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Abstract
In this study, we investigate the perturbed Chen-Lee-Liu equation that represents the propa-
gation of an optical pulse in plasma and optical fiber. The Jacobi elliptic function technique 
is used for this purpose. As a result, we obtain some new solitary wave solutions such as 
the Jacobi elliptic function, dark-bright, trigonometric, exponential, hyperbolic, periodic, 
and singular soliton solutions. To express the pulse propagation of the generated solutions, 
specific values for the free parameters under conditions are also given.

Keywords Perturbed Chen-Lee-Liu model · Jacobi elliptic function technique · Analytical 
solutions

1 Introduction

Nonlinear partial differential equations are employed to examine the features of many 
physics models. One of these equations is the Schrödinger type equation. Such equation 
has a crucial role in fields such as mathematical physics, optic, plasma, and fiber-optic 
telecommunications engineering. Exact solutions of nonlinear Schrödinger’s equation 
have an important role in the applied mathematics Ali et al. (2020); Eslami et al. (2014); 
He (2020); Zhang et  al. (2017); Gao et  al. (2020a, 2020b). There are several techniques 
have been developed to extract exact solutions for nonlinear partial differential equations 
such as the bilinear neural network method Zhang and Bilige (2019); Zhang et al. (2021, 
2020), the Kudryashov method Zafar et al. (2022); Alquran et al. (2021); Srivastava et al. 
(2020); Sulaiman et al. (2021), the extended rational sin-cos and sinh-cosh methods Cinar 
et  al. (2021), the sine-Gordon expansion method Ali et  al. (2020a, 2020b); Fahim et  al. 
(2021); Abdul Kayum et  al. (2020), the unified method and its generalized technique 
Abdel-Gawad and Osman (2015); Abdel-Gawad et  al. (2016); Osman and Abdel-Gawad 
(2015), the extended simple equation method Khater et al. (2021), the (G�∕G)-expansion 
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method Ismael et al. (2020); Durur (2020); Ekici et al. (2016), the Hirota bilinear method 
Abdulkadir Sulaiman and Yusuf (2021), the unified auxiliary equation method Zayed and 
Shohib (2019); Zayed et  al. (2021), F-expansion method Biswas et  al. (2019); Yıldırım 
(2021); Karaman (2021),the generalized exponential rational function method Khoda-
dad et  al. (2021), and other techniques Ali et  al. (2020); Baskonus et  al. (2018); Zhang 
et al. (2021a, 2021b); Ali et al. (2021); Rehman et al. (2020); Ali et al. (2020); Ozdemir 
et al. (2021). Additionally, many authors started up to employ the Jacobi elliptic function 
method Kurt (2019); Alquran and Jarrah (2019); Ali (2011); Ghanbari et  al. (2021); Lü 
(2005); Zayed and Alurrfi (2015).

In this manuscript, we consider the perturbed Chen-Lee-Liu (CLL) model Ozdemir 
et al. (2021)

where � is the coefficient of inter-modal dispersion, � and � symbolize coefficients of 
self-steepening for short pulses and nonlinear dispersion, respectively. Additionally, the 
coefficients of the group velocity dispersion and the nonlinearity are refereed by � and � , 
respectively. We mention that n indicates the density for the complex wave function. The 
CLL equation drives solitons propagation dynamics in nonlinear optical fibers, and it also 
has applications in solitons cooling, optical couplers, meta-materials, and optoelectronic 
devices.

In this study, we investigate Eq. (1) at n = 1 which reads

We establish a variety of optical solutions with the help of the Jacobi elliptic function 
method to the perturbed Chen-Lee-Liu equation, which depicts the propagation of an opti-
cal pulse through plasma and optical fiber. In Yıldırım et al. (2020), the Riccati method 
has been employed. Sardar subequation method used to find solitary wave solutions Esen 
et al. (2021). Zhang et al. have investigated qualitative analysis and the bifurcation method 
in Zhang et al. (2011). Apart from these, many studies have been made and continue to 
be done for the Chen-Lee-Liu equation Biswas (2018); Biswas et  al. (2018); Triki et  al. 
(2018); Yıldırım (2019). Akbar and others studied the Chen-Lee-Liu model via using dif-
ferent solutions functions with the help of the Jacobi elliptic functions Akinyemi et  al. 
(2021). Kudryashov found general solutions by using different methods with elliptic func-
tion approach Kudryashov (2019).

