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Abstract
The current article finds new soliton closed-form wave structures of the solutions of the 
fractional perturbed Schrödinger equation with Kerr law nonlinearity. The various kinds 
of solutions are accomplished by looking at a competent technique, the tanh–coth method. 
The nonlinear soliton wave prearrangement is analyzed and different types of soliton solu-
tions are in the form of 3D-plots, contour plots, and 2D-plots by looking at the different 
values of the parameters presented to describe the propagation of traveling wave solutions. 
The results obtained are new and may be applicable for some physical fields, like optical 
fibers, plasma fluids, and bimolecular dynamical modes. The discovery of a new optical 
soliton could have ramifications in other photonics fields, such as nonlinear optics fibers 
and spectroscopy, fractal medium in the future.

Keywords  Fractional perturbed Schrödinger equation · Conformable fractional derivative · 
Complex wave transform · Tanh–coth method

1  Introduction

Fractional Partial differential equations (FPDEs) are used to represent physical phenom-
ena to better understand their behavior, and they form the foundation of most mathemat-
ical and physical simulations of real-world applications. Several real-life situations have 
been described in terms of fractional derivatives such as optical fiber, porous medium, 
fluid dynamics, viscoelastic materials, signal processing, ocean waves, plasma physics, 
electromagnetism, wave propagation, photonic, chaotic systems, nuclear physics, build-
ing materials, and many more. A balance of wave dispersion and nonlinearity produces 
solitons. Temporal solitons are easily generated in optical fiber waveguides and laser 
resonators in optics, and they have recently been discovered in dielectric micro cavi-
ties. The Kerr effect provides nonlinear group velocity dispersion adjustment in each of 
these circumstances (nonlinear refractive index). Closed-form analytical solutions make 
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a substantial contribution to easily, more correctly, and explicitly expressing these phe-
nomena. Even a simple closed-form solution with no genuine physical implications can 
be used as a test problem to verify the accuracy and reliability of various numerical, 
approximate analytical, and asymptotic approaches. In the current era, solitons are the 
more attractive area of research. The hypothesis of optical solitons is one of the pleasur-
able themes for the examination of solitons movement through nonlinear optical fibers, 
extreme laser radiation into plasmas. Within the field of solitary waves, studies of opti-
cal solitons have garnered a lot of traction.

Several beneficial strategies have been proposed in recent years in some previous 
decades, such as the tanh-method (Wazwaz 2005), Darboux transformation (Li et  al. 
2020), modified Kudryashov’s method (Hosseini et al. 2018), 

(
G�∕G

)
-expansion method 

(Aniqa and Ahmad 2021; Zhang et al. 2008; Wang et al. 2008), Novel 
(
G�∕G

)
-expan-

sion method (Alam et  al. 2013; Shakeel and Mohyud-Din 2015; Hussain et  al. 2017), 
first integral method (Eslami et al. 2017; Rezazadeh et al. 2018), Hirota bilinear tech-
nique (Liu et al. 2020), symbolic computational method (Ali et al. 2021), trial equation 
method (Liu 2019), Auxiliary equation method (Akbulut and Kaplan 2018), Explicit 
exponential finite difference methods (Inan et  al. 2020), a generalized unified method 
(Osman 2017), Sine-Gordon expansion method (Ali et al. 2020), Genocchi polynomials 
(Kumar et al. 2021), new extended direct algebraic method (Rehman et al. 2021; Bilal 
and Ahmad 2021) and so on. Moreover, a new technique called the generalized expo-
nential rational function method was first proposed by Ghanbari and Inc in (2018). This 
method was fruitfully and effectively employed to a resonance nonlinear Schrödinger 
equation (Ghanbari and Inc 2018), to a generalized Camassa–Holm–Kadomtsev–Petvi-
ashvili equation (Ghanbari and Liu 2020), to a new extension of nonlinear Schrödinger 
equation (Ghanbari et  al. 2020), to conformable Ginzburg–Landau equation with the 
Kerr law nonlinearity (Ghanbari and Gómez-Aguilar 2019). The nonlinear Schröding-
er’s (NLS) equation is considered as the most important model related to highlighted 
research fields (Osman et al. 2020).

