rogue waves (Anti Kainen et al. 2012), 
ultrafast digital soliton logic gates (Islam et al. 1992), new approach to chaotic encryption 
(Akhmediev et al. 2009), nonlinear stage of modulation instability (Zakharov and Gelash 
2013), monitoring of rogue wave triplets in water waves (Chabchoub and Akhmediev 
2590), breather wave molecules (Xu et al. 2019) and so on can be given as examples. There 
are many various types of solutions that have been proposed in the literature, but there are 
still many more that have yet to be investigated. In epitome, the key point is to investigate 
the pRKL equation with Kerr law nonlinearity (Singh 2016; Biswas et al. 2018; Ozdemir 
et al. 2021) by eMETEM.

The perturbed generalized Radhakrishnan-Kundu-Lakshmanan model with Kerr law is 
given:

(1)i
�u

�t
+ �

�2u

�x2
+ �|u|2u = i�

�u

�x
+ i�

�

�x

(|u|2u) + i�
�

�x

(|u|2)u − i�
�3u

�x3
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In Eq.  (1), i denotes imaginary unit ( i2 = −1 ), u(x, t) is the dependent variable which 
represents the complex valued wave profile, spatial x and temporal t are the independent 
variables. The first term iu

t
 stands for temporal evolution of the nonlinear wave, � is the 

GVD, � is the coefficient of nonlinearity, � is the inter-modal dispersion, � is the coefficient 
of self-steepening for short pulses, � is the coefficient of the higher-order dispersion and � 
is the coefficient of the third order dispersion (TOD) term (Singh 2016; Biswas et al. 2018;  
Ozdemir et al. 2021).

Generally, in the optical system, the waveguides are of the Kerr type, and to describe the 
dynamics of light pulse propagation, the nonlinear Schrödinger equations (NLSEs) with 
cubic nonlinear terms are used. When the power of  incident light increases to produce 
shorter (femtosecond-fs) pulses, the effects of non-Kerr nonlinearity become an impor-
tant key that also very complicated to describe and investigate. The one of the best ways 
which to identify the dynamics of pulse, use the NLSEs with higher order nonlinear terms. 
So, Eq. (1) is one of the important models to describe for short pulse propagation in opti-
cal fiber. In order to investigate the pRKL in Eq.  (1), pulse widths should be less than 
100 fs (Radhakrishnan et al. 1999; Biswas 2009) and the interaction between the GVD and 
TOD is also crucial importance. If the group velocity dispersion closes to zero, in order to 
keep and enhance the performance of the pulse interaction along trans-oceanic distances 
it should be needed to consider the third order dispersions. Similarly, if the group velocity 
dispersion changes, it needs to be considered the higher order dispersion terms (Biswas 
2009).

In this study, the proposed eMETEM has been applied to pRKL equation.
We have organized the rest of the sections: The mathematical analysis of the investi-

gated pRKL equation has been given in Sect. 2. The proposed and applied eMETEM have 
been presented and implemented to the investigated pRKL equation in Sect. 3. We have 
explained the results and given graphical presentations of the obtained solutions in Sect. 4. 
We have presented the conclusion in the final section.

2  Mathematical analysis of the problem

We start by considering the following wave transform equations,

where k, �, �  and v are non-zero real values,� symbolizes the phase-component, � is the 
phase-constant, k denotes the frequency, � is the parameter of wave number, v is the veloc-
ity, M(�) is the amplitude and M(x, t) for pulse shape.

Inserting the Eqs.  (2) into (1) and decomposing the resultant equation as real and 
imaginary components, we reach the following nonlinear ordinary differential equations 
(NLODEs):

(2)M(x, t) = e
i�
M(�) , � = x − vt , � = −kx + �t + �

(3)(−k� + �)(M(�))3 +
(
−�k3 − �k2 − k� − �

)
M(�) + (3�k + �)

d2M(�)

d�2
= 0,

(4)�
d3M(�)

d�3
+
(
(−3� − 2�)(M(�))2 − 3�k2 − 2�k − v − �

)dM(�)

d�
= 0.
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Integrate the Eq. (4), then assume the integration constant to zero, one can derive the 
Eq. (5).

