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Abstract
In this paper, three different numerical approaches were used for solving the steady-state 
drift–diffusion model (DDM) of organic solar cells. In order to simplify the standard 
DDM, the electron and hole continuity equations were decoupled by assuming a recom-
bination rate for each type of carriers proportional to its concentration squared and a con-
stant electric field throughout a device. The surface recombination and thermionic emis-
sion of electrons and holes on both electrode contacts were considered through Robin-type 
boundary conditions. The most often used numerical solution based on the finite difference 
method with Schaffeter-Gummel discretization (FDMSG) showed significant instabilities 
when certain surface recombination velocities (SRVs) were reduced. Trying to avoid insta-
bilities, a Discontinuous Galerkin method with Lax-Friedricks numerical flux (DGLF) was 
proposed. The DGLF calculations turned out to be even more unstable than the FDMSG 
ones. To improve the developed Discontinuous Galerkin scheme, the Schaffeter-Gummel 
numerical flux was implemented (DGSG). A significant progress in the calculation stabil-
ity has been achieved for a wide range of SRVs. Using each of the considered numerical 
models, the intervals of SRVs for which the electrode contacts act as (1) ideally block-
ing, (2) neither blocking nor conductive, or (3) ideally conductive, were defined for holes 
and electrons. The SRV ranges in which the calculation instabilities occur were determined 
for each numerical approach. The current density–voltage (J–V) characteristics simu-
lated by the DDM and solved with the DGSG method were compared to a measured ITO/
PEDOT:PSS/P3HT:PCBM/Al solar cells J–V curve for model validation.
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1  Introduction

Organic solar cells (OSCs) exhibit a strong potential to be used in future solar cell tech-
nologies due to their low production costs, small weight, printability, solution processing, 
and the possibility of using flexible substrates (Ghosekar and Patil 2021). Their power con-
version efficiencies have now surpassed 18% (Zhang  et al. 2021). Still, the potential of 
OSCs has not been completely exploited due to the lack of an adequate physical model that 
describes their operation.

The standard van Roosbroeck model (Van Roosbroeck 1950) including the peculiari-
ties of organic semiconductors through photogeneration and recombination terms is most 
often used for modeling the OSCs (Koster et al. 2005). This drift–diffusion model (DDM) 
is usually solved with Dirichlet’s boundary conditions (BCs) describing ideally conduc-
tive (Ohmic) contacts or applying homogenous Robin BCs (ideally blocking contact) for 
minority carriers (Schroeder 1994). It was shown that surface processes at electrode con-
tacts in OSCs, such as surface recombination and thermionic emission, have a significant 
impact on their performance (Khalf et  al. 2020a, b; Sandberg et  al. 2014). To take into 
account these processes in DDM, full Robin type BCs need to be applied on both electrode 
contacts and for both types of carriers (Khalf et al. 2020a).

The DDM is usually numerically solved by either finite difference, finite volume, or 
finite element methods using Schaffeter-Gummel (SG) discretization (Farrell et al. 2020). 
The Voronoi finite volume method with SG numerical flux proved to be the most adequate 
approach (Farrell et al. 2017). In the one-dimensional case often used for OSCs modeling, 
this method reduces to the finite difference method (FDMSG).

In this paper, the standard DDM was simplified by decoupling the electron and hole 
continuity equations assuming that the recombination rate for one type of carriers is pro-
portional to its concentration square and by taking the electric field in the device to be 
constant. Surface recombination and thermionic emission of holes and electrons on both 
electrode contacts were included through Robin-type BCs. When FDMSG numerical 
method was used for current density—voltage (J–V) calculations in a wide range of sur-
face recombination velocities (SRVs), significant instabilities were observed. Trying to 
reduce these instabilities, a Discontinuous Galerkin (DG) method with Lax-Friedricks (LF) 
numerical flux (DGLF) was applied. The DGLF approach led to even more unstable calcu-
lations. Implementation of the Schaffeter-Gummel numerical flux (SG) in the DG method 
(DGSG) produced remarkable progress in the stability of J–V calculations. Each of three 
different numerical approaches considered in this paper was used to define the intervals of 
SRV values in which the electrode contacts act as (1) ideally blocking, (2) neither block-
ing nor conductive, and (3) ideally conductive. The SRV ranges for which the instabilities 
occur were determined for each numerical method. Finally, the J–V characteristic simu-
lated by the DDM solved with the DGSG method was compared to the experimental ITO/
PEDOT:PSS/P3HT:PCBM/Al solar cells J–V curves for model validation.

