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Abstract

In this paper, we implemented extended exp(—¢(E))-expansion method for some exact
solutions of (3 + 1)-dimensional nonlinear Schrodinger equation (NLSE) and coupled non-
linear Schrodinger’s equation. The solutions we obtained are hyperbolic, trigonometric and
exponential solutions. We observed that these solutions provided the equations through
Mathematica 11.2. Apart from that, we have shown the graphics performance of some of
the solutions found. This method has been used recently to obtain exact traveling wave
solutions of nonlinear partial differential equations. The results achieved in this study have
been confirmed with computational software Maple or Mathematica by placing them back
into NLFPDEs and found them correct. We posited that the approach is updated to be more
pragmatic, efficacious, and credible and that we pursue more generalized precise solutions
for traveling waves, like the solitary wave solutions.

Keywords (3 + 1)-dimensional NLSE - Coupled NLSE - Extended-expansion method -
Exact solutions

1 Introduction

Nonlinear phenomena play a significant role in applied mathematics and physics. Exact
and numerical solutions of nonlinear equations in mathematical physics, especially the
computation of traveling wave solutions, have an important role in soliton theory. Recently,
it has become more motivating to provide exact solutions for nonlinear partial differen-
tial equations using symbolic computer programs such as Maple, Matlab, Mathematica,
which facilitate complex algebraic calculations. Finding exact solutions of nonlinear partial

P4 Mustafa Inc

minc @firat.edu.tr

Faculty of Education, Firat University, 23119 Elazig, Turkey

Department of Computer Engineering, Biruni University, Istanbul, Turkey

Department of Mathematics, Firat University, 23119 Elazig, Turkey

Department of Medical Research, China Medical University, Taichung, Taiwan

Faculty of Engineering Technology, Amol University of Special Modern Technologies, Amol, Iran

Department of Mathematics, Lafayette College, Easton, PA, USA

@ Springer


http://orcid.org/0000-0003-4996-8373
http://crossmark.crossref.org/dialog/?doi=10.1007/s11082-022-03613-y&domain=pdf

246 Page2of15 I.E.Inan et al.

differential equations is of crucial importance. These equations are mathematical models of
complex physical phenomena that occur in several disciplines such as engineering, chemis-
try, biology, mechanics, and physics. A number of effective methods have been developed
to understand the mechanisms of these physical models to assist medical practitioners and
engineers, and to have knowledge about physical problems and their applications.

Traveling wave solutions is a special category of analytical solutions for nonlinear evo-
lution equations (NLEEs). Solitary waves, are localized traveling waves. In 1965, Zabusky
and Kruskal invented the soliton. It seems to be a specific form of the solitary wave which
proliferates at the constant shape, speed, and intensity and arises in the solution of a variety
of nonlinear evolution equations. It has some intriguing characteristics, and it describes
a slew of significant applied phenomena that we are already familiar with (Cariello and
Tabor 1989; Fan 2000a; Clarkson 1989). As a consequence, studying exact traveling wave
solutions for NLFPDEs is important.

Several analytical methods have been found in literature (Shang 2007; Bock and Kruskal
1979; Matveev and Salle 1991; Abourabia and Horbaty 2006; Malfliet 1992; Chuntao
1996; Cariello and Tabor 1989; Fan 2000a; Clarkson 1989). Besides these methods, there
are many methods which reach to solution by using an auxiliary equation. These methods
are given in Malfliet (1992); Fan 2000b; Elwakil et al. 2002; Chen and Zhang 2004; Fu
et al. 2001; Shen and Pan 2003; Chen and Hong-Qing 2004; Chen et al. 2004; Chen and
Yan 2006; Wang et al. 2008; Guo and Zhou 2010; Lu et al. 2010; Li et al. 2010; Mana-
fian 2016; Khater 2015). Many researchers have applied such methods to various equa-
tions (Khater and Zahran 2016a, 2016b; Wazwaz and Mehanna 2021; Wu and Li 2020;
Kumar et al. 2020, in press; Hendi et al. 2021; Ouahid et al. 2021; Kumar and Mohan
2021; Kumar and Rani 2021).