Since the function M(�) must satisfy the eqs. (3) and (4), according the homogeneous 
balance principle one can write following constraint equations:

Under the constraint equations eqs. (6) and (7), we can take into account nonlinear 
ordinary differential equation (NLODE) form of Eq.  (1) as Eq.  (3) or Eq.  (5). Let we 
take Eq. (3) as NLODE form of Eq. (1).

where M = M(�) and the superscript ′ denotes for ordinary derivative with respect to �.

3  eMETEM and implementatiton to pRKL equation

Let us take in to account that the solution of NLODE in the Eq. (8) is proposed in the 
form:

where A0, ...,Am
,B1, ...,Bm

 are real constants to be computed later ( A
m
,B

m
 should not be 

zero simultaneously). m is the balancing constant which is obtained by using the balancing 
rule. We derive m = 1, by considering the terms M��(�) and M(�)3 in Eq. (8). Thus, Eq. (9) 
will be in in the following form:

where �(�) realizes the Eq. (11).

where w is an arbitrary real constant.
As it is well known from the literature, the Eq. (11) is the auxiliary equation of the 

generalized tanh method (Fan and Hon 2002) or METFM (Darwish et al. 2021; Elwakil 
et al. 2003; Raslan et al. 2017), which is widely used by researchers, and has the general 
solutions �1(�), �2(�), �8(�), �9(�), �15(�) in Table 1.

(5)(−3� − 2�)(M(�))3 +
(
−9�k2 − 6�k − 3� − 3v

)
M(�) + 3�

d2M(�)

d�2
= 0.

(6)� = −
6�k� + 6�k� + 3�� + 2��

3�
,

(7)v = −
8�2k3 + 8��k2 + 2�2k + 2�k� + �� − ��

3�k + �
.

(8)(� − k�)M3 −
(
�k3 + k

2 + k� + �
)
M + (� + 3k�)M�� = 0,

(9)M(�) = A0 +

m∑
i=1

(
A
i
� i(�) + B

i
�−i(�)

)
……… ,A

m
,B

m
≠ 0

(10)M(�) = A0 + A1�(�) + B1

1

�(�)
…… , A1,B1 ≠ 0

(11)
d�(�)

d�
= w + [�(�)]2
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Substitute the Eq. (10) and its derivatives according to Eq. (11) into Eq. (8), then get the 
polynomial in powers of �(�). Collect the all terms considering the same power of  � i(�) 
and assume the each coefficients to zero, result is the following system:

Solutions of the Eq. (12), gives the possible solution sets as given:

�−3(�):
B1(3�k + �)

(

6�w2 − 3�B2
1 − 2�B2

1
)

3�
= 0,

�−2(�): −
B2
1(3�k + �)(2� + 3�)A0

�
= 0,

�−1(�): −
B1
�

⎛

⎜

⎜

⎝

k
(

k2 − 6w
)

�2 +
(

k2� +
(

6A1(� + 3∕2�)B1 + 6�A2
0 + 9�A2

0 + �
)

k − 2w� + �
)

�

+2(� + 3∕2�)
(

A2
0 + A1B1

)

�

⎞

⎟

⎟

⎠

= 0,

�0(�): −
A0
�

⎛

⎜

⎜

⎝

�2k3 +
(

k2� +
(

(2� + 3�)A2
0 + 12A1(� + 3∕2�)B1 + �

)

k + �
)

� + 4� (� + 3∕2�)
(

A1B1 + 1∕6A2
0
)

⎞

⎟

⎟

⎠

= 0,

(12)

�1(�): −
A1
�

⎛

⎜

⎜

⎝

k
(

k2 − 6w
)

�2 +
(

k2� +
(

6A1(� + 3∕2�)B1 + 6�A2
0 + 9�A2

0 + �
)

k − 2w� + �
)

�

+2 (� + 3∕2�)
(

A2
0 + A1B1

)

�

⎞

⎟

⎟

⎠

= 0,

�2(�): −
A2
1(3 � k + �)(2� + 3�)A0

�
= 0,

�3(�): − 2
(� k + �∕3)A1

(

(� + 3∕2�)A2
1 − 3 �

)

�
= 0.