2 � Modeling

The J–V characteristics of OSCs were calculated by using the steady-state DDM based on 
Poisson’s equation and continuity equations for electrons and holes. The surface recombi-
nation and thermionic emission were included through BCs of Robin type applied at the 
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anode and cathode contacts, whereby the majority carrier injection barriers were assumed 
to be zero. The photogeneration and transport of charge carriers were taken to be the same 
as in (Khalf et al. 2020a).

In general case steady-state DDM (Khalf et  al. 2020a) consists of three coupled sec-
ond-order nonlinear and non-homogeneous differential equations. To avoid the complexi-
ties of the problem and to enable a separate analysis of the effect of electron and hole 
BCs on the steady-state solution certain simplifications were introduced. First, the electric 
field was assumed to be constant. Second, the electron and hole continuity equations were 
decoupled, by taking the holes bimolecular recombination velocity to be Rp(x) = �p2(x) , 
and analogously for electrons Rn(x) = �n2(x) , where � is Langevin recombination con-
stant, while n and p are electron and hole densities, respectively. In this way, the system is 
reduced to two separate second-order nonlinear and non-homogeneous DEs, one for holes, 
and the other for electrons:

where Ef =
||U − Vbi

||∕d is the electric field intensity, U is the applied bias voltage, Vbi is 
the built-in voltage, d is the OSCs active layer thickness, �n(p) is the electron or hole mobil-
ity, Dn(p) is the diffusion constant of electrons or holes, G is the photogeneration rate calcu-
lated using the transfer matrix theory (Sievers et al. 2006). For n(x) calculation, the cathode 
is placed at x = 0 and the anode is positioned at x = d , while for p(x) calculation, the elec-
trodes were positioned oppositely as it can be seen from the Insets of Fig. 3a and b.

The BCs had the form:

where q is the elementary charge, Jn(p) are the current densities of electrons and holes, Sn0(d) 
and Sp0(d) are the SRVs for electrons and holes, respectively, at the x = 0 and x = d . The na

th
 

and pa
th

 are the thermionic electron and hole densities at the anode, respectively, and nc
th
, pc

th
 

are the same for the cathode (Khalf et al. 2020a).
We only discuss the discretization of the decoupled equation system for elec-

trons (Eqs.  (2) and (4)) since the system for holes differs only by the values of physical 
parameters.

The first model for solving the decoupled equation systems was the finite difference 
method (FDM) with SG discretization to provide better convergence (Scharfetter and Gum-
mel 1969), denoted by FDMSG. The OSCs active layer domain is discretized into N + 1 
elements (subintervals) Ij = [xj, xj+1] with equidistant nodes. The obtained system of differ-
ence equations was then solved by the Newton algorithm.

The second and third models are based on the DG method (Chen and Bagci 2020) with 
the same discretization (number of elements) as in the FDMSG method. It is a hybrid 
method that combines the advantages of finite volume and finite element methods, using 
local high-order expansions to approximate the unknowns to be solved for. To solve the 
simplified model consisting of one nonlinear second-order electron continuity Eq. (2), we 

(1)�pEf

�p(x)

�x
− Dp

�2p(x)

�x2
= G − Rp(x),Rp(x) = �p2(x),

(2)−�nEf

�n(x)

�x
+ Dn

�2n(x)

�x2
= Rn(x) − G, Rn(x) = �n2(x).

(3)Jp(0) = qSp0
(
p(0) − pa

th

)
, Jp(d) = qSpd(p(d) − pth

c)

(4)Jn(0) = qSn0
(
n(0) − nc

th

)
, Jn(d) = qSnd(n(d) − nth

a)
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first decoupled the equation to obtain a system of two first-order equations. This was done 
by introducing the auxiliary function g(x) , defined as the derivative of electron concen-
tration. Each obtained equation is tested with Lagrange polynomials li(x) of degree 8 at 
Legendre–Gauss-Lobatto nodes on each elementresulting in the weak formulation of the 
problem. We expand nj and gj with the same set of Lagrange polynomials li:

where ni
j
 and gi

j
, i = 1,… ,Np , are the unknown coefficients to be solved for. The integral 

on the right-hand side is approximated with the Legendre–Gauss-Lobatto quadrature rule. 
The Gummel iterative method is applied and the value of recombination in the current 
iteration is computed using the values of n(x) from the previous iteration.