The higher-order Schrodinger equation comprising the parameters, which is used to 
describe cardiac output in optical fibers, is shown to acknowledge the formation of an infi-
nite extension of the four-parameter combination, in addition to the classical NLSE. In the 
literature, different types of solutions were developed by many authors using different tech-
niques for different types of Schrödinger equations. Recently, several authors have devel-
oped a variety of solutions for the MUSE using a variety of methods. The solitary wave 
solutions and exact solutions were found using the modified extended auxiliary equation 
mapping approach (Arshad et al. 2017). A rational exponential approach has been used to 
find the solutions for Schrödinger’s unstable equation (Yang et al. 2018). To obtain opti-
cal soliton solutions for the unstable Schrödinger equation, an expanded map technique 
was devised. A simple mathematical method was used to derive the elliptic work solution, 
dark and bright soliton solutions for MUSE (Jia and Guo 2019). Many authors have looked 
into multiple ways for solving nonlinear MUSEs (Sinha and Ghosh 2017; Kumar et  al. 
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2015). The Exp-function method was used to find soliton solutions for fractional modi-
fied Schrödinger equations (Zulfiqar and Ahmad 2020). The cubic-quartic NLSE and reso-
nant NLSE with parabolic law have optical soliton solutions (Gao et al. 2020). The tanh 
method and the tanh–coth method have been used to obtain optical solitons from NLSE 
with quintic nonlinearity identified as the perturbed Gerdjikov–Ivanov equation (Zulfiqar 
and Ahmad 2021). The nonautonomous complex wave solutions described by the coupled 
Schrödinger–Boussinesq equation with variable-coefficients (Osman et al. 2018). Optical 
solutions, traveling wave solutions, and exact solutions for the nonlinear Schrödinger equa-
tion with Kerr law nonlinearity have been developed using a variety of methods (Akram 
and Mahak 2018; Baleanu et al. 2017; Biswas and Konar 2006; Jhangeer et al. 2020).

The pioneer paintings of Malfliet (1992) added the powerful tanh approach for a reli-
able treatment of the nonlinear wave equations. The beneficial tanh approach is exten-
sively used by many together with Wazwaz. Later, the tanh–coth method, advanced via 
Wazwaz (2006), is a right away and powerful algebraic approach for coping with non-
linear equations. Many problems have been solved with tanh in the literature, including 
the Kawahara and modified Kawahara equations (Mohamad-Jawad and Slibi 2012), as 
well as the combined KdV equation (Jawad et al. 2013). space–time fractional nonlinear 
Whitham–Broer–Kaup equations, space–time fractional nonlinear coupled Burgers equa-
tions, space–time fractional nonlinear coupled mKdV equations (Zayed et al. 2016), and 
(2 + 1)-some Bogoyavlenskii scheme solved using an extended tanh operation (Leta et al. 
2021). In this article, we will study the fractional perturbed Schrödinger equation with 
Kerr law nonlinearity (p-NSKN) using the conformable derivative. No one has ever read 
the p-NSKN equation of non-integer orders in the literature, to the author’s knowledge. 
As a result, utilizing the tanh–coth approach to examine the non-integer order p-NSKN 
equation provides a very plausible way to understand how this model works physically. We 
will employ the tanh method and the tanh–coth method to obtain new analytical solutions 
for the fractional p-NSKN equation via conformable derivative in this paper. This con-
formable derivative definition is based on the fundamental notion of an ingredient limit, 
which has been effectively applied to a variety of problems like coupled fractional resonant 
Schrödinger equations arising in quantum mechanics have been resolved in the conform-
able fractional derivative sense, Fuzzy conformable fractional differential equations, non-
linear conformable time-fractional equation, conformable fractional perturbed Gerdjikov-
Ivanov equation (Al-Smadi et al. 2020; Arqub and Al-Smadi 2020; Kaplan 2017; Zulfiqar 
and Ahmad 2021). The conformable fractional p-NSKN equation is one of the most impor-
tant dynamic models with several applications in the non-line optical fiber that defines the 
shortest signal transmission in fiber optics. The exact and approximate solutions of this 
model have a wide range of applications in telecommunications, engineering, medicine, 
physics, clinics, and various other areas of science.

Definition  Khalil proposed a thrilling definition of derivative known as conformable 
spinoff (Khalil 2014) along with a set of properties. This derivative may be considered to 
be a natural extension of the classical by-product. Moreover, the conformable by-product 
satisfies all the properties of the same old calculus and is defined by:
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2 � Method description

Considering the nonlinear equation with the conformable derivative:

By means of the transformation

Substituting Eq. (3) in Eq. (2) and integrating, one has Eq. (4)

Introducing a new independent variable

leads to the change of variables

For tanh–coth method

where m is a positive integer, for this method, that will be determined by balancing 
principle.