(13)

Rset1,2 =

{

� = −� k3 − � k2 + (−12 �w − �)k − 4w�,A0 = 0,A1 = ∓

√

6(2� + 3�)�
2� + 3�

,B1 = ∓
w
√

6(2� + 3�)�
2� + 3�

}

Rset3,4 =

{

� = −� k3 − � k2 + (24 �w − �)k + 8w�,A0 = 0,A1 = ∓

√

6(2� + 3�)�
2� + 3�

,B1 = ±
w
√

6(2� + 3�)�
2� + 3�

}

Table 1  The generalized (Fan and Hon 2002) and enhanced (Tang et al. 2010; Ozisik 2022) solutions of 
Eq. (11)

w < 0, w > 0,

�1(�) = −
√
−w tanh(

√
−w

�
� + �0

�
) �8(�) =

√
w tan(

√
w
�
� + �0

�
)

�2(�) = −
√
−w coth(

√
−w

�
� + �0

�
) �9(�) = −

√
w cot(

√
w
�
� + �0

�
)

�3(�) = −
√
−w

�
tanh

�
2
√
−w

�
� + �0

��

+i�sech
�
2
√
−w

�
� + �0

���
�10(�) =

√
w

�
tan

�
2
√
w
�
� + �0

��
+ � sec

�
2
√
w
�
� + �0

���

�4(�) =

�
w−

√
−w tanh

�√
−w(�+�0)

��
�
1+

√
−w tanh

�√
−w(�+�0)

�� �11(�) = −

√
w

�
1−tan

�√
w(�+�0)

��
�
1+tan

�√
w(�+�0)

��

�5(�) =

√
−w

�
5−4 cosh

�
2
√
−w(�+�0)

��
�
3+4 sinh

�
2
√
−w(�+�0)

�� �12(�) =

√
w

�
4−5 cos

�
2
√
w(�+�0)

��
�
3+5 sin

�
2
√
w(�+�0)

��

�6(�) =
�

√
−w(a2+b2)−a

√
−w cosh

�
2
√
−w(�+�0)

�

a sinh

�
2
√
−w(�+�0)

�
+b

�13(�) =
�

√
w(a2−b2)−a

√
w cos

�
2
√
w(�+�0)

�

a sin

�
2
√
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�
+b

�7(�) = �
√
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1 −

2 a

a+cosh
�
2
√
−w(�+�0)

�
−� sinh

�
2
√
−w(�+�0)

�
�

�14(�) = i�
√
w

�
1 −

2 a

a+cos
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2
√
w(�+�0)

�
−i� sin

�
2
√
w(�+�0)

�
�

�15(�) = −
1

�+�0
, w = 0 � = ∓1 , a, b,w, �0 are any real free parameters
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Let we substitute the functions �
i
(�) (i = 1, 2, …, 15) in Table  1 into Eq.  (10) by 

considering.
Equations  (2). We can easily derive the solutions of Eq.  (1) by inserting the Rset1−4 

above into M
i(x, t) , (i = 1, 2,…, 15). It would be more appropriate to give the solution func-

tions of Eq. (1) in general form as follows, instead of taking up much space in the article 
and giving a solution functions for each set separately.

