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Abstract
The propagation of optical solitons via nonlinear metamaterials with cubic-quintic non-
linearity, detuning intermodal dispersion, self steepening effect, and nonlinear third and 
fourth-order dispersions is the focus of this study. To find the optical solitons and other 
solutions, the extended sinh-Gordon equation expansion method is applied to the afore-
mentioned model. As a result, dark, bright, combined dark–bright, singular, combined sin-
gular soliton, and singular periodic wave solutions are obtained. To our best knowledge, 
the application of the method to the model, and the acquired combined soliton solutions 
are novel. To understand the nonlinear propagation theory of solitons in metamaterials, the 
reported outcomes can be enriched by the soliton theory.
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1  Introduction

The propagation of electromagnetic waves in optical metamaterials is widely recognized 
to have several applications in real life (Cai and Shalaev 2010; Biswas et al. 2010; Shal-
aev 2007). In such real-world applications, metamaterials constitute a significant medium. 
Metamaterials are artificial synthetic materials that have numerous intriguing electromag-
netic characteristics that regular materials do not have (Biswas et al. 2014; Hubert et al. 
2019; Zhou et al. 2014, 2015; Kader et  al. 2019; Xu et al. 2015). Victor Veselago, who 
concentrated on the purely theoretical conception of negative index materials, established 
the theoretical properties of metamaterials for the first time in the 1960s. Metamaterials are 
used in a wide range of applications, which would include smart solar power management, 
sensor detection and infrastructure monitoring, medical devices, optical filters, improv-
ing ultrasonic sensors, remote aerospace applications, high-frequency battlefield com-
munication, and lenses for high-gain antennas, as well as earthquake shielding structures. 
(Valipour et al. 2021). The electric- and magnetic-field components contribute in the prop-
agation of optical pulses through metamaterials (Hubert et al. 2019). It’s worth noting that 
some researchers recently demonstrated that the nonlinear dynamical model for explaining 
the propagation of ultrashort optical solitons in nonlinear metamaterials can be modeled by 
the perturbed nonlinear Schrödinger equation, which includes the Raman effect, parabolic 
law nonlinearity, third-order dispersion nonlinear dispersion, and self-steepening (Biswas 
et al. 2014; Hubert et al. 2019; Zhou et al. 2014, 2015; Kader et al. 2019; Xu et al. 2015). 
However, the fourth order dispersion term of the above models are missing. As a result, we 
take into account the nonlinear metamaterials model with cubic-quintic nonlinearity, self 
steepening effect, detuning multimodal dispersion, as well as nonlinear third and fourth 
order dispersion terms, which is given by Hubert et al. (2019):

The complex-valued soliton profile is represented by u(x, t),  i =
√
−1, whereas x and t are 

independent variables that represent spatial and temporal factors, respectively. The con-
stants are a for the coefficients of the group velocity dispersion (GVD) term, b for the 
coefficients of the cubic, and quintic nonlinear terms, and c for the coefficients of the cubic 
and quintic nonlinear terms, respectively. The cubic and quintic nonlinearities, commonly 
known as the parabolic law nonlinearity, should be mentioned specifically here. In particu-
lar, � represents intermodal dispersion, s and v represent detuning coefficients, as well as 
intermodal and nonlinear dispersion, correspondingly. The coefficients of third and fourth 
order dispersion, respectively, are � and �. Furthermore, �l, l = 1, 2, 3 denotes the perturba-
tion terms typically arise in the context of metamaterials (Hubert et al. 2019).

In Hubert et  al. (2019), the solitary ansatz and the Riccati equation techniques have 
recently been used to generate the bright, dark, combined dark-singular, and singular 
soliton solutions to Eq. (1). However, this present study also investigate novel soliton solu-
tions to the governing Eq. (1) based on the extended sinh Gordon expansion method (Esh-
GEM). In the past, many researchers applied the EshGEM to a variety of the nonlinear 
models (Yan 2003; Xie et al. 2002; Zhao 2006; Kumar et al. 2018, 2019; Seadawy et al. 
2018). Except the EshGEM, analytic solutions are found to the variety of integer and frac-
tal order models with the execution of other methods (Attia et al. 2020; Zafar et al. 2021, 