Each expansion is defined on a single element and is connected to other expansions 
defined on the neighboring elements, resulting in a piecewise continuous function with dis-
continuities at the interface. The numerical flux [f ]∗ is a function that provides the unique 
value of f  ( f = f (n(x), g(x) ) by combining information from both elements, to be used at 
the interface. The choice of the numerical flux should correspond to the physical model. At 
boundary interfaces, the numerical flux is replaced with the corresponding BCs. For more 
details see Hesthaven and Warburton (2008). Based on the choice of the numerical flux we 
created two DG models.

In the DGLF model the LF numerical flux was chosen for the drift term (Chen and 
Bagci 2020):

and for the diffusion term the local DG (LDG) flux was used, for both electron and hole 
models:

Here f +(f −) denotes the value of the function on the outside (inside) of the element Ij , 
and �⃗n denotes outward unit vector normal to the boundary of the Ij . In one dimension it is 
�⃗n = 1 or �⃗n = −1.

In the DGSG model the numerical flux in Eq. (7) was based on the exponentially fitted 
scheme, also known as the SG flux, based on (Kumar 2017):

Here h is the length of the element Ij and B(x) = x

ex−1
 is the Bernoulli function. In Eq. (8) 

the LDG flux is chosen, as in the DGLF model.
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3 � Results and discussions

The Jn–V and Jp–V curves were calculated based on n(x) and p(x) obtained from the 
Eqs.  (1) and (2) solved by FDMSG, DGLF, and DGSG numerical methods in the wide 
range of SRVs. The parameters used in calculations were the same as for P3HT:PCBM 
based solar cell given in (Khalf et al. 2020a). It was assumed that the drift current density 
is dominant at both electrode contacts so the SRVs were compared to the average drift 
velocity of electrons and holes ⟨vn(p)

drift
⟩ = �n(p)⟨E⟩ , ⟨E⟩ = Vbi∕2d . From this assumption, 

the — sign was attributed to Sp0 and Spd in Eq. (3) and the + sign to Sn0 and Snd in Eq. (4). 
The SRVs values varied from 0.002 ⋅ ⟨vn(p)

drift
⟩ to 500 ⋅ ⟨vn(p)

drift
⟩ . We analyzed three different 

cases: (1) large SRV ( 500 ⋅ ⟨vn(p)
drift

⟩ ) applied at x = 0 , while SRV at x = d was varied; (2) 
SRV at x = d large ( 500 ⋅ ⟨vn(p)

drift
⟩ ) and the SRV at x = 0 was varied; (3) SRVs at both con-

tacts were assumed to be the same and they were varied simultaneously (see Table 1, for 
example).

In certain SRV intervals the FDMSG, DGLF, and DGSG calculations were unstable. 
The ranges of instability for three numerical models are presented in Table 1 for electrons 
and Table 2 for holes.

In Figs. 1 and 2, respectively, the Jn–V and Jp–V curves obtained with FDMSG, DGLF, 
and DGSG for some characteristic SRV values indicated in Tables 1 and 2 are depicted. 
Based on Tables 1 and 2 it can be concluded that for any SRV value from the range in 
which SRVs were varied at least one numerical model provides a solution. It can be 
deduced from Figs. 1 (a3), (b2), (b3), (c3) and 2 (a3), (b2), (b3), (c3) that FDMSG and 
DGLF, when they converge, lead to almost the same Jn–V and Jp–V characteristics. On 
the contrary, the DGSG model in some cases gives a solution that deviates from the other 
two as shown in Fig.  1(b1) and (c1). The mathematical analysis of the accuracy of the 
applied numerical methods, which is planned to be done in the future, should indicate the 
right solution. It was noticed that for SRV values in the vicinity of the instability inter-
val all numerical models give unreliable results. The example is shown in Fig. 1 (b2) and 
Fig. 2(b2) for the DGSG model.