(14)

M1(x,t) = ei(−kx+�t+�)

⎛
⎜⎜⎜⎝
A0 − A1

√
−w tanh

�√
−w(x − vt)

�
−

B1√
−w tanh

�√
−w(x − vt)

�
⎞
⎟⎟⎟⎠

(15)

M2(x,t) = ei(−kx+�t+�)

⎛⎜⎜⎜⎝
A0 − A1

√
−wcoth

�√
−w(x − vt)

�
−

B1√
−wcoth

�√
−w(x − vt)

�
⎞⎟⎟⎟⎠

(16)

M3(x,t) = ei(−kx+�t+�)

⎛
⎜⎜⎜⎜⎝

A0 − A1

√
−w

�
tanh

�
2
√
−w(x − vt)

�
+ isech

�
2
√
−w(x − vt)

��

−
B1√

−w
�
tanh

�
2
√
−w(x − vt)

�
+ isech

�
2
√
−w(x − vt)

��

⎞⎟⎟⎟⎟⎠

(17)

M4(x,t) = ei(−kx+�t+�)
⎛

⎜

⎜

⎜

⎝

A0 + A1

w −
√

−w tanh
(

√

−w(x − vt)
)

1 +
√

−w tanh
(

√

−w(x − vt)
) + B1

1 +
√

−w tanh
(

√

−w(x − vt)
)

w −
√

−w tanh
(

√

−w(x − vt)
)

⎞

⎟

⎟

⎟

⎠

(18)

M5(x, t) = ei(−kx+�t+�)
⎛

⎜

⎜

⎜

⎝

A0 + A1

√

−w
(

5 − 4 cosh
(

2
√

−w(x − vt)
))

3 + 4 sinh
(

2
√

−w(x − vt)
) + B1

3 + 4 sinh
(

2
√

−w(x − vt)
)

√

−w
(

5 − 4 cosh
(

2
√

−w(x − vt)
))

⎞

⎟

⎟

⎟

⎠

(19)

M6(x, t) = ei(−kx+�t+�)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 + A1

�
−
�
a2 + b2

�
w − a

√
−w cosh

�
2
√
−w(x − vt)

�
�
a sinh

�
2
√
−w(x − vt)

�
+ b

�

+B1

a sinh

�
2
√
−w(−vt + x)

�
+ b

�
−
�
a2 + b2

�
w − a

√
−w cosh

�
2
√
−w(x − vt)

�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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(20)

M7(x, t) = ei(−kx+�t+�)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 + A1

⎛⎜⎜⎜⎝

√
−w − 2

a
√
−w

a + cosh

�
2
√
−w(x − vt)

�
− sinh

�
2
√
−w(x − vt)

�
⎞⎟⎟⎟⎠

+
B1√

−w − 2
a
√
−w

a+cosh
�
2
√
−w(x−vt)

�
−sinh

�
2
√
−w(x−vt)

�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

(21)M8(x, t) = ei(−kx+�t+�)

⎛⎜⎜⎜⎝
A0 + A1

√
w tan

�√
w(x − vt)

�
+

B1√
w tan

�√
w(x − vt)

�
⎞⎟⎟⎟⎠

(22)M9(x, t) = ei(−kx+�t+�)

⎛⎜⎜⎜⎝
A0 − A1

√
w cot

�√
w(x − vt)

�
−

B1√
w cot

�√
w(x − vt)

�
⎞⎟⎟⎟⎠

(23)

M10(x, t) = ei(−kx+�t+�)

⎛
⎜⎜⎜⎜⎝

A0 + A1

√
w

�
tan

�
2
√
w(x − vt)

�
+ sec

�
2
√
w(x − vt)

��

+
B1√

w

�
tan

�
2
√
w(x − vt)

�
+ sec

�
2
√
w(x − vt)

��

⎞⎟⎟⎟⎟⎠

(24)

M11(x, t) = ei(−kx+�t+�)

⎛⎜⎜⎜⎝
A0 − A1

√
w

1 − tan

�√
w(x − vt)

�

1 + tan

�√
w(x − vt)

� − B1

1 + tan

�√
w(x − vt)

�

√
w

�
1 − tan

�√
w(x − vt)

��
⎞⎟⎟⎟⎠

(25)

M12(x, t) = ei(−kx+�t+�)
⎛

⎜

⎜

⎜

⎝

A0 + A1
√

w
4 − 5 cos

(

2
√

w(x − vt)
)

3 + 5 sin
(

2
√

w(x − vt)
) + B1

3 + 5 sin
(

2
√

w(x − vt)
)

