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Abstract
In this paper, we implemented extended exp(−�(ξ))-expansion method for some exact 
solutions of (3 + 1)-dimensional nonlinear Schrödinger equation (NLSE) and coupled non-
linear Schrodinger’s equation. The solutions we obtained are hyperbolic, trigonometric and 
exponential solutions. We observed that these solutions provided the equations through 
Mathematica 11.2. Apart from that, we have shown the graphics performance of some of 
the solutions found. This method has been used recently to obtain exact traveling wave 
solutions of nonlinear partial differential equations. The results achieved in this study have 
been confirmed with computational software Maple or Mathematica by placing them back 
into NLFPDEs and found them correct. We posited that the approach is updated to be more 
pragmatic, efficacious, and credible and that we pursue more generalized precise solutions 
for traveling waves, like the solitary wave solutions.

Keywords (3 + 1)-dimensional NLSE · Coupled NLSE · Extended-expansion method · 
Exact solutions

1 Introduction

Nonlinear phenomena play a significant role in applied mathematics and physics. Exact 
and numerical solutions of nonlinear equations in mathematical physics, especially the 
computation of traveling wave solutions, have an important role in soliton theory. Recently, 
it has become more motivating to provide exact solutions for nonlinear partial differen-
tial equations using symbolic computer programs such as Maple, Matlab, Mathematica, 
which facilitate complex algebraic calculations. Finding exact solutions of nonlinear partial 
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differential equations is of crucial importance. These equations are mathematical models of 
complex physical phenomena that occur in several disciplines such as engineering, chemis-
try, biology, mechanics, and physics. A number of effective methods have been developed 
to understand the mechanisms of these physical models to assist medical practitioners and 
engineers, and to have knowledge about physical problems and their applications.

Traveling wave solutions is a special category of analytical solutions for nonlinear evo-
lution equations (NLEEs). Solitary waves, are localized traveling waves. In 1965, Zabusky 
and Kruskal invented the soliton. It seems to be a specific form of the solitary wave which 
proliferates at the constant shape, speed, and intensity and arises in the solution of a variety 
of nonlinear evolution equations. It has some intriguing characteristics, and it describes 
a slew of significant applied phenomena that we are already familiar with (Cariello and 
Tabor 1989; Fan 2000a; Clarkson 1989). As a consequence, studying exact traveling wave 
solutions for NLFPDEs is important.

Several analytical methods have been found in literature (Shang 2007; Bock and Kruskal 
1979; Matveev and Salle 1991; Abourabia and Horbaty 2006; Malfliet 1992; Chuntao 
1996; Cariello and Tabor 1989; Fan 2000a; Clarkson 1989). Besides these methods, there 
are many methods which reach to solution by using an auxiliary equation. These methods 
are given in Malfliet (1992); Fan 2000b; Elwakil et al. 2002; Chen and Zhang 2004; Fu 
et al. 2001; Shen and Pan 2003; Chen and Hong-Qing 2004; Chen et al. 2004; Chen and 
Yan 2006; Wang et al. 2008; Guo and Zhou 2010; Lü et al. 2010; Li et al. 2010; Mana-
fian 2016; Khater 2015). Many researchers have applied such methods to various equa-
tions (Khater and Zahran 2016a, 2016b; Wazwaz and Mehanna 2021; Wu and Li 2020; 
Kumar et  al. 2020, in press; Hendi et  al. 2021; Ouahid et  al. 2021; Kumar and Mohan 
2021; Kumar and Rani 2021).

We used the extended exp(−�(ξ))-expansion method for finding some exact solutions of 
(3 + 1)-dimensional and coupled NLSEs. This method is developed by Khater and Zahran 
(2016b).

2  Analysis of method

Before the application, a brief information about the method to be used is necessary. Let’s 
express a nonlinear partial differential equation with two variables as follows:

When we apply the transformation u(x, t) = u(ξ), ξ = x − kt this equation, Eq. (1) turns 
into the following ordinary differential equation:

Here k is a constant. Let’s consider the solution function of Eq. (2) as:

In the solution function, m is a positive integer. It is calculated by balancing the highest 
order linear term with the highest order nonlinear term in Eq. (2).