(1)

iut + auxx + b|u|2u + c|u|4u + d u + i� ux + is(|u|2u)x + iv(|u|2)xu
+ i�|u|2ux + i� uxxx + � uxxxx

+ �1(|u|2u)xx + �2|u|2uxx + �3u
2u∗

xx
= 0.
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2022; Kumar and Paul 2021; Kumar et al. 2021a, b; Akinyemi et al. 2021, 2022a, b; Khater 
et al. 2021; Nuruzzaman et al. 2021; Ghanbari 2021a, b; Ghanbari et al. 2020; Mathanaran-
jan 2020, 2021a, b; Ahmad et al. 2021; Korpinar et al. 2020; Hashemi et al. 2019; Cim-
poiasu and Pauna 2018; Hosseini et al. 2021a, b). Notwithstanding, the prime intension of 
the study is to execute the EshGEM to Eq. (1). This suggested EshGEM can overcome the 
limitations of the solitary anstaz method (Hubert et al. 2019).

The rest of the paper is organized as follows: In Sect. 2, we provided the outline of Esh-
GEM. The mathematical analysis of the model is discussed in Sect. 3. In Sects. 4 and 5, 
we described the implementation of the proposed method and physical explanation of the 
obtained solutions. Finally, Sect. 6 concludes the paper.

2 � Outlines of EshGEM

The overall description of EshGEM is given in this section. To give an overview of the 
techniques, we consider the following sinh-Gordon equation (Yan 2003) where u = u(x, t) 
and � ∈ ℝ ⧵ {0} as:

The following nonlinear ordinary differential equation (NODE) is obtained by applying the 
wave transformation u = u(x, t) = U(� ), � = �(x − ct) to Eq. (2):

where � is the travelling wave’s amplitude and c is the travelling wave’s speed. Integrating 
Eq. (3), we obtain the following equation:

where �1 is the constant of integration. Substituting U
2

= r(� ) and −
�

�2c
= �2 in Eq.  (4), 

gives

where �1 and �2 have distinct values. The following set of solutions are accessible to Eq. (5) 
[see Xie et al. (2002) for more detail].

Case 1  Taking �1 = 0 and �1 = 1, Eq. (5) yields

The sinh-Gordon equation is simplified in this way. When Eq. (6) is simplified, the follow-
ing important equations result:

and

(2)uxt = � sinh(u).

(3)U�� =
�

�2c
sinh(U),

(4)
[(

U

2

)�
]2

=
�

�2c
sinh

2
(
U

2

)
+ �1,

(5)r� =

√
�1 + �2 sinh

2(r),

(6)r� = sinh(r).

(7)sinh(r) = ±i sech (� ), cosh(r) = − tanh(� ),
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Case 2  Again, taking �1 = 1 and �2 = 1, Eq. (5) becomes

The sinh-Gordon equation is also simplified in this way. When \autoref{sng:55} is simpli-
fied, the following important equations result:

and

To find various wave solutions to the nonlinear partial differential equations (NPDEs), we 
formulate the following form of equation:

Using the wave transformation u(x, t) = W(� ), � = �(x − ct) on Eq.  (12) results in the 
NODE:

Now, we assume the finite series solutions of the Eq. (13), as:

It is presumed that the solution W(� ) of the nonlinear Eq. (14), together with Eqs. (6), (7), 
and (8), may be stated as follows:

and

Similarly, suppose that the solution W(� ) of the nonlinear Eq.  (14), as well as Eqs.  (9), 
(10), and (11), may be stated as follows:

and

(8)sinh(r) = ± csch (� ), cosh(r) = − coth(� ).

(9)r� = cosh(r).

(10)sinh(r) = tan(� ), cosh(r) = ± sec(� ),

(11)sinh(r) = − cot(� ), cosh(r) = ± csc(� ).

(12)P(u, uux, u
2ut, uxx ⋯).

(13)G(W, WW �, W2W �, W ��, ⋯).

(14)W(r) =

Ω∑

l=1

cosh
l−1(r)

[
Bl sinh(r) + Al cosh(r)

]
+ A0.