The main goal of this paper is implementing firstly the Jacobi elliptic function method 
to obtain new solutions with different wave structures for Eq. (2).

This study is organized as follows, introduction is given in Sect.  1. In Sect.  2, we 
devoted ourselves to presenting the Jacobi elliptic functions method. In Sect. 3, we studied 
the new exact solutions of the perturbed Chen-Lee-Liu equation by applying the described 
method. The figures of the constructed solutions are drawn by the degenerate states of the 
Jacobi elliptic functions for m → 0 and m → 1 . The conclusion of this study is presented in 
Sect. 4.

2  Description of the Jacobi elliptic function method

The nonlinear partial differential equation is expressed as:

(1)i�t + ��xx + i�|�|2�x = i[��x + �(|�|2n�)x + �(|�|2n)x�],

(2)i�t + ��xx + i�|�|2�x = i[��x + �(|�|2�)x + �(|�|2)x�].



New optical solitons based on the perturbed Chen‑Lee‑Liu model…

1 3

Page 3 of 12 131

where P is a polynomial function containing �(x, t) and its partial derivatives.
By taking the transformation

Eq.(3) becomes a nonlinear ordinary differential equation (NODE) as follows

Here, U(v), �(x, t) , � , k, w and � stand for the amplitude competent, phase function, speed 
of the soliton, frequency, wave number, and phase, respectively. Then, The following steps 
are followed to construct the solutions:

Step 1 The solution of the NODE is as follows:

where gi , and fi are constants ( gD ≠ 0 or fD ≠ 0 ). The z(v) function is expressed as:

where s, c and r are constants.
Step 2 The value of D is defined by the balance principle which depends on the comparison 
between the highest-order linear term and the non-linear term in Eq. (5).
Step 3 Substituting Eq. (6) along with Eq. (7) into Eq. (5), we get a polynomial in z(v) . 
Afterthat, we obtain a system of algabraic equations by setting the coefficients of zb(v) , 
b = 0,⋯ , 7 equal to zero. We solve the obtained system with the help of mathematica soft-
ware to find the unknown parameters.
Step 4 The general solutions of Eq. (6) are as follows according to the conditions of s, c and 
r in Table 1:

In Table 2, we express to change hyperbolic and trigonometric functions for m → 0 and 
m → 1 of the Jacobi elliptic functions. Thereby, solutions are structure of trigonometric and 
hyperbolic functions.

3  Applications

In this section, we apply the Jacobi elliptic function method to Eq.(2). Firstly, by inserting Eq. 
(4) into Eq.(2)

is attain. We express the following parts of Eq.(8) as follows. The real part is

(3)P(� ,�x,�t,�xx,�tt,�tx,⋯) = 0,

(4)�(x, t) = U(v)ei�(x,t), v = x − �t,�(x, t) = −kx + wt + �,

(5)F(U
�

,U
��

,U
���

,⋯) = 0.

(6)U(v) = g0 +

D∑
i=1

(
z(v)

1 + z(v)2
)i−1

(
gi

z(v)

1 + z(v)2
+ fi

1 − z(v)2

1 + z(v)2

)
,

(7)z
�

(v) =
√
s + cz2(v) + rz4(v),

(8)
− i�U

�

− wU + �U
��

− 2k�iU
�

− �k2U + i�U2U
�

+ �kU3 − i�U
�

− �kU − 3i�U2U
�

− �kU3 − 2i�U2U
�

= 0,

(9)(−w − �k2 − �k)U + �U
��

+ k(� − �)U3 = 0,
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and the imaginary part is

Then, we set the coefficients of the components of the imaginary part equal to zero, we get 
� = −2k� − � and � = 3� + 2� . Considering these two constraints in the real part, we get

By using the balance principle, we get D = 1 . Considering Eq. (6), we may express the 
solution of Eq. (11) as below:

If Eq. (12) is substituted in Eq. (11), we find the solutions by taking into account the equa-
tion system obtained for the following conditions by performing the necessary operations 
(Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9).

Result 1: Considering the case s = 1 , r = m2 , c = −1 − m2 and z(v) = sn(v,m).