Substituting (7) into (5) results is an algebraic system of equations in powers of Y that 
will lead to the determination of the parameters am , bm.

(1)
(
D�g

)
(x) = lim

�→0

g
(
x + �x1−�

)
− g(x)

�
, x > 0, α ∈ (0, 1]

(2)Q
(
u, ux, ut,D

𝛼

t
, ...

)
= 0, 0 < α ≤ 1.

(3)u(x, t) = U(η)eiθ, η =
(
xα

α
− r

tα

α

)
, θ = μ

xα

α
− s

tα

α
.

(4)R(U,U∕,U∕∕,U∕∕∕, ...) = 0.

(5)y(x, t) = Tanh(η).

d

dη
= (1 − y2)

d

dy
.

d2

dη2
= −2y(1 − y2)

d

dY
+ (1 − y2)2

d2

dy2
.

(6)
d3

dη3
= 2(1 − y2)(3y2 − 1)

d

dy
− 6y(1 − y2)2

d2

dy2
+ (1 − y2)3

d3

dy3
.

(7)u(x, t) = U(η) =

m∑
i=0

aiy
i +

m∑
i=1

bjy
−i,
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3 � Numerical application

The following conformable fractional form p-NSKN equation is considered

where u(x, t) specifies the macroscopic complex-valued wave profile of temporal and spa-
tial independent variables of t and x, respectively, β represents the fiber loss, constants f1 
and f2 show the dispersion and nonlinear terms respectively.

Fractional traveling wave transformation is

where r represents the phase component, � is the wavenumber and s represents the 
frequency.

Substituting Eq. (9) in  (8) and separating the real and imaginary part, we get

Equations (10) and (11) have the same solutions with the restriction

With the restrictions (12), Eqs.  (10) and (11) convert into the following single 
equation:

Balancing U′′ with U3 , we get m = 1 . Equation (13) becomes

By substituting Eq. (14) in  (13) along with Eq. (9), we obtain the system

(8)iD𝛼

t
u + D2𝛼

x
u + 𝛽|u|2 u + i

[
f1D

3𝛼
x
u + f2|u|2 u + f3D

𝛼

x

(|u|2)u] = 0, 0 < 𝛼 < 1,

(9)u(x, t) = U(η)eiθ, η =
(
xα

α
− r

tα

α

)
, θ = μ

xα

α
− s

tα

α
,

(10)f1U
��� +

(
2μ − r − 3f1μ

2
)
U� +

(
f2 + 2f3

)
U2U� = 0.

(11)
(
1 − 3f1μ

)
U�� +

(
s − μ2 + f1μ

3
)
U +

(
β − 2f2μ

)
U3 = 0.

(12)μ =
f2 + 2f3 − 3f1β

6f1f3
, s =

(
1 − 3f1μ

)(
2μ − r − 3f1μ

2
)

f1
+ μ2 − f1μ

3.

(13)f1U
�� +

(
2μ − r − 3f1μ

2
)
U +

(
f2 + 2f3

)
U3 = 0.

(14)u(x, t) = a0 + a1Y + b1Y
−1.



	 A. Zulfiqar, J. Ahmad 

1 3

197  Page 6 of 18

Solving this system by Maple, we have:

Case 1 

Case 2 

(15)

y6 =
(
f2 + 2f3

)
a3
1
+ 6μ2a1f1 = 0,

y5 =6

(
f3 +

f2

2

)
a0a

2
1
= 0,

y4 =6

(
b1

(
f3 +

f2

2

)
a2
0
+

(
−
3k2

2
− μ2

)
f1 −

c

2
+ k

)
a1 = 0,

y3 =2a0

(
6b1

(
f3 +

f2

2

)
a1 +

(
f3 +

f2

2

)
a2
0
−

9k2f1

2
−

3c

2
+ 3k

)
= 0,

y2 =6b1

(
b1

(
f3 +

f2

2

)
a1 +

(
f3 +

f2

2

)
a2
0
+

(
−
3k2

2
− μ2

)
f1 −

c

2
+ k

)
= 0,

y1 =6

(
f3 +

f2

2

)
a0b

2
1
= 0,

y0 =
(
f2 + 2f3

)
b3
1
+ 6μ2b1f1 = 0.