(15)W(� ) =

Ω∑

l=1

(− tanh(� ))
l−1[

± iBl sech (� ) − Al tanh(� )
]
+ A0,

(16)W(� ) =

Ω∑

l=1

(− coth(� )
l−1[

± iBl csch (� ) − Al coth(� )
]
+ A0.

(17)W(� ) =

Ω∑

l=1

(± sec(� ))
l−1[

Bl tan(� ) ± Al sec(� )
]
+ A0,

(18)W(� ) =

Ω∑

l=1

(± csc(� )
l−1[

− Bl cot(� ) ± Al csc(� )
]
+ A0.



Optical solitons in metamaterials with third and fourth order…

1 3

Page 5 of 15  271

We calculate Ω by balancing the highest power nonlinear term with the high-
est derivative in the converted NODE. Setting each summation of the coefficients of 
sinh

l(r) coshl(r), 0 ≤ l ≤ Ω to be zero results in a set of equations. Solving this set of equa-
tions yield the values of the coefficients Al, Bl, � and c. Finally, inserting the obtained val-
ues of these coefficients into Eq. (14) along with the value of Ω , gives the optical solutions 
to the Eq. (13).

3 � Mathematical analysis of the model

To study Eq. (1), we consider the below wave transformation:

where g, k, � are the constants and i =
√
−1. Inserting Eq. (19) into Eq. (1) and splitting 

the real part and imaginary part, we have

Differentiating Eq. (21) with regard to }}�ε results:

By eliminating �(4)(� ) from the Eqs. (20) and (22), we get

where

where (� − 4k�) ≠ 0. Our goal now is to solve Eq. (23), by using the expanded shGEEM.

(19)u(x, t) = �(� )ei�(x,t), � = x + �t, � = −kx + gt,

(20)

(d − ak2 − k3� + k� + k4� − g)�(� )

+ (b + ks + k� − k2�1 − k2�2 − k2�3)�(� )
3

+ c�(� )5 + 6�1�(� )�
�(� )2 + (a + 3k(� − 2k�))���(� )

+ (3�1 + �2 + �3)�(� )
2���(� ) + ��(4)(� ) = 0.

(21)
(−2ak − 3k2� + � + � + 4k3�)��(� ) + (3s + 2v + �

− 6k�1 − 2k�2 + 2k�3)�(� )
2��(� ) + (� − 4k�)�(3)(� ) = 0.

(22)

2(3s + 2v + � − 2k(3�1 + �2 − �3))�(� )�
�(� )2

+ (−2ak − 3k2� + � + � + 4k3�)���(� )

+ (3s + 2v + � − 2k(3�1 + �2 − �3))�(� )
2���(� ) + (� − 4k�)�(4)(� ) = 0.

(23)b1�(� )
2���(� ) + b2�

��(� ) + b3�(� )�
�(� )2 + b4�(� ) + b5�(� )

3 + b6�(� )
5 = 0,

(24)

b1 = (� − 2k�)(3�1 + �2) + (� − 6k�)�3 − (3s + 2v + �)�,

b2 = �(a + 3k�) − (2ak + 15k2� + � + �)� + 20k3�2,

b3 = −2(−3(� − 2k�)�1 + �(3s + 2v + � − 2k�2 + 2k�3)),

b4 = (� − 4k�)(d + k(−k(a + k�) + � + k3�) − g),

b5 = (� − 4k�)(b + k(s + �) − k2(�1 + �2 + �3)),

b6 = c(� − 4k�),
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4 � Implementation of the described method

In the following subsections, we implement the extended shGEEM to solve the nonlin-
ear meta-materials having third and fourth order dispersions. Applying the homogene-
ous balance principle between �(� )2���(� ) and �(� )5 in Eq. (23), we have Ω = 1.

