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Abstract
In this research article, we investigate the impact of different atmospheric turbulence along 
with polarization crosstalk on the bit error rate (BER) performance of a non-Hermitian 
orthogonal frequency division modulated (OFDM) free-space optical (FSO) system with 
polarization diversity. Analysis is carried out for a non-Hermitian coherent optical OFDM 
followed by differential quadrature phase shift keying FSO system with polarization diver-
sity in presence of atmospheric turbulence for all weather conditions. We considered Log-
normal, Gamma-Gamma and Negative exponential turbulence fading model for weak, 
medium and strong atmospheric turbulent channel respectively and for cross polarization 
induced crosstalk, the random misalignment angle is Maxwellian distributed. The system 
average BER is calculated by averaging the conditional BER over the probability density 
function of the channel irradiance along with Maxwellian distributed random misalign-
ment angle. Results are evaluated in terms of BER, power penalty due to polarization 
crosstalk along with atmospheric turbulence and receiver sensitivity due to OFDM. Results 
show that the system suffers almost 7.5, 11 and 16 dB power penalty due to polarization 
crosstalk along with weak, medium and strong turbulence respectively at a constant BER 
of 10–12 when the system link length is 3000 m. It is clearly observed that, almost 19, 16 
and 10 dB receiver sensitivity is achieved when number of subcarriers increase into 512 for 
weak, medium and strong turbulence conditions, respectively at a constant BER of 10–12.
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1  Introduction

Free-space optical communication system is a prominent technology for the future broad-
band optical networks because of its huge bandwidth capacity, required no license, high 
data rate, easy to deployment, simple hardware architecture, low cost and full duplex com-
munication (Wang et al. 2014; Vincent 2006; Chinta et al. 2009; Chao et al. 2021). Nowa-
days, high speed FSO communication system is considered for inter satellite data transmis-
sion link where pointing error due to misalignment causes severe performance degradation 
(Singh et al. 2022; Ebrahim et al. 2022). The user demand of high data rate for live stream-
ing, video conferencing, high-speed internet, exponential growth of mobile data traffic 
etc. is increasing day by day (Singh and Malhotra 2020a, 2020b, 2021). So, FSO com-
munication can be considered to meet up the user’s increased data rate demand. But, there 
is a problem in FSO communication system which is adverse weather condition simply 
known as atmospheric turbulence. The atmospheric turbulence causes the amplitude fad-
ing and phase distortion in the received light wave which actually increases the bit error 
rate severely (Antonio 2007; Zhu and Kahn 2002; Zhang et  al. 2019; Sunilkumar et  al. 
2019). Different turbulence fading models are already developed for different atmospheric 
turbulence regimes. For weak turbulence, the fading model is well known Log-normal 
model (Stephen et al. 2005), for medium to strong turbulence the model is Gamma-Gamma 
(Singh and Malhotra 2021; Bekkali et al. 2010) and for very high turbulence the model is 
Negative exponential model (Wilson et al. 2005).

For FSO communication systems, orthogonal frequency division modulation (OFDM) 
is considered as multiple subcarrier modulation and it is a very key technology against fre-
quency selective fading channel (Barua and Majumder 2018; Cvijetic et al. 2008; Shariful 
and Majumder 2019; Bukola et al. 2019). It enhance the FSO system capacity and flexibil-
ity without increasing the complexity and cost of the system (Singh and Malhotra 2020c). 
The spectrum efficiency and channel capacity of high speed FSO systems improves by 
using higher order modulation scheme such as polarization division multiplexed 16 quad-
rature amplitude modulation (PDM-16 QAM) (Arun et  al. 2021). Polarization diversity 
also improves system performance but there is a possibility of crosstalk due to cross polari-
zation (Grosinger 2008; Xie et al. 2011; Zhang et al. 2018; Ruhin and Choyon 2021; Zhang 
and Dang 2017). To account induced cross polarization crosstalk we considered Max-
wellian Distribution (Winter et al. 2009; Islam and Majumder 2007; Glauco et al. 2013).