In addition, ai, s are constants.If the solution function given in (3) is substituted in 
Eq.  (2), an algebraic system of equations is obtained for ai s and k . Then, when the 
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system is solved by equating the coefficients of exp(±�(ξ)) having the same power val-
ues in this system to zero, the constants k and ai are calculated. � = �(ξ) in the solution 
function (3) provides the following first-order ordinary differential equation (ODE):

The solutions of this ODE are as follows:
When λ2 − 4𝜇 > 0,𝜇 ≠ 0,

and

When λ2 − 4𝜇 > 0, 𝜇 = 0,

When λ2 − 4� = 0, � ≠ 0, � ≠ 0,

When λ2 − 4� = 0, � = 0, � = 0,

When λ2 − 4𝜇 < 0,

and

Example 1. Let’s consider the (3 + 1)-dimensional NLSE (Wazwaz and Mehanna 2021),
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when the following transformation is applied to this equation, in which 
ξ =

(

x + y + z + h5t
)

, � =
(

h1x + h2y + h3z + h4t
)

where the first term is the temporal evolution of the pulses, while t, x,y and z represent tem-
poral and spatial variables respectively, and dr, hk, r = 1,… , 6, k = 1,… , 5 , s are constant 
parameters. U(� ) is a real function. We obtain the following ODE

Here T1 =
(

−d4h1 + h
2

1
− d5h2 − d1h1h2 + h

2

2
− d6h3 − d3h1h3 − d2h2h3 + h

2

3
− h4,

)

,

T2 =
(

d1 + d2 + d3 − 3
)

 and h5 =
(

−d4 − d5 − d6 + 2h1 − d1h1 − d3h1 + 2h2 − d1h2 − d2h2

+2h3 − d2h3 − d3h3

) . If U′′ and U3 are balanced in Eq. (7), m = 1 is obtained. In this case, the 
solution function is as follows:

In the solution expressed by (8) a−1, a0, a1, are constants to be found and �−1 or a1 are 
nonzero.

If Eq. (8) is substituted in Eq. (7), the following algebraic equation system is obtained:

If this algebraic equations system is solved, we obtain the following coefficients.

Case 1: 
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Case 2: 

Case 3: 

Case 4: 

Here, the coefficients found in (9)–(12) are also substituted in the solution of (8), then 
if the acquired solution (8) is also substituted in (6), the solutions of Eq.  (5) will be as 
follows:

For Case 1
When λ2 − 4𝜇 > 0, 𝜇 ≠ 0,

When λ2 − 4𝜇 < 0,
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For Case 2
When λ2 − 4𝜇 > 0, 𝜇 ≠ 0,

When λ2 − 4𝜇 < 0,
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For Case 3
When λ2 − 4𝜇 > 0, 𝜇 = 0,

For Case 4
When λ2 − 4𝜇 > 0, 𝜇 ≠ 0,

When λ2 − 4𝜇 < 0,
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In the above solutions, � =
(

h1x + h2y + h3z + h4t
)

, T1 =
(
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1
− d5h2

)

(
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)

 
should be taken as.

Example 2. We consider the coupled NLSE (Wu and Li 2020)

when the following transformations are applied to this equations, in which 
ξ = x + h3t, � = h1x + h2t

we acquire the following ODE
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substituted in Eq. (28), the following algebraic equation system is acquired:
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1
+ 2a1b

2

1

= 0, �b−1 + 4a0a1b−1 −Mb0 + 2a2
0
b0 + 4a−1a1b0 + 2b3

0
+ ��b1 + 4a−1a0b1

+12b−1b0b1 = 0, 2�2b−1 + 2a2
−1
b−1 + 2b3

−1
= 0, 3��b−1 + 4a−1a0b−1 + 2a2

−1
b0

+6b2
−1
b0 = 0,−Mb−1 + �

2b−1 + 2�b−1 + 2a2
0
b−1 + 4a−1a1b−1 + 4a−1a0b0 + 6b−1b

2

0

+2a2
−1
b1 + 6b2

−1
b1 = 0, 2a2

1
b−1 + 4a0a1b0 −Mb1 + �

2b1 + 2�b1 + 2a2
0
b1 + 4a−1a1b1

+6b2
0
b1 + 6b(−1)b

2

1
= 0, 2a2

1
b0 + 3?b1 + 4a0a1b1 + 6b0b

2

1
= 0, 2b1 + 2a2

1
b1 + 2b3

1
= 0.
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If this algebraic equations system is solved, we obtain the following coefficients.