√

w
(

4 − 5 cos
(

2
√

w(x − vt)
))

⎞

⎟

⎟

⎟

⎠

(26)

M13(x, t) = ei(−kx+�t+�)
⎛

⎜

⎜

⎜

⎝

A0 + A1

√

(

a2 − b2
)

w − a
√

w cos
(

2
√

w(x − vt)
)

a sin
(

2
√

w(x − vt)
)

+ b
+ B1

a sin
(

2
√

w(x − vt)
)

+ b
√

(

a2 − b2
)

w − a
√

w cos
(

2
√

w(x − vt)
)

⎞

⎟

⎟

⎟

⎠

(27)

M14(x, t) = ei(−kx+�t+�)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

A0 + A1

⎛
⎜⎜⎜⎝
i

√
w −

2 ia
√
w

a + cos

�
2
√
w(x − vt)

�
− i sin

�
2
√
w(x − vt)

�
⎞
⎟⎟⎟⎠

+
B1�

i
√
w −

2 ia
√
w

a+cos
�
2
√
w(x−vt)

�
−i sin

�
2
√
w(x−vt)

�
�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Here, we have drawn the graphs of the solution functions which have been derived 
in eqs. (14–28) by using the solution sets given by Eq.  (13) and some special parameter 
values.

Substituting the Rset1 and Rset3 into Eq.  (16) and selecting the w = −0.4, �= 0.5, 
�= −0.5, �= 0.5, �= 0.5, �= 0.5, k = 1 and �= 1, the various graphs of the resultant func-
tions of M3(x, t) are given by Figs. 1 and 2, respectively. Inserting the Rset1 and Rset4 into 
Eq.  (18) and selecting the w = −0.4, �= 0.5, �= −0.5, �= 0.5, �= 0.5, �= 0.5, k = 1 and 
�= 1, the various graphs of the resultant functions of M5(x, t) are given by Figs. 3 and 4, 
respectively. Plugging the Rset1 into Eq. (23) and selecting the w = 0.41, �= 0.5, �= 0.5, 
�= 0.5, �= 0.5, �= 0.5, k = 0.1 and �= 1, the various graphs of the resultant function of 
M10(x, t) are given by Fig. 5. Substituting the Rset2 into Eq. (25) and selecting the w = 4, 
�= 0.5, �= 0.5, �= 0.5, �= 0.5, �= 0.5, k = 1 and �= 1, the various graphs of the resultant 
function of M12(x, t) are given by Fig. 6. Lastly, inserting the Rset3 into Eq. (28) and select-
ing the w = 0, �= 0.5, �= 0.5, �= 0.5, �= 0.5, �= 0.5, k = 20 and �= 1, the various graphs 
of the resultant function of M15(x, t) are given by Fig. 7.

4  Result and discussion

In this paper, we have proposed and applied an enhanced version of existing method 
namely, eMETEM. We have successfully obtained plethora of soliton solutions for 
pRKL equation and we have presented the graphs of the derived solutions in the figures. 
Selecting appropriate values of the parameters, we have drawn seven  figures to analyze 
the behavior of the solutions. In the presented figures, each figure includes six sub-fig-
ures. They are modulus square in 3D (a), a contour plot of modulus square (b), 3D plots 
of Re

(
M

i
(x, t)

)
, Im

(
M

i
(x, t)

)
 components of considered solutions (c,d), the plots of the 

modulus square, real and imaginary parts of the related solutions at t = 1 (e) and the plots 
of modulus squares at t = 0, 1 and t = 2 (f), respectively.

In Fig. 1, we have visualized the some portraits of M3(x, t) in Eq. (16) by using Rset1 and 
the selected values, w = − 0.4, �= 0.5, �= −0.5, �= 0.5, �= 0.5, �= 0.5, k = 1 and �= 1. 
The Fig.  1a, b and c, represent the bright soliton. Figure  1c, d depict the  breather-like 
soliton and Fig. 1e, shows the traveling wave property of M3(x, t) , so the soliton moves to 
the right along the x-axis.