In Shariful and Majumder (2020), the performance of a non-Hermitian OFDM based 
DQPSK FSO system with polarization diversity over strong turbulence was reported. In 
this research article, we compare the same system BER performance proposed in Shariful 
and Majumder (2020), but considering different atmospheric turbulent conditions by using 
different turbulence fading models.

2 � System model

Block diagram of our proposed non-Hermitian OFDM based DQPSK FSO system con-
sidering polarization diversity is given in Fig. 1. The OFDM modulated complex data is 
put into a Real Imaginary separator. The separated real and imaginary data is then fed into 
two different DQPSK modulators to perform DQPSK modulation. A laser light wave is 
spillited into horizontal and vertical light signal and then these two light signals are used 
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as a carrier signal for real and imaginary DQPSK modulated data respectively. These two 
lights are combined by a polarized beam combiner and passed through the atmospheric 
turbulent channel. At the receiver side, the received signal is again spillited and fed into 
a 90° hybrid circuit where a reference light is also fed from the local oscillator. By using 
a receiver circuit, the digital output is found. To retrieve the transmitted data, the reverse 
process is carried out for the rest part of the system.

3 � Channel model

The atmospheric turbulence is the key factor which fades the intensity and changes the 
phase of the received light. The fading strength mainly depends on the refractive index 
structure parameter C2

n
 and the optical radiation of the channel. For weak atmospheric tur-

bulent channel, the mostly used fading model is the log-normal distribution. The probabil-
ity density function of the channel irradiance is expressed by Stephen et al. (2005)

The Gamma-Gamma turbulence fading model is suitable turbulence model for medium 
atmospheric turbulence. The gamma distribution is expressed by Singh and Malhotra 
(2021), Bekkali et al. (2010)
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Fig. 1   Full block diagram representation of an OFDM DQPSK FSO system with polarization diversity 
(Shariful and Majumder 2020)
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where, I represents intensity of the optical signal, the modified Bessel function is Kα−β 
where α − β is its order and symbol Г is the gamma function. The symbols α and β repre-
sents small-scale and large scale eddies respectively.

Negative exponential channel is generally considered under very strong irradiance 
fluctuations. When the turbulence reaches its saturation level known as the fully devel-
oped speckle regime, huge number of independent scatterings occurs. At that time, the 
field’s amplitude fluctuation is experimentally verified to obey the Rayleigh distribution 
implying negative exponential statistics for the channel irradiance which is expressed as 
(Wilson et al. 2005)-

where, I0 (I0 > 0) is said as the mean irradiance or noise turbulence variance which is often 
normalized to unity.

4 � Theoretical analysis

The Maxwell distribution of the random misalignment angle where �m represents the 
mean misalignment angle is expressed as (Winter et  al. 2009; Islam and Majumder 
2007; Glauco et al. 2013)

After accounting fading due to PBS misalignment and turbulence, the resultant sig-
nal term is (Shariful and Majumder 2020)-

And the crosstalk terms due to X-Pol and turbulence is-

The conditional signal to noise plus crosstalk ratio (SNCR) condition on misalign-
ment angle and turbulence is written as (Shariful and Majumder 2020)

Now, the conditional BER of the system is represent by-
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Finally, the average BER can be written as (Shariful and Majumder 2020)-

Now we can simplify the Eq. (9) by taking some necessary steps. Firstly we rewrite 
the Eq. (7) as

where,

Substituting Eqs. (4) and (8) into (9), then we found the average BER equation as-

To eliminate the error function associated in Eq.  (11), we can invoke Eq.  (3.321.1) 
reported in Gradshteyn and Ryzhik (1994) and the resultant average BER expression is 
then