(16)
f1 =

c − 2k

3k2 + 2μ2
, f2 =

2
(
−3k2b2

1
f3 − 2μ2b2

1
f3 + 3μ2c − 6μ2k

)

b2
1

(
3k2 + 2μ2

) , k = k, a0 = 0,

a1 = 0, a2 = 0, b1 = b1, f3 = f3, c = c.

(17)u1(x, t) =
b1 exp

[
i
(

μxα

α
−

stα

α

)]

tanh
(
μ
(

xα

α
−

rtα

α

)) .

(18)

(19)u2(x, t) = a1 tanh
(
μ
(
xα

α
−

rtα

α

))
exp

[
i

(
μxα

α
−

stα

α

)]
.

f1 =
c − 2k

3k2 + 2μ2
, f2 =

2
(
−3k2a2

1
f3 − 2μ2a2

1
f3 + 3μ2c − 6μ2k

)

a2
1

(
3k2 + 2μ2

) , k = k, a0 = 0,

a1 = a1, b1 = 0, f3 = f3, c = c.
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Fig. 1   Graphics for u1(x, t) , a–c with 0 ≤ x ≤ 5, 0 ≤ t ≤ 10, show the 3D plots. d–f with 
−5 ≤ x ≤ 5, −5 ≤ t ≤ 5,−1 ≤ x ≤ 2, −1 ≤ t ≤ 2, illustrate the contour comparison, and 
−1 ≤ x ≤ 2, −1 ≤ t ≤ 2, respectively. g Indicates the comparison in the form of 2D plot
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Case 3 

Case 4 

(20)

(21)

u3(x, t) =

⎛
⎜⎜⎜⎝
a1 tanh

�
μ
�
xα

α
−

rtα

α

��
+

a1

a1 tanh
�
μ
�

xα

α
−

rtα

α

��
⎞
⎟⎟⎟⎠
exp

�
i

�
μxα

α
−

stα

α

��
.

(22)

Fig. 1   (continued)

f1 =
c − 2k

3k2 + 8μ2
, f2 =

2
(
−3k2a2

1
f3 − 8μ2a2

1
f3 + 3μ2c − 6μ2k

)

a2
1

(
3k2 + 8μ2

) , k = k, a0 = 0,

a1 = a1, b1 = a1, f3 = f3, c = c.

f1 = −
c − 2k

3k2 − 4μ2
, f2 =

2
(
−3k2a2

1
f3 + 4μ2a2

1
f3 + 3μ2c − 6μ2k

)

a2
1

(
3k2 − 4μ2

) , k = k, a0 = 0,

a1 = a1, b1 = a1, f3 = f3, c = c.
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Fig. 2   Graphics for u2(x, t) , a–c with 0 ≤ x ≤ 20, 0 ≤ t ≤ 10, indicate the 3D comparison plots, d–f with 
−5 ≤ x ≤ 5, −5 ≤ t ≤ 5 , describe the contour comparison plots. g Indicates the comparison in the form of 
2D plot
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Case 5 

4 � Results and discussion

By resolving the fractional p-NSKN problem with the help of conformable fractional 
derivative, the tanh–coth technique is used to obtain optical soliton solutions in this 
article. Because of its wide range of applications, the p-NSKN is the most extensively 

(23)

u4(x, t) =

⎛
⎜⎜⎜⎝
a1 tanh

�
μ
�
xα

α
−

rtα

α

��
−

a1

a1 tanh
�
μ
�

xα

α
−

rtα

α

��
⎞
⎟⎟⎟⎠
exp

�
i

�
μxα

α
−

stα

α

��
.

(24)

(25)u5(x, t) = a0 exp

[
i

(
μxα

α
−

stα

α

)]
.

Fig. 2   (continued)

f1 = −
c − 2k

3k2 − 4μ2
, f2 =

2
(
−3k2a2

1
f3 + 4μ2a2

1
f3 + 3μ2c − 6μ2k

)

a2
1

(
3k2 − 4μ2

) , k = k, a0 = a0,

a1 = 0, b1 = 0, f3 = f3, c = c.
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Fig. 3   Graphics for u3(x, t) , a–c with 0 ≤ x ≤ 5, 0 ≤ t ≤ 10, indicate the 3D comparison plots, d–f with 
−1 ≤ x ≤ 1, −1 ≤ t ≤ 1,−5 ≤ x ≤ 5, −5 ≤ t ≤ 5, and −5 ≤ x ≤ 5, −5 ≤ t ≤ 5, depict the contour compari-
son plots respectively. g Indicates the comparison in the form of 2D plot
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used nonlinear model in applied research. The transmission of optical solitons in 
Kerr law nonlinearity optical fibers is described by this equation. In the literature, 
the p-NSKN equation has been resolved to get a different kinds of solutions by the 
utilization of various techniques such as G