We used the extended exp(—@(€))-expansion method for finding some exact solutions of
(3+ 1)-dimensional and coupled NLSEs. This method is developed by Khater and Zahran
(2016b).

2 Analysis of method

Before the application, a brief information about the method to be used is necessary. Let’s
express a nonlinear partial differential equation with two variables as follows:

Q(u, ux,u[,uxx...) =0, (1)

When we apply the transformation u(x, ) = u(€), & = x — k¢ this equation, Eq. (1) turns
into the following ordinary differential equation:

Q/(u/, W', u", ) =0, )
Here £ is a constant. Let’s consider the solution function of Eq. (2) as:
m
w@ =Y alexp(-o©)) 3)

i=—m

In the solution function, m is a positive integer. It is calculated by balancing the highest
order linear term with the highest order nonlinear term in Eq. (2).

In addition, g;,s are constants.If the solution function given in (3) is substituted in
Eq. (2), an algebraic system of equations is obtained for a; s and k. Then, when the
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system is solved by equating the coefficients of exp(+@(€)) having the same power val-
ues in this system to zero, the constants k and qg; are calculated. ¢ = (&) in the solution
function (3) provides the following first-order ordinary differential equation (ODE):

@' (&) = exp(—(&)) + pexp(p(8)) + 4 4

The solutions of this ODE are as follows:
When A2 —4u >0, #0,

—VA = dptanh( Y2 (g4 €,) ) - 2

&) = In o

and

—V2 = dpcoh( Y (g +C)) ) - 4

&) =In P

When A2 —4u >0, u=0,

o) = "”<exp(/1(§jcl)) - 1)

When A2 —4u =0, u#0,4%#0,

o) = ,n<_w>,

/12(§+C1)

When A2 —4p =0, u=0, A=0,

@) = l”(§ + Cl)'
When A2 —4u < 0,

V= tan( PEE (g +¢)) ) - 4

2u

&) =In

and

Vau=Zeor( VEE (g +¢)) ) - 4

2u

&) =In

Example 1. Let’s consider the (3 + 1)-dimensional NLSE (Wazwaz and Mehanna 2021),
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iUy = Uy — Uy — U + sulul? + diuy + dyuy, + dyu,, + i(d4ux +dsu, + d6uz) =0, (i =V —1) 5)

when the following transformation is applied to this equation, in which
E=(x+y+z+hst),0=(hx+hy+hyz+hyt)

u(x,y,1) = ePU(E&) (6)
where the first term is the temporal evolution of the pulses, while 7, x,y and z represent tem-
poral and spatial variables respectively, and d,, by, r=1,...,6, k=1, ...,5, s are constant

parameters. U({) is a real function. We obtain the following ODE
T\U +sU? + T,U" = 0. (7)
Here T, = (—d4h1 + h% —dshy —dhh, + h% —dghy — d3h hy — dyhyhs + h% — hy, ),
T,=(d +dy+d;-3 and  hg = (=dy —ds — dg + 2hy — dyhy — d3hy +2hy —dyhy — dyhy

+2hy — dyhy — d3h3). If U” and U? are balanced in Eq. (7), m = 1is obtained. In this case, the
solution function is as follows:

U®) = a_exp(@(8)) + ay + a,exp(—=¢(E)) 8)

In the solution expressed by (8) a_;, a,, a,, are constants to be found and a_, or a, are
nonzero.
If Eq. (8) is substituted in Eq. (7), the following algebraic equation system is obtained:

sa?) + 6sa_jaga, +agT) + Aa_T, + Aua,T, =0,
3sa_1a% + 3sa%1a1 +a_,T, + Aa_,T, +2ua_,T, =0,
3sa31a0 +3Apa_iT, =0,
sa3_] +24%a_,T, =0,
sa? +2a,T, =0,
3saoa% +34a,T, =0,

3sa(2)al + 3sa_1a% +a,T, + A*a,T, +2ua,T, = 0.