(10)(−� − 2k� − �)U
�

+ (� − 3� − 2�)U2U
�

= 0.

(11)(−w − �k2 − �k)U + �U
��

+ 2k(� + �)U3 = 0.

(12)U(v) = g0 + g1
z(v)

1 + z(v)2
+ f1

1 − z(v)2

1 + z(v)2
.

Table 1  Jacobi elliptic functions No. s c r z(v)

1 1 −1 − m
2

m
2 sn(v)

2 1 − m
2

2m
2 − 1 −m2 cn(v)

3 m
2 −1 − m

2 1 ns(v)
4 −m2 −1 + 2m

2
1 − m

2 nc(v)
5 1

4

1−2m2

2

1

4

ns(v) ∓ cs(v)

6 1−m2

4

1+m2

2

1−m2

4

nc(v) ∓ sc(v) or cn(v)

1∓sn(v)

7 1

4

m
2−2

2

m
2

4

sn(v)

1∓dn(v)

8 1 2 − m
2

1 − m
2 sc(v)

9 1 − m
2

2 − m
2 1 cs(v)

10 m
2 − 1 2 − m

2 −1 dn(v)
11 m

4

4

m
2−2

2

1

4

ns(v) ∓ ds(v)

12 1

4

1+m2

2

(1−m2)2

4

sn(v)

dn(v)∓cn(v)

Table 2  Jacobi elliptic functions 
for m → 0 and m → 1

m → 0 m → 1 m → 0 m → 1

1 sn(v) sin(v) tanh(v) 7 dc(v) sec(v) 1
2 cn(v) cos(v) sech(v) 8 nc(v) sec(v) cosh(v)
3 dn(v) 1 sech(v) 9 sc(v) tan(v) sinh(v)
4 cd(v) cos(v) 1 10 ns(v) csc(v) coth(v)
5 sd(v) sin(v) sinh(v) 11 ds(v) csc(v) csch(v)
6 nd(v) 1 cosh(v) 12 cs(v) cot(v) csch(v)
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When g0 = 0 , g1 = ∓2if1 , f1 = f1 , � =
�−kf 2

1
�

kf 2
1

 and w = −2� − k2� − k� . For m → 1 , we 
have z(v) → tanh(v) and the general solution is given by

Fig. 1  Dark-bright solitary wave solution of Eq. (13) for values of � = −1 , k = 2 , � = 0.05 , � = 0.01,� = −2

, f
1
= 2.3 , w = −2� − k2� − k� , � =

�−kf 2
1
�

kf 2
1

 , � = 3� + 2� , and � = −2k� − �

Fig. 2  Singular soliton solution of Eq. (15)for values of � = −0.25 , k = 0.7 , � = 0.9,� = 1.2 , � = 0.02 , 
� = 3 , w = −8� − k2� − k� , � = 3� + 2� , and � = −2k� − �

Fig. 3  Periodic solution of Eq. (17) for values of � = −0.6 , k = −1.7 , � = 1.9 , � = 0.75 , � = −� , � = 0.04 , 
g
1
= 0.3 , f

1
= 1.02 , w = −� − k2� − k� , � = 3� + 2� , and � = −2k� − �
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which is a dark-bright solitary wave solution.

(13)�1(x, t) = (−if1 tanh(2x − 2�t) + f1sech(2x − 2�t))ei(−kx+wt+�),

Fig. 4  Periodic solution of Eq. (18) for values of � = −0.06 , k = −1.7 , � = 1.2 , � = 0.75 , � = −� , � = 0.4 , 
g
1
= 0.3 , f

1
= 0.5 , w = −� − k2� − k� , � = 3� + 2� and � = −2k� − �

Fig. 5  Hyperbolic function solutions of Eq. (19) for values of � = 0.06 , k = −5.7 , � = 1.5 , � = 1 , � = 2.09