4.1 � Case 1: For r� = sinh(r)

The expanded shGEEM has the solution in the form of Eq. (23) courtesy to Eqs. (14), 
(15), and (16) as:

and

where either A1 or B1 can be zero, but neither A1 nor B1 can be zero at the same time. After 
that, a polynomial in powers of hyperbolic functions is produced by putting the form of 
Eq. (27) together with its second derivative into Eq. (23). We obtain a collection of alge-
braic equations by putting the summation of the coefficients of the trigonometric identities 
with the same power to zero. The parameters value can be determined by simplifying these 
set of equations. By putting these values of the parameters into Eqs. (25) and (26), and then 
into Eq. (19), the following Eq. (1) solutions may be derived for each instance:

Result 1 

and

Putting the values of Result 1 into Eqs.  (25) and (26), we obtain the dark and singular 
soliton solutions for the above model as follows:

and

(25)W(� ) = ± iB1 sech (� ) − A1 tanh(� ) + A0,

(26)W(� ) = ± iB1 csch (� ) − A1 coth(� ) + A0,

(27)W(r) = B1 sinh(r) + A1 cosh(r) + A0,

(28)A0 = 0, A1 = ±

√

−
2b1 + b3

b6
, B1 = 0,

(29)
� = −(2ak + 15k2� + �) + 20k3� +

�(a+3k�)

�

+
(2b1+b3)(2(b1+b3)−b5)

2�b6

,

(30)g = d + k(−k(a + k�) + � + k3�) +
(2b1 + b3)(2b1 + b3 − b5)

(� − 4k�)b6
.

(31)u(x, t) = ±

√

−
2b1 + b3

b6
tanh(x + �t)ei(−kx+gt),
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where bl, l = 1,⋯ , 6 given in Eq. (24) and provided that (2b1 + b3)b6 < 0.

Result 2 

and

Inserting the values of Result 2 into Eqs. (25) and (26), we obtain the bright and singular 
soliton solutions for the above model as follows:

and

where bl, l = 1,⋯ , 6 given in Eq. (24) and provided that (2b1 + b3)b6 < 0.

Result 3.1 

and

Substituting the values of Result 3.1 into Eqs.  (25) and (26), we obtain the mixed dark–
bright and singular solitons of the considered nonlinear model as:

(32)u(x, t) = ±

√

−
2b1 + b3

b6
coth(x + �t)ei(−kx+gt),

(33)A0 = 0, A1 = 0, B1 = ±

√

−
2b1 + b3

b6
,

(34)
� = −(2ak + 15k2� + �) + 20k3�

+
�(a + 3k�)

�
−

(2b1 + b3)(b1 + b3 + b5)

2� b6
,

(35)g = d + k(−k(a + k�) + � + k3�) +
(2b1 + b3)(b1 + b3 + b5)

2(� − 4k�)b6
.

(36)u(x, t) = ±

√

−
2b1 + b3

b6
sech (x + �t)ei(−kx+gt),

(37)u(x, t) = ±

√

−
2b1 + b3

b6
csch (x + �t)ei(−kx+gt),

(38)A0 = 0, A1 = ±
1

2

√

−
2b1 + b3

b6
, B1 = −

1

2

√

−
2b1 + b3

b6
,

(39)
� = −(2ak + 15k2� + �) + 20k3� +

�(a + 3k�)

�

+
(2b1 + b3)(b1 + b3 − 2b5)

4� b6
,

(40)g = d + k(−k(a + k�) + � + k3�) +
(2b1 + b3)(2b1 + b3 − 4b5)

16(� − 4k�)b6
.
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and

Result 3.2 

and

Putting the values of Result 3.2 into Eqs. (25) and (26), we acquire the mixed dark-bright 
and singular soliton solutions to the model as:

and

where bl, (l = 1,⋯ , 6) given in Eq. (24) and provided that (2b1 + b3)b6 < 0.

4.2 � Case II: For r� = cosh(r)

The extended sinh-Gordon equation expansion method (EshGEEM) has the solution in the 
form of Eq. (23), according to Eqs. (14), (17), and (18) repectively.

and

(41)u(x, t) = ±
1

2

√

−
2b1 + b3

b6

(
i sech (x + �t) + tanh(x + �t)

)
ei(−kx+gt),

(42)u(x, t) = ±
1

2

√

−
2b1 + b3

b6

(
i csch (x + �t) + coth(x + �t)

)
ei(−kx+gt).

(43)A0 = 0, A1 = ±
1

2

√

−
2b1 + b3

b6
, B1 =

1

2

√

−
2b1 + b3

b6
,

(44)
� = −(2ak + 15k2� + �) + 20k3� +

�(a + 3k�)

�

+
(2b1 + b3)(b1 + b3 − 2b5)

4� b6
,

(45)g = d + k(−k(a + k�) + � + k3�) +
(2b1 + b3)(2b1 + b3 − 4b5)

16(� − 4k�)b6
.