If this algebraic equations system is solved, we obtain the following coefficients.

Case 1:

V2\/T, + 2uT, V=T, = 2uT, AT,

T #O,A—_‘F—,a, —O,s?éoya i = > #Ova -
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Case 2:
,uszéO,i:im,s#O,a_l =¢i\/§”—\/T2,c¢,1 7&0,a0=—@,a1 =0
VT Vs
Case 3: 1o
u=07T,#01= i\/_\z/\TiTl,a_l =0,5s #0,q) = ii\/Tl,/l #0,a, = % (11)
2 N

Case 4:
iV2uy/T,
NG

Here, the coefficients found in (9)—(12) are also substituted in the solution of (8), then
if the acquired solution (8) is also substituted in (6), the solutions of Eq. (5) will be as
follows:

For Case 1

When A2 —4u >0, u#0,

-1, —2uT,

Tl
T, #0,M=1E,/1=0,S¢0,a,1 == sap=0,a_; #0,a, = T, (12)

—T, +2uT| -1+ VI +2Ts -
((xy+e+hs)+Cy) ﬁ ]

VT +2yT2+\/§ﬁTanh[ 7
u (x,y,2,0) = e’ (13)

v =sT, = 2suT,

VT, +2uT.
2uT,| -1+ Rl ~T,
((x+y+z+hst)+Cy) 7—‘

7 2] T+ /T 24T,
Ur (X, y,2,1) = e’ (14)

\ =T, = 2suT,

Coth|

When A2 —4u < 0,
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—T, +2uT| -1 + VI 42T _
VT +2uT,— _% \/T»ZTan[ 7((HHZMSI)\;;I) ) ]
uy(x,y,2,1) = e’ (15)
\ =T, = 2suT,
2uT,| 1+ e -7,
—Cof 7((””2“15');]) Y '2] T T2T,
uy(x,y,2,1) = e’ (16)
\=sT, = 2suT,
For Case 2
When A2 =44 >0, u#0,
((e+y+z+hst)+C, )\/E
- /T T
iy/ I v/ T, Tanh —
us(x,y,2,1) = e (17)
Nz
(x+y+z+h51+Cl)\/§ -
i - vl /L
iCoth 7 \/ 7, VT,
Ug(X,y,2,1) = e’ (18)

When A2 — 4 < 0,
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(x+y+z+hst+C )4 - h
. T, > 7,
i/ T VT, Tan 7

”7()@)’7271‘) = 4 (19)

NG

(v+y+zthst+Cy )y -7

. VR T

iCot| ——————|,/—=+/T
V2 T, 2

ug(x,y,z,1) = e (20)

5

For Case 3
WhenA? —4u >0, u=0,

- 2 -
1<1+ W) T

— VT .
u9(x’y7z’ t) = Lte - ezB (21)

5

For Case 4
When A2 —4u >0, u#0,

i\/ECsch((x+y+Z+h51+Cl),/—%),/—?\/ﬁ ;
2 2 e,-

ulo(x’ ¥.z,0 = (22)
5
iV2Cseh( (x+y+ 2+ hst +C)\[-2 ) [FE VT |
ull(-x7y’zat)= - \/_ 2 2 gla (23)
s
When A2 —4pu < 0,
i\/ECsc((x+y+z+h5t+Cl),/%%/;—;\/72 _
ulz(X, V.20 = of (24)

\/E
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i\/ECsc((x+y+z+hst+Cl)\/?)ﬁ%\/T2 A
u3(x .20 = | = —— " @

5

In the above solutions, 0= (hyx+hyy+hyz+hyt), Ty = (—=d,h, + I —dsh,)
(=d\hyhy + 3 — dghy — d3hyhy — dyhyhy + B2 — hy), Ty = (d, +dy +d; — 3) and
hs = (=dy — ds — dg + 2h, — d,hy — d3hy + 2hy — d\hy — dyhy + 2h3 — dyhs — dshs)
should be taken as.