In Fig.  2, we have depicted the plots of M3(x, t) in Eq.  (16) by using Rset3 and the 
selected values, w = −0.4, �= 0.5, �= −0.5, �= 0.5, �= 0.5, �= 0.5, k = 1 and �= 1. The 
Figs. 2a, 2b and c, denote the dark soliton. Figures 2c, d represent the periodic and mixed 
(multi-combined) bright-dark soliton. Figure 2e, also shows the traveling wave property of 
M3(x, t) , so the soliton again moves to the right along the x-axis.

In Fig. 3, we have obtained the some portraits of M5(x, t) in Eq. (18) by using Rset1 
and the selected values, w = −0.4, �= 0.5, �= −0.5, �= 0.5, �= 0.5, �= 0.5, k = 1 and 
�= 1. The Fig. 3, represent the singular multiple solution. Figure 3e, shows the traveling 
wave property of M5(x, t) and the soliton moves to the right along the x-axis.

In Fig. 4, we have plotted the some portraits of M5(x, t) in Eq. (18) by using Rset4 and 
the selected values, w = −0.4, �= 0.5, �= −0.5, �= 0.5, �= 0.5, �= 0.5, k = 1 and �= 1. 

(28)M15(x, t) = ei(−kx+�t+�)
(
A0 −

A1

x − vt
− B1(x − vt)

)
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The Fig. 4a, b represent the singular solution, Fig. 4c, d represent singular kink solu-
tion. M5(x, t) the soliton moves to the right along the x-axis.

In Fig. 5, we have illustrated the some plots of M10(x, t) in Eq. (23) by using Rset1 and 
the selected values, w = 0.41,�= 0.5,�= 0.5,�= 0.5,�= 0.5,�= 0.5,k = 0.1 and �= 1. The 

Fig. 1  The various portraits of M3(x, t) in Eq.  (16) by selecting set Rset1 in Eq.  (13) and 
w = −0.4, �= 0.5, �= −0.5, �= 0.5,�= 0.5, �= 0.5, k = 1,�= 1.a ||M3(x, t)

||2 . b The con-
tour portrait of ||M3(x, t)

||2 . c Re
(
M3(x, t)

)
 , d Im

(
M3(x, t)

)
 , e ||M3(x, t)

||2 where t
f
= 0, 1 and 2. , f ||M3(x, 1)

||2, Im
(
M3(x, 1)

)
, Re

(
M3(x, 1)

)
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Fig. 5a, represents periodic singular solution, Fig. 5c, d represents periodic multi singular 
solution.

In Fig.  6, we have depicted the graphs of M12(x, t) in Eq.  (25) by using Rset2 and 
the selected values, w = 4, �= 0.5, �= 0.5, �= 0.5, �= 0.5, �= 0.5, k = 1 and �= 1. The 

Fig. 2  The various portraits of M3(x, t) in Eq.  (16) by selecting set Rset3 in Eq.  (13) and  
w = −0.4, �= 0.5, �= −0.5, �= 0.5,�= 0.5, �= 0.5, k = 1,�= 1. a ||M3(x, t)

||2 , b The con-
tour portrait of ||M3(x, t)

||2 , c Re
(
M3(x, t)

)
 , d Im

(
M3(x, t)

)
 , e ||M3(x, t)

||2 where t
f
= 0, 1 and 2. , f ||M3(x, 1)

||2, Im
(
M3(x, 1)

)
, Re

(
M3(x, 1)

)
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Fig. 6a, b represent the periodic singular solution. Figures 6c, d, show the quite different 
(strange) multi singular solution. M12(x, t) moves to the right along the x-axis.