′

G2
 technique has been applied to get hyper-

bolic, trigonometric, and rational type solutions (Osman et  al. 2018), Riccati–Ber-
noulli sub-ODE method has been employed to form the new periodic singular, dark 
singular, dark singular, exact, soliton solutions (Akram and Mahak 2018), the new 
extended algebraic technique has been developed to derive the singular, bright-dark, 
and rational type solutions (Biswas and Konar 2006). According to the literature, the 
proposed model has been solved for integer order. Using the conformable derivative, 
we resolve the proposed model for both integer and non-integer order in our study. We 
observed some similarities in the current results for integer order, but we created new 
and more general conclusions for non-integer order. In addition, the physical appear-
ance of the solitary waves shows the variations in the graphics by fluctuating paramet-
ric values. Figures 1, 2, 3, 4, 5 show the graphical behavior of the presented fractional 
model in 3D, 2D, and contour plots at α = 0.5, α = 0.8 and � = 1. Figure 1 indicates 
the solution of u1(x, t) for b1 =

1

4
, s = 0.1, r = 1.5, μ = 2. Figure  2 shows the graphics 

of u2(x, t) at a1 =
1

2
, s = 0.1, r = 1, μ = 0.5. Figure 3 reveals the solution of u3(x, t) for 

a1 =
1

2
, s = 0.1, r = 1, μ = 0.5. Figure 4 describes the physical appearance of u4(x, t) for 

a1 =
1

2
, s = 0.1, r = 1, μ = 0.5. Figure 5 signifies the plot of u5(x, t) with the parametric 

values of a0 =
1

2
, s = 0.1, r = 1, μ = 0.5.     

The presented work shows that the fractional derivative has a very significant part to 
play in considering the formation of the evolutionary equation and explains the continuous 
performance of the solution wave all over the process. Comprehensive testing confirms 
that the method used is reliable, efficient, and very powerful in testing different types of 
nonlinear FDEs.

Fig. 3   (continued)
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Fig. 4   Graphics for u4(x, t) , a–c with 0 ≤ x ≤ 10, 0 ≤ t ≤ 5, show the 3D comparison plots, d–f with 
−1 ≤ x ≤ 1, −1 ≤ t ≤ 1,−5 ≤ x ≤ 5, −5 ≤ t ≤ 5, and −5 ≤ x ≤ 5, −5 ≤ t ≤ 5, illustrate the contour com-
parison plots respectively. g Indicates the comparison in the form of 2D plot
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5 � Conclusion

In this work, we discover and analyze new soliton solutions and dynamic properties in 
optical nanofibers for fractional perturbed Schrödinger equation and Kerr law nonlinear-
ity. The tanh–coth method with fractional conformable derivative and fractional complex 
transformation was used to obtain the soliton solutions in closed-form wave structures. 
Moreover, from the graphical demonstration, we have seen that different boundary values 
provide different types of solutions by identifying free parameters corresponding to the 
required limitations to confirm the presence of such optical solitons. The model’s solution 
can be used in a variety of science and engineering domains. As a result, we conclude that 
the fractional calculus structures model provided in this study is extremely versatile and 
accurately analyses dynamical global systems. The acquired solutions are more generic, 
novel, and have not been previously described in the literature. The findings also support 
the importance and usefulness of the methodologies employed, as well as pique the interest 
of scholars interested in deciphering the model’s intricacy. Using the appropriate fractional 
operator, we may also extend our work to answer more difficult biological and engineering 
challenges. The presented analytical method can be applied to the other forms of nonlinear 
evolution equations arising in engineering, mathematical physics, and biological sciences. 
The new results of this paper are very encouraging to carry out further studies with the 
addition of different perturbation and complex nonlinear concepts.

Fig. 4   (continued)
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Fig. 5   Graphics for u5(x, t) , a–c with 0 ≤ x ≤ 30, 0 ≤ t ≤ 10, show the 3D comparison plots, d–f with 
−5 ≤ x ≤ 5, −5 ≤ t ≤ 5 illustrate the contour comparison plots. g Indicates the comparison in the form of 
2D plot
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