Example 2. We consider the coupled NLSE (Wu and Li 2020)
iu, + U, + 2ulul* + 2ulv|* = 0,

26
iv,+vxx+2v|u|2+2v|v|2 =0.<i= \/—1) (26)

when the following transformations are applied to this equations, in which
§=x+h3t,0=h1x+h2t

u(x,t) = OUE) and v(x,1) = OV(E) (27)
we acquire the following ODE

U" — MU +2U° +2U0V? =0,

28
V" — MV +2VU? +2V3 =0, %)

where M = h? + hy, hy = —2h,. If U” with UV?* and V" with VU? are balanced in Eq. (28),
m; = land m, = 1 are obtained. In this case, the solution functions are as follows:
U©) = a_,exp(@(§)) + ag + a exp(=@(8))

V(E) = b_exp(@(®) + by + bexp(—p(£)) @9

In the solution expressed by (29) a_,, a,, a;, b_;, b, are constants. If Eqgs. (29) are
substituted in Eq. (28), the following algebraic equation system is acquired:
Aa_y — May + 24} + Apa, + 12a_ aga; + 4a,b_ by + 2a0by + 4agb_ by + 4a_,byb,
=0,2pa_; + 24>, +2a_b* | = 0,3Aua_; + 6a> ay + 2ab* , +4a_b_ib,
=0,-Ma_, + A*a_; +2ua_, + 6a_,a(2) + 6aila, + 2a1b2_] +4ayb_ by + 2a_,b(2)
+da_b_b, = 0,—Ma, + A*a, + 2ua; + 6aza, + 6a_,at + 2a,b; + 4a,b_,b,
+dagbyb, +2a_ibt = 0,34a, + 6aya; + 4a,byb, + 2ayb; = 0,2a, + 24} + 2a,b}
=0,Ab_; +4agab_; — Mb, + ZaSbO +4a_ja,by + 2[9(3) + Aub| +4a_jagb,
+12b_1bgby = 0,24°b_, +2a* b_, +2b | = 0,3Aub_, + 4a_jazb_, +2a’ b,
+6b% by =0,-Mb_, + A*b_y +2ub_, + 2a3b_, +4a_ja,b_, + 4a_,agb, + 6b_,b;
+2a* by + 6D by = 0,2a1b_; + 4aga,by — Mb, + A°b; + 2ub, + 2aph, +4a_,a,b,
+6b5b, + 6b_ )b} = 0,2a3by + 3%, +4aga, by + 6bybT = 0,2b, + 2ath, +2b] = 0.
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If this algebraic equations system is solved, we obtain the following coefficients.

Case 1:

2 b
WEOM = %(—/12+4,4),,1¢0,a,1 = ”;'“,a, =05, =0,h0=¢%,/—/12 —4ad)ay #0,b_, = “*‘0 2. (30)

a

Case 2:

2 2 b
p=0M = —%,a_l —0,4#0,a, = %,bl =xy/-1-ah=Zhb, =0

3D
Case 3:
2a Ab
M= %(—/124—4;4),61_1 =0,A#0,a, = To,b1 =41/-1-d by = TI,b_l =0.
Case 4: 33)
) A(2M + 4%)a,
H=0A#0M=22M#0,a_ = —————,a,=0,b =0,a, #0,
. 32)
1\/—3M2+2M,12 + A* + 6Mag A(2M + 22)b,
b() =+ —

N
Vo ST

Here, the coefficients found in (30)—(33) are also substituted in the solution of (29), then
if the acquired solution (29) is also substituted in (27), the solutions of Eq. (26) will be as
follows:

For Case 1

WhenA? —4u >0, u#0,

\/ﬂaoTanh < —\/ﬁ((x:g} D+C) )

u(x,n)=\- 7 oi(hxthyt)
\/MA%+ 4Ma5Tanh<_m(("\;;ﬂ)+Cn))
v, =1- pi(maxthsr) (34)
V24
—chOth(M%
uy(x, 1) =1 — oi(maxthst)

A
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V=M((x+h;1)+C,) 5
Coth — G \/MA? + 4May
vy, ) = — ei(h,x+hzt) 35
N (35)
When A2 — 4u < 0,
V2MayTan < W > .
I/l3()€, l) = Z et(h]x+hzt)
\/~M 32 — 4Ma2Tan ( —‘/M(("tfh;’)“‘) >
va(x, 1) = ei(h1x+h2t) 36
3 NT (36)
vV 2MCOt(M > a,
u4(x’ t) — - ei(hl)c+hzt)
C0t<—\/ﬁ((x$t)+c') ) \/-MA2 = 4Ma?
v (X, l) — ei(hlx+hzt) 37
4 N (37
For Case 2
When A2 —4u > 0,4 =0,
- 2 i(hlx+h2t)
us(x, 1) a0<1 + 4 o EGeey >e
1+ eV-2M((+ms0)+C) ) [pg — 202
Vs 1) = < ) 0 pi(mxtint) (38)

\/5(—1 +e\/ﬂ(‘f+cl))

For Case 3
When A2 —4u > 0,4 # 0,
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ué(x, 1= a 1 - 2u ei(h|x+h2t)

~M + 24 + \/=M~/=M + 2iTanh < —m«"\zﬂ)*cl) )

—M 42y + 242 /2 _
0= 3 V| VM e Vau st

V-M+2u+ —MTanh(M)

(39

us(x, 1) = ay 1 - 2u ei(h,x+h2t)

—M + 24 + \/=M+/=M + 2uCoth < —M(("Jgﬁ)w‘) >

M +2u+ 242 24/2 )
vy(x, 1) = %V Tyo =2M + 4y — \/—” pi(ixhar)

V=M + 251 + \/=MCoth ( M)

(40)
When A2 —4u < 0,

2 .
ug(x, 1= ag 1+ H et(h1x+hz[)

M=—2u+\M —M+2MTan<W>

[ =M + 2u + 242 /2 ‘
vg(x, 1) = % Tyo V-2M +4u — V2u pi(hix+it)

— _ VM((x+h30)+C1)
V-M+2u WTan(—\/E >

(41

2 o
ug(x, 1= ag 1+ H el(hl.x+h2t)
M = 2p+\/M~\=M + 2MC0t<—W((XJ:/h;)+C‘)>

[—M +2u + 2a? /2 .
vo(X, 1) = % Tﬂo \V=2M +4pu — \/—ﬂ i x+hs1)

V=M +2u - WCOt(M)

42)
When A2 —4pu >0, u =0,
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00730188704

ey ?

007301887935

00730188793
-10

Fig.1 Plot evolution of the periodic analytic solution with the variation of & parameter a i; = —0.15, b
hy =—1.15,¢hy = —15.15and d h; = —20.15for ay = 0.25, u = 04,41 = 1.2, M = —0.64.

(a) 0.075 (b)

0.07 0.07
0.08 = 0.065
0.065 &
o i )
= 0.07 = o0
3% 006 pios 55
‘”150 0,085 o8
10 5 0 5 10

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01

Fig.2 Plot evolution of the analytic kink-like soliton solution and breather-like soliton with the variation of
C parametera, bC = —10,¢,dC = —20and g, = 0.25, 4 = 04,4 =0.2,h; = 0.5,M = 0.64.