When large SRVs ( 500 ⋅ ⟨vn(p)
drift

⟩ ) were applied at both contacts electrodes behaved as 
ideally conductive (ideally Ohmic) (Sandberg et  al. 2017) and all numerical methods 

Table 1   The instability SRV intervals (grey shaded areas) for the FDMSG, DGLF, and DGSG Jn–V calcula-
tions for electrons in three different cases
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Table 2   The instability SRV intervals (grey shaded areas) for the FDMSG, DGLF, and DGSG Jp–V calcu-
lations for holes in three different cases

Fig. 1   The FDMSG, DGLF, and DGSG simulated Jn–V characteristics at three characteristic SRVs for 
the case when (a) Sn0 = 500 ⋅ ⟨vn

drift
⟩ and Snd is variable, (b) Sn0 is variable and Snd = 500 ⋅ ⟨vn

drift
⟩ , and (c) 

Sn0 = Snd is variable
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showed good stability and give approximately the same solution (Fig. 3a and b). The DDM 
with DGSG numerical approach was used to calculate the J–V characteristics of ITO/
PEDOT:PSS/P3HT:PCBM/Al solar cell. The overall current density was determined as 
J = Jn + Jp and compared to the measured J–V curve (Jelić et al. 2014) in Fig. 3c. A very 

Fig. 2   The FDMSG, DGLF, and DGSG simulated Jp–V characteristics at three characteristic SRVs for 
the case when (a) Sp0 = 500 ⋅ ⟨vp

drift
⟩ and Sp0 is variable, (b) Sp0 is variable and Spd = 500 ⋅ ⟨vp

drift
⟩ , and (c) 

Sp0 = Spd is variable

Fig. 3   The FDMSG, DGLF, and DGSG simulated (a) Jn–V with Sn0 = Snd = 500 ⋅ ⟨vn
drift

⟩ , and (b) Jp–V 
characteristics with Sp0 = Spd = 500 ⋅ ⟨vp

drift
⟩ . (c) The DGSG simulated J–V characteristic where J = Jn + Jp 

compared to the measured J–V curve of ITO/PEDOT:PSS/P3HT:PCBM/Al solar cell
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good agreement between theory and experiment was accomplished which validates the 
model and puts it in the physical context.

It should be mentioned that for several voltage values around open circuit voltage Voc, 
even in the case of ideally conductive electrodes (large SRVs), numerical models didn’t 
give results (the calculation diverged). The number of voltage values in which it wasn’t 
possible to find a solution was greater when �Ef  product was smaller (this product was an 
order of magnitude smaller for holes than for electrons in our calculations). Also, for the 
DGLF model number of critical voltage points was greater than for FDMSG and DGSG. 
The DGSG model for electrons was stable for all voltages. The Jn(p)–V curves could be 
unambiguously interpolated in this narrow zone near the voltage axis which was done 
for curves presented in Fig. 3. For each numerical model separately, the calculations that 
diverged at more voltage points than the calculations shown in Fig.  3 were considered 
unstable.

In further investigation, by detailed analysis of simulated Jn(p)–V data it was noticed that 
for each numerical approach there is an interval of low SRVs in which the obtained solu-
tion was always the same. A similar interval of high SRVs was also observed. This is very 
much in accord with OSCs contact physics (Khalf et al. 2020b; Sandberg et al. 2017) from 
which it is known that for SRV ≪ v

n(p)

drift
 contact acts as ideally blocking and for SRV ≫ v

n(p)

drift
 

contact behaves as ideally conductive. The SRV ranges in which contacts exhibit (1) ide-
ally blocking, (2) neither blocking nor conductive, and (3) ideally conductive behavior for 
FDMSG, DGLF, and DGSG are presented in Fig. 4. Instability ranges for each considered 
numerical method (the union of appropriate three rows from Tables 1 and 2 are shown as 
shaded areas in Fig. 4.

It is clear from Fig.  4 that the DGSG numerical approach showed the best stability, 
much better than the often-used FDMSG method. Also, it should be noticed that the SRV 
ranges for which instabilities occur in the DGSG and FDMSG cases nearly complement 
each other. It is very important to state that the DGSG method can be further improved by 
e. g. implementation of inhomogenous SG numerical flux (Kumar et al. 2017), but that the 
FDMSG numerical scheme does not provide an opportunity for further improvement. The 

Fig. 4   The SRV intervals obtained using FDMSG, DGLF, and DGSG numerical methods in which the con-
tact act as ideally blocking, neither blocking nor conductive, and ideally conductive for (a) electrons, and 
(b) holes. Crisscrossed areas denote the SRV ranges in which calculations were unstable
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DGLF method proved to be the worst in terms of stability. The DDM calculations of the 
Jn–V and Jp–V curves performed with the DGLF method when the — sign is attributed to 
Sp0, and the + sign to Spd , along with the + sign taken for Sn0 and the — sign for Snd , and 
showed a much greater stability (Ćirović et al. 2021). It was noticed that the SRV signs had 
a significant impact on the calculation stability for all three numerical methods considered 
in this paper which will be a topic of future research.