To reduce the integral number involved in (12), we can invoke Eq. (3.326.2) reported 
in Gradshteyn and Ryzhik (1994) and assumed only signal to crosstalk ratio when aver-
aging over Maxwellian distribution to get the more simplified form of the average BER. 
The final expression of the average BER is -
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Table 1   Required system 
parameters value used in 
simulation

Parameters Values

Photodetector Responsivity, Rd 0.85
Characteristic of the MZ, V0 500 mV–8 V
Temperature, T 300 K
Thermal Resistance, RL 50 Ω
Laser wavelength, λ 1550 nm
Phase of the X-polarized signal, ФX,I 450
Phase of the Y-polarized signal, ФY,I 450
Background noise 10–8 W

Fig. 2   BER performance results comparison between without atmospheric turbulence and polarization 
crosstalk with different atmospheric turbulence with polarization crosstalk
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5 � Results and discussion

The required system’s parameters value considered during analytical simulations are pro-
vided in Table 1. The BER performance of the considered system is evaluated for different 
atmospheric turbulence. The BER versus received signal power for different atmospheric 
turbulence condition are shown in Fig. 2. Results show that the system suffers almost 7.5, 
11 and 16 dB power penalty due to polarization crosstalk along with weak, medium and 
strong turbulence respectively at a BER of 10–12 when the system link length is 3000 m. 
When the number of OFDM subcarrier increases it reduces the power penalty of the sys-
tem which is shown in Fig. 3. The system BER performance for different link distances 
and for different mean misalignment angles are provided in Figs.  4 and 5 respectively. 
The power penalty due to random mean misalignment angle for all turbulence regimes is 
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Fig. 3   System’s BER performance results for various atmospheric turbulent conditions when number of 
OFDM subcarriers is as input variable
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provided in Fig. 6. The Fig. 7 shows the receiver sensitivity improvement due to increasing 
the number of OFDM subcarrier for different turbulence fading model. Results show that, 
almost 19, 16 and 10 dB receiver sensitivity improves when number of subcarrier increase 
into 512 for weak, medium and strong turbulence condition respectively at a BER of 10–12. 
The maximum allowable link distance of the considered system for different turbulent con-
ditions are approximately 3650 m for weak, 3300 m for moderate to strong and 2800 m for 
very strong turbulence to maintain a constant BER of 10–12 and received optical power of 
-50dBm when the number of OFDM subcarrier is 512. The allowable link distance versus 
number of OFDM subcarriers is provided in Fig. 8. Results show that, for the same sys-
tem’s constraints, the allowable link distance is higher for weak turbulence regime and the 
allowable link distance is decreasing with increasing turbulences, the change of allowable 
link distance with number of OFDM subcarrier is also less for weak turbulence and the 
change increasing with increasing turbulences.

Fig. 4   Effect of increasing system’s link distance on BER performance considering different atmospheric 
turbulence condition
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6 � Conclusions

The effect of atmospheric turbulence along with polarization crosstalk on BER perfor-
mance of a non-Hermitian OFDM based DQPSK system is determined. The performance 
of the system in terms of BER for different turbulent channel considering different fading 
model is compared. It is clearly noticeable from different results that the system BER per-
formance deteriorated drastically due to very strong turbulence along with higher polariza-
tion crosstalk. System’s allowable link distance varies with the variation of atmospheric 
turbulence. To reduce the fading due to atmospheric turbulence, different channel coding 
like Read Solomon code, Convolutional code, Low Density Parity Check code etc. may 
considered along with our proposed system. The results of our proposed system may use to 
find application in design of OFDM FSO link over atmospheric turbulent channel.

Fig. 5   Effect of increasing random mean angular misalignment angle on system’s BER performance con-
sidering different atmospheric turbulence condition
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Fig. 6   Power penalty curves due to polarization crosstalk for different atmospheric turbulent channel at a 
BER of 10–6
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Fig. 7   Receiver sensitivity improvement curves due to increasing number of OFDM subcarrier for different 
atmospheric turbulent channel at a BER of 10–12
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