(46)u(x, t) = ±
1

2

√

−
2b1 + b3

b6

(
i sech (x + �t) − tanh(x + �t)

)
ei(−kx+gt),

(47)u(x, t) = ±
1

2

√

−
2b1 + b3

b6

(
i csch (x + �t) − coth(x + �t)

)
ei(−kx+gt),

(48)W(� ) = B1 tan(� ) ± A1 sec(� ) + A0,

(49)W(� ) = −B1 cot(� ) ± A1 csc(� ) + A0,

(50)W(r) = B1 sinh(r) + A1 cosh(r) + A0,
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where A1 or B1 may be zero, but neither A1 nor B1 may be zero at the same time. After 
that, a polynomial in powers of hyperbolic functions is produced by putting the form of 
Eq. (50) together with its second derivative into Eq. (23). We obtain a collection of alge-
braic equations by setting the summation of the coefficients of the trigonometric identities 
with the same power to zero. The parameter values can be determined after simplifying the 
equations. By putting the values of the parameters into Eqs.  (48) and (49) and then into 
Eq. (19), the following solution of Eq. (1) may be determined for each instance.

Result 1 

and

We derive the periodic and singular periodic solutions for the aforementioned model by 
plugging the values of Result 1 into Eqs. (48) and (49) accordingly:

and

where bl, l = 1,⋯ , 6 given in Eq. (24) and provided that (2b1 + b3)b6 < 0.

Result 2 

and

We get the periodic and singular periodic solutions for the aforementioned model by plug-
ging in the parameters from Result 2 into Eqs. (48) and (49):

(51)A0 = 0, A1 = ±

√

−
2b1 + b3

b6
, B1 = 0,

(52)� = −(2ak + 15k2� + �) + 20k3� +
�(a + 3k�)

�
+

(2b1 + b3)(b1 + b3 − b5)

2� b6
,

(53)g = d + k(−k(a + k�) + � + k3�) +
(2b1 + b3)(b1 + b3 − b5)

2(� − 4k�)b6
.

(54)u(x, t) = ±

√

−
2b1 + b3

b6
tan(x + �t)ei(−kx+gt),

(55)u(x, t) = ±

√

−
2b1 + b3

b6
cot(x + �t)ei(−kx+gt),

(56)A0 = 0, A1 = 0, B1 = ±

√

−
2b1 + b3

b6
,

(57)
� = −(2ak + 15k2� + �) + 20k3�

+
�(a + 3k�)

�
−

(2b1 + b3)(2(b1 + b3) + b5)

2� b6
,

(58)g = d + k(−k(a + k�) + � + k3�) +
(2b1 + b3)(2b1 + b3 + b5)

(� − 4k�)b6
.
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and

where bl, l = 1,⋯ , 6 given in Eq. (24) and provided that (2b1 + b3)b6 < 0.

Result 3.1 

and

We acquire the mixed periodic-singular and singular periodic solutions to the aforemen-
tioned model by plugging the values from Result 3.1 into Eqs. (48) and (49), respectively:

and

Result 3.2 

and

Also, putting the values of Result 3.2 into Eqs. (48) and (49), we obtain the combined peri-
odic-singular and singular periodic solutions to the proposed nonlinear model as follows:

(59)u(x, t) = ±

√

−
2b1 + b3

b6
sec(x + �t)ei(−kx+gt),

(60)u(x, t) = ±

√

−
2b1 + b3

b6
csc(x + �t)ei(−kx+gt),

(61)A0 = 0, A1 = ±
1

2

√

−
2b1 + b3

b6
, B1 = −

1

2

√

−
2b1 + b3

b6
,

(62)
� = −(2ak + 15k2� + �) + 20k3�

+
�(a + 3k�)

�
−

(2b1 + b3)(b1 + b3 + 2b5)

4� b6
,

(63)g = d + k(−k(a + k�) + � + k3�) +
(2b1 + b3)(2b1 + b3 + 4b5)

16(� − 4k�)b6
.