(X, 1) = aoe\/ﬁ((x+h3t)+c,)ei(h1x+h2t)

ie‘/;’((x*'hs’)*'cn) Ma(Q)
Viplx, 1) = i(h+hr) )

VM
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(b)

ug(xt)
s 2 o
| —
[\ —
ugx)?

VYv vvvvvr

Fig.3 Plot evolution of breather-like soliton with the variation of C parameter a, b C =110 and
ag=025,4=04,1=02,h; =0.5,M = 0.64.

3 Physical explanation

In plots Fig. 1, we show the evolution of the periodic solutions with the effects of free
parameter ;. However, in plots Fig. 2, we stress the effects of the parameter C. It is
observed in Fig. 2a, b the kink-like soliton and in Fig. 2c, d the corresponding dou-
ble kink-like soliton and breather-like soliton is get out. Beside, when we increase the
value of the parameter, we show out the breather-like soliton. These results could help
to improve the communication in optical fibers (Fig. 3).

4 Conclusion

We used the extended exp(—@(€))-expansion method for find some optical solitons of
(3+ 1)-dimensional and coupled NLSEs. The acquired solutions are dark, bright, combined
optical solitons and exact solutions. Then, we observed that these solutions provided the
equations through Mathematica 11.2. Apart from that, we have shown the graphics perfor-
mance of some of the solutions found. The method can be used for many other nonlinear
equations or combined equations.

Funding The authors have not disclosed any funding.

Declarations

Competing interests The authors have not disclosed any competing interests.

References

Abourabia, A.M., El Horbaty, M.M.: On solitary wave solutions for the two-dimensional nonlinear modified
Kortweg-de Vries-Burger equation. Chaos Solitons Fractals 29, 354-364 (2006)

Awatif, A., Hendi, L., Ouahid, S., Kumar, S., Owyed, Abdou, M. A.: Dynamical behaviors of various opti-
cal soliton solutions for the Fokas-Lenells equation. Modern Phys. Lett. B, 35 (34), 2150529 (2021)

@ Springer



246 Page140f15 I.E.Inan et al.

Bock, T.L., Kruskal, M.D.: A two-parameter Miura transformation of the Benjamin-Onoequation. Phys.
Lett. A 74, 173176 (1979)

Cariello, F., Tabor, M.: Painleve expansions for nonintegrable evolution equations. Physica D 39, 77-94
(1989)

Chen, H.T., Hong-Qing, Z.: New double periodic and multiple soliton solutions of the generalized
(2+1)-dimensional Boussinesq equation. Chaos Soliton Fract 20, 765-769 (2004)

Chen, Y., Yan, Z.: The Weierstrass elliptic function expansion method and its applications in nonlinear wave
equations. Chaos Soliton Fract 29, 948-964 (2006)

Chen, H., Zhang, H.: New multiple soliton solutions to the general Burgers-Fisher equation and the Kura-
moto-Sivashinsky equation. Chaos Soliton Fract 19, 71-76 (2004)

Chen, Y., Wang, Q., Li, B.: Jacobi elliptic function rational expansion method with symbolic computation
to construct new doubly periodic solutions of nonlinear evolution equations. Z. Naturforsch. A 59,
529-536 (2004)

Chuntao, Y.: A simple transformation for nonlinear waves. Phys. Lett. A 224, 77-84 (1996)

Clarkson, P.A.: New similarity solutions for the modified boussinesq equation. J. Phys. A: Math. Gen. 22,
2355-2367 (1989)

Elwakil, S.A., El-labany, S.K., Zahran, M.A., Sabry, R.: Modified extended tanh-function method for solv-
ing nonlinear partial differential equations. Phys. Lett. A 299, 179-188 (2002)

Fan, E.: Two new application of the homogeneous balance method. Phys. Lett. A 265, 353-357 (2000a)

Fan, E.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212—
218 (2000b)

Fu, Z., Liu, S., Zhao, Q.: New Jacobi elliptic function expansion and new periodic solutions of nonlinear
wave equations. Phys. Lett. A 290, 72-76 (2001)

Guo, S., Zhou, Y.: The extended -expansion method and its applications to theWhitham-Broer-Kaup-like
equations and coupled Hirota-Satsuma KdV equations. Appl. Math. Comput. 215, 3214-3221 (2010)

Khater, M. M. A.: Extended exp(—@(§))-expansion method for solving the generalized Hirota-Satsuma cou-
pled KdV system. Global J. Sci. Front. Res.: F Math. Decis. Sci. 15(7), 7 Version 1.0 Year (2015).