In the last figure, namely Fig. 7, we have presented the graphs of M15(x, t) in Eq. (28) 
by using Rset3 and the selected values, w = 0, �= 0.5, �= 0.5, �= 0.5, �= 0.5, �= 0.5, 

Fig. 3  The various portraits of M5(x, t) in Eq.  (18) by selecting set Rset1 in Eq.  (13) and 
w = −0.4, �= 0.5, �= −0.5, �= 0.5,�= 0.5, �= 0.5, k = 1,�= 1. a ||M5(x, t)

||2 , b The con-
tour portrait of ||M5(x, t)

||2 , c Re
(
M5(x, t)

)
 , d Im

(
M5(x, t)

)
 , e ||M5(x, t)

||2 where t
f
= 0, 1 and 2. , f ||M5(x, 1)

||2, Im
(
M5(x, 1)

)
, Re

(
M5(x, 1)

)
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k = 20 and �= 1. The Fig. 7a, b represent the flat kink-like solution. Figure 7c, d, show 
the multiple different (strange) periodic solution. M15(x, t) does not move along the 
x-axis.

Fig. 4  The various portraits of M5(x, t) in Eq.  (18) by selecting set Rset4 in Eq.  (13) and 
w = −0.4, �= 0.5, �= −0.5, �= 0.5,�= 0.5, �= 0.5, k = 1,�= 1. a ||M5(x, t)

||2 , b The con-
tour portrait of ||M5(x, t)

||2 , c Re
(
M5(x, t)

)
 , d Im

(
M5(x, t)

)
 , e ||M5(x, t)

||2 where t
f
= 0, 1 and 2. , f ||M5(x, 1)

||2, Im
(
M5(x, 1)

)
, Re

(
M5(x, 1)

)
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5  Conclusion

In this paper, we have utilized an efficient eMETEM to establish robust analytical optical 
soliton solutions for the pRKL equation with Kerr law. This effective scheme has been 
shown as very effective for the governing model. Bright, dark, combined bright–dark, 

Fig. 5  The various portraits of M10(x, t) in Eq.  (23) by selecting set Rset1 in Eq.  (13) and 
w = 0.41, �= 0.5, �= 0.5, �= 0.5,�= 0.5, �= 0.5, k = 0.1,�= 1. a ||M10(x, t)

||2 , b The contour 
portrait of ||M10(x, t)

||2 , c Re
(
M10(x, t)

)
 , d Im

(
M10(x, t)

)
 , e ||M10(x, t)

||2 where t
f
= 0, 1 and 2. , f ||M10(x, 1)

||2, Im
(
M10(x, 1)

)
, Re

(
M10(x, 1)

)
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singular, multiple singular, periodic, flat kink-like, breather like, different (strange) peri-
odc optical solitons have been successfully exposed using the Maple and Matlab sym-
bolic computation packages. On the 3-dimensional, 2-dimensional and contour graphs, the 
derived and physical features have been depicted. We strongly believe that both the results 

Fig. 6  The various portraits of M12(x, t) in Eq.  (25) by selecting set Rset2 in Eq.  (13) and  
w = 4, �= 0.5, �= 0.5, �= 0.5,�= 0.5, �= 0.5, k = 1, �= 1. a ||M12(x, t)

||2 , b The contour por-
trait of ||M12(x, t)

||2 , c Re
(
M12(x, t)

)
 , d Im

(
M12(x, t)

)
 , e ||M12(x, t)

||2 where t
f
= 0, 1 and 2. , f ||M12(x, 1)

||2, Im
(
M12(x, 1)

)
, Re

(
M12(x, 1)

)
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obtained and the enhanced version of the method applied to this problem for the first time 
in this article, will be very useful guide for the scientists who study in this field.

Funding The authors have not disclosed any funding.

Fig. 7  The various portraits of M15(x, t) in Eq.  (28) by selecting set Rset3 in Eq.  (13) and 
w = 0, �= 0.5, �= 0.5, �= 0.5,�= 0.5, �= 0.5, k = 20, �= 1. a ||M15(x, t)

||2 , b The contour por-
trait of ||M15(x, t)

||2 , c Re
(
M15(x, t)

)
 , d Im

(
M15(x, t)

)
 , e ||M15(x, t)

||2 where t
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||2, Im
(
M15(x, 1)

)
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M15(x, 1)
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