(64)u(x, t) = ±
1

2

√

−
2b1 + b3

b6

(
i sec(x + �t) + tan(x + �t)

)
ei(−kx+gt),

(65)u(x, t) = ±
1

2

√

−
2b1 + b3

b6

(
i csc(x + �t) + cot(x + �t)

)
ei(−kx+gt).

(66)A0 = 0, A1 = ±
1

2

√

−
2b1 + b3

b6
, B1 =

1

2

√

−
2b1 + b3

b6
,

(67)� = −(2ak + 15k2� + �) + 20k3� +
�(a + 3k�)

�
−

(2b1 + b3)(b1 + b3 + 2b5)

4� b6
,

(68)g = d + k(−k(a + k�) + � + k3�) +
(2b1 + b3)(2b1 + b3 + 4b5)

16(� − 4k�)b6
.
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and

where bl, l = 1, ⋯ , 6 given in Eq. (24) and provided that (2b1 + b3)b6 < 0.

5 � Physical explanation of the obtained solutions

The EshGEM is executed to generate novel soliton solutions to the metamaterials model 
having the cubic-quintic nonlinearity, detuning intermodal dispersion, self steepening 
effect, nonlinear third and fourth order dispersion. It is mentioned in introduction section 
that the model has been solved though the ansatz and the Riccati equation methods. As in 
Hubert et al. (2019), bright, dark, combo dark–singular, and singular soliton solutions are 
reported. In this study, we determine some novel dark, bright, combined dark-bright, com-
bined singular, and singular periodic soliton solutions of the governing equations for meta-
materials via the EshGEM. To the best of our knowledge, all of the combined dark–bright, 
combined singular, and singular periodic soliton solutions have been reported here for the 
first time. It is point out that the accuracy of the received solutions are checked by substitut-
ing each analytic solutions back into model equation. All of the produced soliton solutions 
have some physical illustration. To display such phenomena, we have portrayed some 3D 
graphs among the generated dark, bright, mixed dark–bright, singular, and mixed periodic-
singular soliton solutions under the selection of different values free parameters, which are 
mentioned in Figs. 1, 2, 3 and 4. Thus, the graphical outputs indicate that the EshGEM will 
contribute to secure novel soliton solutions for other related models.

(69)u(x, t) = ±
1

2

√

−
2b1 + b3

b6

(
i sec(x + �t) − tan(x + �t)

)
ei(−kx+gt),

(70)u(x, t) = ±
1

2

√

−
2b1 + b3

b6

(
i csc(x + �t) − cot(x + �t)

)
ei(−kx+gt),

Fig. 1   The 3D plots of the solutions defined by Eqs. (31) and (32) that indicate a the dark soliton and b the 
singular soliton, respectively for � = � = k = � = � = �1 = �2 = �3 = s = v = 1, and c = −1
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Fig. 2   The 3D plots of the solutions given by Eqs.  (36) and  (37) that indicate a the 
bright soliton and b the singular soliton, respectively, under taken the free parameters of 
� = � = k = � = � = �1 = �2 = �3 = s = v = 1, and c = −1.

Fig. 3   3D plots a for the combined dark-bright solution of the Eq. (46), and b for singular soliton solution 
of the Eq. (47) by taking the free parameter values as � = � = k = � = � = �1 = �2 = �3 = s = v = 1, and 
c = −1.

Fig. 4   a 3D plot for combined periodic-singular solution of Eq. (69) b 3D plot for singular periodic solu-
tion of Eq. (70) for � = � = k = � = � = �1 = �2 = �3 = s = v = 1, and c = −1.
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6 � Conclusions

In summary, the novel exact solutions in the form of dark, bright, combined dark–bright, 
singular, combined singular and other soliton solutions solitons are reported for the meta-
materials model having third and fourth order dispersions with the aid of the EshGEM. 
The combined dark–bright, singular-periodic, and singular soliton solutions are reported 
first time for this model. The obtained result illustrates the wave propagation of ultrashort 
optical solitons in the nonlinear metamaterials. Furthermore, the results evidence that the 
proposed approach is highly reliable and provides novel solutions when compared to other 
techniques, as well as the power to produce a wide spectrum of soliton solutions.
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