,� = 0.4 , w = −2� − k2� − k� , � = 3� + 2� , and � = −2k� − �

Fig. 6  Periodic solution of Eq. (20) for values of � = 2.06 , k = 0.1 , � = 5 , � = −� , � = 0.25 , � = 2.6 , 
f
1
= 0.3 , w = −2� − k2� − k� , � = 3� + 2� , and � = −2k� − �
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Result 2: For s = 1 − m2 , r = −m2 , c = −1 + 2m2 and z(v) = cn(v,m).
When g0 =

f1

2
 , g1 = 0 , f1 = f1 , m =

1

2
 , � =

�−kf 2
1
�

kf 2
1

 , and w =
1

2
(5� − 2k2� − 2k�) , we have

Fig. 7  Exponential solution of Eq. (22) for values of � = 1.06 , k = 0.1 , � = 0.1 , � =
−�−kf 2

1
�

kf 2
1

 , � = 1 , � = 2.6 , 
f
1
= 0.2 , w = 2� − k2� − k� , � = 3� + 2� , and � = −2k� − �

Fig. 8  Singular solitary wave solution of Eq. (23) for values of � = 1 , k = 0.5 , � = 1.5 , � =
�−kf 2

1
�

kf 2
1

 , � = 0.3 , 
� = 0.2 , f

1
= 3 , w =

1

2
(−� − 2k2� − 2k�) , � = 3� + 2� and � = −2k� − �

Fig. 9  Trigonometric function solution of Eq. (24) for values of � = 6.02 , k = 0.1 , � = 1.05 , � = −� , 
� = 0.3 , � = 5.2 , f

1
= 1 , w = −� − k2� − k� , � = 3� + 2� , and � = −2k� − �
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Result 3: Considering the case s = m2 , r = 1 , c = −1 − m2 and z(v) = ns(v,m),
When g0 = 0 , g1 = ∓

4
√
�√

−k�−k�
 , f1 = 0 , � =

�−kf 2
1
�

kf 2
1

 and w = −8� − k2� − k� . For m → 1 , 
we have z(v) → coth(v) and the general solution is given by

which represents a singular soliton solution under conditions 𝛼k(𝛿 + 𝜇) < 0.
Result 4: For s = −m2 , r = 1 − m2 , c = −1 + 2m2 and z(v) = nc(v,m).
g0 =

f1

2
 , g1 = 0 , f1 = f1 , m =

√
3

2
 , � =

�−kf 2
1
�

kf 2
1

 and w =
1

2
(−5� − 2k2� − 2k�) , we have

Result 5: For s = 1

4
 , r = 1

4
 , c = 1−2m2

2
 and z(v) = ns(v,m) ∓ cs(v,m).

When g0 = 0 , g1 = g1 , f1 = f1 , � = −� and w = −� − k2� − k� . For m → 0 , we have 
z(v) → csc(v) ∓ cot(v) . Thus, we get

which is a periodic solution.
Result 6: For s = 1−m2

4
 , r = 1−m2

4
 , c = 1+m2

2
 and z(v) = nc(v,m) ∓ sc(v,m).

When g0 = 0 , g1 = g1 , f1 = f1 , � = −� and w = −� − k2� − k� . For m → 0 , 
z(v) → sec(v) ∓ tan(v) and the solution is given by

which is a periodic solution.
Result 7: For s = 1

4
 , r = m2

4
 , c = m2−2

2
 and z(v) = sn(v,m)

1∓dn(v,m)
.

When g0 = 0 , g1 =
∓2

√
�√

−k�−k�
 , f1 = 0 , � = −� and w = −2� − k2� − k� . For m → 1 , 

z(v) →
tanh(v)

1∓sech(v,m)
 , we have

which is a hyperbolic function solution under conditions 𝛼k(𝛿 + 𝜇) < 0.
Result 8: For s = 1 , r = 1 − m2 , c = 2 − m2 and z(v) = sc(v,m).
When g0 = 0 , g1 = 0 , f1 = f1 , � = −� and w = −4� − k2� − k� . For m → 0 , 

z(v) =→ tan(v) and we get

which is a periodic solution.

(14)�2(x, t) =

(
f1

2
+

f1(1 − (cn(x − �t))2)

(1 + (cn(x − �t))2)

)
ei(−kx+wt+�).

(15)�3(x, t) =

�
∓

4
√
�√

−k� − k�

coth(x − �t)

(1 + (coth(x − �t))2)

�
ei(−kx+wt+�),

(16)�4(x, t) =

(
f1

2
+

f1(1 − (nc(x − �t))2)

(1 + (nc(x − �t))2)

)
ei(−kx+wt+�).