Case 1: 

Case 2: 

Case 3: 

Case 4: 

Here, the coefficients found in (30)–(33) are also substituted in the solution of (29), then 
if the acquired solution (29) is also substituted in (27), the solutions of Eq.  (26) will be as 
follows:

For Case 1
When λ2 − 4𝜇 > 0, 𝜇 ≠ 0,

(30)� ≠ 0,M =
1

2

(

−�2 + 4�
)

, � ≠ 0, a−1 =
2�a0

�
, a1 = 0, b1 = 0, b0 = ±

1

2

√

−�2 − 4a2
0
), a0 ≠ 0, b−1 =

a−1b0

a0

.

(31)
� = 0,M = −

�
2

2
, a−1 = 0, � ≠ 0, a1 =

2a0

�
, b1 = ±

√

−1 − a2
1
, b0 =

�b1

2
, b−1 = 0.

(32)

M =
1

2

(

−�2 + 4�
)

, a−1 = 0, � ≠ 0, a1 =
2a0

�
, b1 = ±

√

−1 − a2
1
, b0 =

�b1

2
, b−1 = 0.

(33)

� = 0, � ≠ 0,M = �
2,M ≠ 0, a−1 =

�

�

2M + �
2
�

a0

3M
, a1 = 0, b1 = 0, a−1 ≠ 0,

b0 = ±
i

�

−3M2 + 2M�2 + �4 + 6Ma
2

0

√

6
√

M

, b−1 =
�

�

2M + �
2
�

b0

3M

u1(x, t) =

⎛

⎜

⎜

⎜

⎜

⎝

−

√

−2Ma0Tanh

�
√

−M((x+h3t)+C1)
√

2

�

�

⎞

⎟

⎟

⎟

⎟

⎠

ei(h1x+h2t)

(34)v1(x, t) =

⎛

⎜

⎜

⎜

⎜

⎝

−

�

M�2 + 4Ma2
0
Tanh

�
√

−M((x+h3t)+C1)
√

2

�

√

2�

⎞

⎟

⎟

⎟

⎟

⎠

ei(h1x+h2t)

u2(x, t) =

⎛

⎜

⎜

⎜

⎜

⎝

−

√

−2MCoth

�
√

−M((x+h3t)+C1)
√

2

�

a0

�

⎞

⎟

⎟

⎟

⎟

⎠

ei(h1x+h2t)
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When λ2 − 4𝜇 < 0,

For Case 2
When λ2 − 4𝜇 > 0,𝜇 = 0,

For Case 3
When λ2 − 4𝜇 > 0,𝜇 ≠ 0,

(35)v2(x, t) =

⎛

⎜

⎜

⎜

⎜

⎝

−

Coth

�
√

−M((x+h3t)+C1)
√

2

�

�

M�2 + 4Ma2
0

√

2�

⎞

⎟

⎟

⎟

⎟

⎠

ei(h1x+h2t)

u3(x, t) =

⎛

⎜

⎜

⎜

⎜

⎝

√

2Ma0Tan

�
√

M((x+h3t)+C1)
√

2

�

�

⎞

⎟

⎟

⎟

⎟

⎠

ei(h1x+h2t)

(36)v3(x, t) =

⎛

⎜

⎜

⎜

⎜

⎝

�

−M�2 − 4Ma2
0
Tan

�
√

M((x+h3t)+C1)
√

2

�

√

2�

⎞

⎟

⎟

⎟

⎟

⎠

ei(h1x+h2t)

u4(x, t) =

⎛

⎜

⎜

⎜

⎜

⎝

√

2MCot

�
√

M((x+h3t)+C1)
√

2

�

a0

�

⎞

⎟

⎟

⎟

⎟

⎠

ei(h1x+h2t)

(37)v4(x, t) =

⎛

⎜

⎜

⎜

⎜

⎝

Cot

�
√

M((x+h3t)+C1)
√

2

�

�

−M�2 − 4Ma2
0

√

2�

⎞

⎟

⎟

⎟

⎟

⎠

ei(h1x+h2t)

u5(x, t) = a0

�

1 +
2

−1 + e

√

−2M((x+h3t)+C1)

�

ei(h1x+h2t)

(38)v5(x, t) =

⎛

⎜

⎜

⎜

⎝

�

1 + e

√

−2M((x+h3t)+C1)
��

M − 2a2
0

√

2

�

−1 + e

√

−2M(�+C1)
�

⎞

⎟

⎟

⎟

⎠

ei(h1x+h2t)
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When λ2 − 4𝜇 < 0,

When λ2 − 4𝜇 > 0,𝜇 = 0,

u6(x, t) = a0

⎛

⎜

⎜

⎜

⎜

⎝

1 −
2�

−M + 2� +
√

−M
√

−M + 2�Tanh

�
√

−M((x+h3t)+C1)
√

2

�

⎞

⎟

⎟

⎟

⎟

⎠

ei(h1x+h2t)