4 � Conclusion

The simplified DDM model under the assumption of constant electric field and with decou-
pled hole and electron continuity equations was solved with three different numerical 
approaches: FDMSG, DGLF, and DGSG. The Robin-type BCs were applied accounting 
for surface recombination and thermal injection of holes and electrons at both electrodes. 
The most often used FDMSG method showed significant instabilities in the wide range of 
SRVs. Therefore, the DGLF method for stability improvement was proposed. Since this 
method showed even less stability, the DGSG numerical approach was introduced. The 
DGSG method proved to be much more stable compared to previous methods. The SRV 
intervals for which the contacts were acting as (1) ideally blocking, (2) neither blocking 
nor conductive, and (3) ideally conductive were defined with each of three numerical meth-
ods considered in this paper. Also, the SRV ranges in which instabilities occur were deter-
mined for the FDMSG, DGLF, and DGSG methods. The DDM simulated J-V characteris-
tics using DGSG numerical approach very well reproduced the measured ones for the ITO/
PEDOT:PSS/P3HT:PCBM/Al solar cell. It was shown that the SRVs signs had a signifi-
cant impact on calculation stability regardless of the applied numerical method. This will 
be the subject of future investigations. Also, a further improvement of the DGSG method 
will be considered in the future.

Acknowledgements  This work is partially supported by the Serbian Ministry of Education, Science and 
Technological Development under contract No. 62101.

Funding  All authors certify that they have no affiliations with or involvement in any organization or entity 
with any financial interest or non-financial interest in the subject matter or materials discussed in this 
manuscript.

References

Chen, L., Bagci, H.: Steady-State Simulation of Semiconductor Devices Using Discontinuous Galerkin 
Methods. IEEE Access, 16203–16215, (2020), https://​doi.​org/​10.​1109/​ACCESS.​2020.​29671​25

Ćirović, N., Khalf, A., Gojanović, J., Matavulj, P.,Živanović, S.: Current-voltage characteristics simula-
tions of organic solar cells using discontinuous Galerkin method. In: 2021 International Conference on 
Numerical Simulation of Optoelectronic Devices (NUSOD), 13–17. Sept. (2021), https://​doi.​org/​10.​
1109/​NUSOD​52207.​2021.​95414​18

Farrell, P., Rotundo, N., Doan, D., Kantner, M., Fuhrmann, J., Koprucki, T.: Numerical methods for drift-
diffusion models. In: J. Piprek, Ed. Handbook of optoelectronic device modeling and simulation: 
Lasers, modulators, photodetectors, solar cells, and numerical methods, vol. 2. CRC Press, Boca Raton 
(2017)

Goshekar, C., Patil, C.: Review on performance analysis of P3HT:PCBM-based bulk heterojunction organic 
solar cells. Semiconductor Sci. Technol. 36, 045005 (1–15), (2021), https://​doi.​org/​10.​1088/​1361-​
6641/​abe21b

https://doi.org/10.1109/ACCESS.2020.2967125
https://doi.org/10.1109/NUSOD52207.2021.9541418
https://doi.org/10.1109/NUSOD52207.2021.9541418
https://doi.org/10.1088/1361-6641/abe21b
https://doi.org/10.1088/1361-6641/abe21b


	 N. Ćirović et al.

1 3

335  Page 10 of 10

Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Appli-
cations. Springer Verlag, New York (2008)

Jelić, Ž., Petrović, J. Matavulj, P., Melancon, J., Sharma, A., Zellhofer, C., Živanović, S.: Modeling of the 
polymer solar cell with P3HT:PCBM active layer. Physica Scripta T162, 014035 (1–4), (2014), https://​
doi.​org/​10.​1088/​0031-​8949/​2014/​T162/​014035