(17)

�5(x, t) =

(
g1

cot(v) ∓ csc(v)

1 + (cot(x − �t) ∓ csc(x − �t))2
+ f1

(1 − (cot(x − �t) ∓ csc(x − �t))2)

(1 + (cot(x − �t) ∓ csc(x − �t))2)

)
ei(−kx+wt+�),

(18)�6(x, t) =

(
g1

sec(v) ∓ tan(v)

1 + (sec(v) ∓ tan(v))2
+ f1

(1 − (sec(v) ∓ tan(v))2)

(1 + (sec(v) ∓ tan(v))2)

)
ei(−kx+wt+�),

(19)�7(x, t) =

�
∓2

√
�√

k� − k�

sinh(x − �t)

1 ∓ sinh(x − �t)

�
ei(−kx+wt+�),

(20)�8(x, t) =

(
f1
1 − (tan(x − �t))2

1 + (tan(x − �t))2

)
ei(−kx+wt+�),
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Result 9: For s = 1 − m2 , r = 1 , c = 2 − m2 and z(v) = cs(v,m).
g0 = 0 , g1 = 0 , f1 = f1 , � = −� and w = −4� − k2� − k� . For m → 0 , z(v) → cot(v) and 

we get

which is a periodic solution.
Result 10: For s = m2 − 1 , r = −1 , c = 2 − m2 and z(v) = dn(v,m).
When g0 = 0 , g1 = ∓2if1 , f1 = f1 , � =

−�−kf 2
1
�

kf 2
1

 and w = 2� − k2� − k� . For m → 0 , 
z(v) → 1 . Thus, we have

which is an exponential function solution.
Result 11: For s = m4

4
 , r = 1

4
 , c = m2−2

2
 and z(v) = ns(v,m) ∓ ds(v,m).

When g0 = 0 , g1 = ∓2if1 , f1 = f1 , � =
�−kf 2

1
�

kf 2
1

 and w =
1

2
(−� − 2k2� − 2k�) . For m → 1 , 

z(v) = coth(v) ∓ csch(v) . So, we have

which represents a singular solitary wave solution.
Result 12: For s = 1

4
 , r = (1−m2)2

4
 , c = 1+m2

2
 and z(v) = sn(v)

dn(v)∓cn(v)
.

When g0 = 0 , g1 = 0 , f1 = f1 , � = −� and w = −� − k2� − k� . For m → 1 , 
z(v) →

sin(v)

1∓cos(v)
 and we have

which is a trigonometric function solution.

4  Conclusions

In this article, we have found several novel solutions to the perturbed Chen-Lee-Liu equa-
tion by using the Jacobi elliptic function method. These solutions are Jacobi elliptic func-
tion, dark-bright, trigonometric, exponential, hyperbolic, periodic, and singular soliton 
solutions. The constraint conditions are determined to vouch the existence of valid solu-
tions. For some values of free parameters, the 2D and 3D graphs to some of the obtained 
solutions are depicted. The obtained results can be effective in interpreting the physical 
meaning of this nonlinear system. The Jacobi elliptic function method is a powerful mathe-
matical technique which can be utilized to acquire the analytical solutions to different com-
plex nonlinear mathematical models.

Acknowledgements Author Sibel TARLA is a 100∖2000 the council of Higher Education (CoHE) PhD 
scholar in computational science and engineering subdivision.

(21)�9(x, t) =

(
f1
1 − (cot(x − �t))2

1 + (cot(x − �t))2

)
ei(−kx+wt+�),

(22)�10(x, t) = (∓if1)e
i(−kx+wt+�),

(23)

�11(x, t) =

(
∓2if1(

coth(x − �t) ∓ csc h(x − �t)

1 + (coth(v) ∓ csch(v))2
) + f1

1 − (coth(x − �t) ∓ csch(x − �t))2

1 + (coth(c − �t) ∓ csch(x − �t))2

)
ei(−kx+wt+�),

(24)�12(x, t) =

⎛⎜⎜⎝
f1

1 − (
sin(x−�t)

1∓cos(x−�t)
)2

1 + (
sin(x−�t)

1∓cos(x−�t)
)2

⎞⎟⎟⎠
ei(−kx+wt+�),
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