(39)

v6(x, t) =
1

2

�

−M + 2� + 2a2
0

M − 2�

⎛

⎜

⎜

⎜

⎜

⎝

√

−2M + 4� −
2
√

2�

√

−M + 2� +
√

−MTanh

�
√

−M((x+h3 t)+C1)
√

2

�

⎞

⎟

⎟

⎟

⎟

⎠

e
i(h1x+h2 t)

u7(x, t) = a0

⎛

⎜

⎜

⎜

⎜

⎝

1 −
2�

−M + 2� +
√

−M
√

−M + 2�Coth

�
√

−M((x+h3t)+C1)
√

2

�

⎞

⎟

⎟

⎟

⎟

⎠

ei(h1x+h2t)

(40)

v7(x, t) =
1

2

�

−M + 2� + 2a2
0

M − 2�

⎛

⎜

⎜

⎜

⎜

⎝

√

−2M + 4� −
2
√

2�

√

−M + 2� +
√

−MCoth

�
√

−M((x+h3 t)+C1)
√

2

�

⎞

⎟

⎟

⎟

⎟

⎠

e
i(h1x+h2 t)

u8(x, t) = a0

⎛

⎜

⎜

⎜

⎜

⎝

1 +
2�

M − 2� +
√

M
√

−M + 2�Tan

�
√

M((x+h3t)+C1)
√

2

�

⎞

⎟

⎟

⎟

⎟

⎠

ei(h1x+h2t)

(41)

v8(x, t) =
1

2

�

−M + 2� + 2a2
0

M − 2�

⎛

⎜

⎜

⎜

⎜

⎝

√

−2M + 4� −
2
√

2�

√

−M + 2� −
√

MTan

�
√

M((x+h3t)+C1)
√

2

�

⎞

⎟

⎟

⎟

⎟

⎠

e
i(h1x+h2t)

u9(x, t) = a0

⎛

⎜

⎜

⎜

⎜

⎝

1 +
2�

M − 2� +
√

M
√

−M + 2�Cot

�
√

M((x+h3t)+C1)
√

2

�

⎞

⎟

⎟

⎟

⎟

⎠

ei(h1x+h2t)

(42)

v9(x, t) =
1

2

�

−M + 2� + 2a2
0

M − 2�

⎛

⎜

⎜

⎜

⎜

⎝

√

−2M + 4� −
2
√

2�

√

−M + 2� −
√

MCot

�
√

M((x+h3 t)+C1)
√

2

�

⎞

⎟

⎟

⎟

⎟

⎠

e
i(h1x+h2 t)
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u10(x, t) = a0e
√

M((x+h3t)+C1)ei(h1x+h2t)

(43)v10(x, t) =

⎛

⎜

⎜

⎜

⎝

ie

√

M((x+h3t)+C1)
�

Ma2
0

√

M

⎞

⎟

⎟

⎟

⎠

ei(h1x+h2t)

Fig. 1  Plot evolution of the periodic analytic solution with the variation of h3 parameter a h3 = −0.15 , b 
h3 = −1.15 , c h3 = −15.15 and d h3 = −20.15 for a0 = 0.25,� = 0.4, � = 1.2,M = −0.64.

Fig. 2  Plot evolution of the analytic kink-like soliton solution and breather-like soliton with the variation of 
C parameter a, b C = −10 , c, d C = −20 and a0 = 0.25,� = 0.4, � = 0.2, h3 = 0.5,M = 0.64.
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3  Physical explanation

In plots Fig. 1, we show the evolution of the periodic solutions with the effects of free 
parameter h3 . However, in plots Fig.  2, we stress the effects of the parameter C . It is 
observed in Fig.  2a, b the kink-like soliton and in Fig.  2c, d the corresponding dou-
ble kink-like soliton and breather-like soliton is get out. Beside, when we increase the 
value of the parameter, we show out the breather-like soliton. These results could help 
to improve the communication in optical fibers (Fig. 3).

4  Conclusion

We used the extended exp(−�(ξ))-expansion method for find some optical solitons of 
(3 + 1)-dimensional and coupled NLSEs. The acquired solutions are dark, bright, combined 
optical solitons and exact solutions. Then, we observed that these solutions provided the 
equations through Mathematica 11.2. Apart from that, we have shown the graphics perfor-
mance of some of the solutions found. The method can be used for many other nonlinear 
equations or combined equations.
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