Khater, M.M.A, Emad H.M. Zahran.: Modified extended tanh function method and its applications to the
Bogoyavlenskii equation. Appl. Math. Model., 40, 1769-1775 (2016a).

Khater, M. M. A., Emad H.M. Zahran.: Soliton soltuions of nonlinear evolutions equation by using the
extended exp(—@(§)) expansion method. Int. J. Comp. Appl., 145, 1-5 (2016b)

Kumar, S., Kumar, A., Kharbanda, H.: Lie symmetry analysis and generalized invariant solutions of
(2+1)-dimensional dispersive long wave (DLW) equations. Phys. Scripta 95, 095204 (2020).

Kumar, S., Mohan, B.: A study of multi-soliton solutions, breather, lumps, and their interactions for kadomt-
sev-petviashvili equation with variable time coeffcient using hirota method. Phys. Scripta, 96, 125255
(2021).

Kumar, S., Rani, S.: Invariance analysis, optimal system, closed-form solutions and dynamical wave struc-
tures of a (241)-dimensional dissipative long wave system. Phys. Scripta, 96, 125202 (2021).

Kumar, S., Niwas, M., Wazwaz, A.M.: Lie symmetry analysis, exact analytical solutions and dynamics of
solitons for (2+1)-dimensional NNV equations, Phys. Scripta (in press).

Li, L., Li, E., Wang, M.: The -expansion method and its application to travelling wave solutions of the
Zakharov equations. Appl. Math-A J. Chin. U 25, 454-462 (2010)

Lii, H.L., Liu, X.Q., Niu, L.: A generalized -expansion method and its applications to nonlinear evolution
equations. Appl. Math. Comput. 215, 3811-3816 (2010)

Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60, 650-654 (1992)

Manafian, J.: Optical soliton solutions for Schrodinger type nonlinear evolution equations by the tan -expan-
sion method. Optik 127, 42224245 (2016)

Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer, Berlin (1991)

Ouahid, L., Abdou, M.A., Owyed, S., Kumar, S.: New optical soliton solutions via two distinctive schemes
for the DNA Peyrard-Bishop equation in fractal order. Mod. Phys. Lett. B 35(26), 2150444 (2021)
Shang, Y.: Backlund transformation, Lax pairs and explicit exact solutions for the shallow water waves

equation. Appl. Math. Comput. 187, 1286-1297 (2007)

Shen, S., Pan, Z.: A note on the Jacobi elliptic function expansion method. Phys. Let. A 308, 143-148
(2003)

Wang, M., Li, X., Zhang, J.: The -expansion method and travelling wave solutions of nonlinear evolutions
equations in mathematical physics. Phys. Lett. A 372, 417-423 (2008)

Wazwaz, A.M., Mehanna, M.: Bright and dark optical solitons for a new (3+1)-dimensional nonlinear
Schrodinger equation. Optik, 241,166985 (2021).

@ Springer



Optical solitons of (3 + 1) dimensional and coupled nonlinear... Page 150f 15 246

Wau, F., Li, J.: Dynamics of the smooth positons of the coupled nonlinear Schrodinger equations. Appl.
Math. Lett. 103, 106218 (2020).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer



	Optical solitons of (3 + 1) dimensional and coupled nonlinear Schrodinger equations
	Abstract
	1 Introduction
	2 Analysis of method
	3 Physical explanation
	4 Conclusion
	References