Khalf, A., Gojanović, J., Ćirović, N., Živanović, S.:Two different types of S‑shaped J‑V characteristics in 
organic solar cells. Opticaland Quantum Electronics 52, 121(1–10), (January2020), https://​doi.​org/​10.​
1007/​s11082-​020-​2236-7

Khalf, A., Gojanović, J., Ćirović, N., Živanović, S., Matavulj, P.: The Impact of Surface Processes on the 
J-V Characteristics of Organic Solar Cells. IEEE J. Photovoltaics 10, 514–521 (2020). https://​doi.​org/​
10.​1109/​JPHOT​OV.​2020.​29654​01

Koster, L. J. A., Smits, E. C. P., Mihailetchi, V. D., Blom, P. W. M.: Device model for the operation of poly-
mer/fullerene bulk heterojunction solar cells. Phys. Rev. B 72, 085205 (1–9), (2005), https://​doi.​org/​
10.​1103/​PhysR​evB.​72.​085205

Kumar N.: Flux approximation schemes for flow problems using local boundary value problems. Eind-
hoven: Technische Universiteit Eindhoven, 126 p. ISBN 978-90-386-4391-5 (2017)

Sandberg, O., Nyman, M., Österbacka, R.: Effect of contacts in organic bulk heterojunction solar cells. 
Phys. Rev. Appl. 1, 024003 (2014). https://​doi.​org/​10.​1103/​PhysR​evApp​lied.1.​024003

Sandberg, O., Nyman, M., Österbacka, R.: Determination of surface recombination velocities at contacts in 
organic semiconductor devices using injected carrier reservoirs. Phys. Rev. Lett. 118, 076601 (2017). 
https://​doi.​org/​10.​1103/​PhysR​evLett.​118.​076601

Scharfetter, D., Gummel, H.: Large-signal analysis of a silicon Read diode oscillator. IEEE Trans. Electron. 
Dev. ED 16, 64–77, (1969), https://​doi.​org/​10.​1109/T-​ED.​1969.​16566

Schroeder,D.: Modelling of Interface Carrier Transport for Device Simulation. Springer-Verlag Wien, Berlin 
(1994)

Sievers, D., Shrotriya, V., Yang, Y.: Modeling optical effects and thickness dependent current in polymer 
bulk-heterojunction solar cells. J. Appl. Phys. 100, 114509 (1–7), (2006). https://​doi.​org/​10.​1063/1.​
23888​54

Van Roosbroeck, W.: Theory of the flow of electrons and holes in Germanium and other semiconductors. 
Bell Syst. Techn. J. 29, 560–607 (1950). https://​doi.​org/​10.​1002/j.​1538-​7305.​1950.​tb036​53.x

Zhang, M., Zhu, L., Zhou, G., Hao T., Qiu, C, Zhao, Z., Hu, Q., Larson B.W, Zhu, H., Ma, Z., Tang, Z., 
Feng, W., Zhang, Y., Russell, T.P., Liu, F.: Single-layered organic photovoltaics with double cascading 
charge transport pathways: 18% efficiencies. Nat. Commun.  12, 309 (1–10) (2021). https://​doi.​org/​10.​
1038/​s41467-​020-​20580-8

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1088/0031-8949/2014/T162/014035
https://doi.org/10.1088/0031-8949/2014/T162/014035
https://doi.org/10.1007/s11082-020-2236-7
https://doi.org/10.1007/s11082-020-2236-7
https://doi.org/10.1109/JPHOTOV.2020.2965401
https://doi.org/10.1109/JPHOTOV.2020.2965401
https://doi.org/10.1103/PhysRevB.72.085205
https://doi.org/10.1103/PhysRevB.72.085205
https://doi.org/10.1103/PhysRevApplied.1.024003
https://doi.org/10.1103/PhysRevLett.118.076601
https://doi.org/10.1109/T-ED.1969.16566
https://doi.org/10.1063/1.2388854
https://doi.org/10.1063/1.2388854
https://doi.org/10.1002/j.1538-7305.1950.tb03653.x
https://doi.org/10.1038/s41467-020-20580-8
https://doi.org/10.1038/s41467-020-20580-8

	Comparing three numerical methods for current–voltage characteristics simulations of organic solar cells considering surface recombination effects
	Abstract
	1 Introduction
	2 Modeling
	3 Results and discussions
	4 Conclusion
	Acknowledgements 
	References




