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Abstract

In this study, we investigate the perturbed Chen-Lee-Liu equation that represents the propa-
gation of an optical pulse in plasma and optical fiber. The Jacobi elliptic function technique
is used for this purpose. As a result, we obtain some new solitary wave solutions such as
the Jacobi elliptic function, dark-bright, trigonometric, exponential, hyperbolic, periodic,
and singular soliton solutions. To express the pulse propagation of the generated solutions,
specific values for the free parameters under conditions are also given.

Keywords Perturbed Chen-Lee-Liu model - Jacobi elliptic function technique - Analytical
solutions

1 Introduction

Nonlinear partial differential equations are employed to examine the features of many
physics models. One of these equations is the Schrodinger type equation. Such equation
has a crucial role in fields such as mathematical physics, optic, plasma, and fiber-optic
telecommunications engineering. Exact solutions of nonlinear Schrodinger’s equation
have an important role in the applied mathematics Ali et al. (2020); Eslami et al. (2014);
He (2020); Zhang et al. (2017); Gao et al. (2020a, 2020b). There are several techniques
have been developed to extract exact solutions for nonlinear partial differential equations
such as the bilinear neural network method Zhang and Bilige (2019); Zhang et al. (2021,
2020), the Kudryashov method Zafar et al. (2022); Alquran et al. (2021); Srivastava et al.
(2020); Sulaiman et al. (2021), the extended rational sin-cos and sinh-cosh methods Cinar
et al. (2021), the sine-Gordon expansion method Ali et al. (2020a, 2020b); Fahim et al.
(2021); Abdul Kayum et al. (2020), the unified method and its generalized technique
Abdel-Gawad and Osman (2015); Abdel-Gawad et al. (2016); Osman and Abdel-Gawad
(2015), the extended simple equation method Khater et al. (2021), the (G’ /G)-expansion
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method Ismael et al. (2020); Durur (2020); Ekici et al. (2016), the Hirota bilinear method
Abdulkadir Sulaiman and Yusuf (2021), the unified auxiliary equation method Zayed and
Shohib (2019); Zayed et al. (2021), F-expansion method Biswas et al. (2019); Yildirim
(2021); Karaman (2021),the generalized exponential rational function method Khoda-
dad et al. (2021), and other techniques Ali et al. (2020); Baskonus et al. (2018); Zhang
et al. (2021a, 2021b); Ali et al. (2021); Rehman et al. (2020); Ali et al. (2020); Ozdemir
et al. (2021). Additionally, many authors started up to employ the Jacobi elliptic function
method Kurt (2019); Alquran and Jarrah (2019); Ali (2011); Ghanbari et al. (2021); Lii
(2005); Zayed and Alurrfi (2015).

In this manuscript, we consider the perturbed Chen-Lee-Liu (CLL) model Ozdemir
et al. (2021)

iy, + ay,, + iplu Py, = ilyy, + u(y|"w), + 5w ) wl. (1)

where y is the coefficient of inter-modal dispersion, u and 6 symbolize coefficients of
self-steepening for short pulses and nonlinear dispersion, respectively. Additionally, the
coefficients of the group velocity dispersion and the nonlinearity are refereed by « and g,
respectively. We mention that » indicates the density for the complex wave function. The
CLL equation drives solitons propagation dynamics in nonlinear optical fibers, and it also
has applications in solitons cooling, optical couplers, meta-materials, and optoelectronic
devices.
In this study, we investigate Eq. (1) at n = 1 which reads

iy, + ay,, + iply Py, = ilyy, + u(lyPw), + 8wl )

We establish a variety of optical solutions with the help of the Jacobi elliptic function
method to the perturbed Chen-Lee-Liu equation, which depicts the propagation of an opti-
cal pulse through plasma and optical fiber. In Yildirim et al. (2020), the Riccati method
has been employed. Sardar subequation method used to find solitary wave solutions Esen
et al. (2021). Zhang et al. have investigated qualitative analysis and the bifurcation method
in Zhang et al. (2011). Apart from these, many studies have been made and continue to
be done for the Chen-Lee-Liu equation Biswas (2018); Biswas et al. (2018); Triki et al.
(2018); Yildirim (2019). Akbar and others studied the Chen-Lee-Liu model via using dif-
ferent solutions functions with the help of the Jacobi elliptic functions Akinyemi et al.
(2021). Kudryashov found general solutions by using different methods with elliptic func-
tion approach Kudryashov (2019).

The main goal of this paper is implementing firstly the Jacobi elliptic function method
to obtain new solutions with different wave structures for Eq. (2).

This study is organized as follows, introduction is given in Sect. 1. In Sect. 2, we
devoted ourselves to presenting the Jacobi elliptic functions method. In Sect. 3, we studied
the new exact solutions of the perturbed Chen-Lee-Liu equation by applying the described
method. The figures of the constructed solutions are drawn by the degenerate states of the
Jacobi elliptic functions for m — 0 and m — 1. The conclusion of this study is presented in
Sect. 4.

2 Description of the Jacobi elliptic function method

The nonlinear partial differential equation is expressed as:
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P(W? Wx’ th Wxx! V/m Il/tx’ ) = O’ (3)

where P is a polynomial function containing y(x, f) and its partial derivatives.
By taking the transformation

wx, 1) = UWe?™ v = x — pt, p(x, 1) = —kx + wt + 1, 4)
Eq.(3) becomes a nonlinear ordinary differential equation (NODE) as follows
F(U/’U//’U///’ ) — O (5)

Here, U(v), ¢(x, 1), p, k, w and # stand for the amplitude competent, phase function, speed
of the soliton, frequency, wave number, and phase, respectively. Then, The following steps
are followed to construct the solutions:

Step I The solution of the NODE is as follows:

2v) z(v) 1 - Z(V)z)
1+z(v)2) < 1+ z(v)2 * ’

D
U) =go+ Y (©6)
i=1

1+ z(v)2
where g;, and f; are constants (g, # 0 or f;, # 0). The z(v) function is expressed as:

7)) = Vs + c20) + 1A (), (7)

where s, ¢ and r are constants.

Step 2 The value of D is defined by the balance principle which depends on the comparison
between the highest-order linear term and the non-linear term in Eq. (5).

Step 3 Substituting Eq. (6) along with Eq. (7) into Eq. (5), we get a polynomial in z(v) .
Afterthat, we obtain a system of algabraic equations by setting the coefficients of z2(v),
b =0, ,7equal to zero. We solve the obtained system with the help of mathematica soft-
ware to find the unknown parameters.

Step 4 The general solutions of Eq. (6) are as follows according to the conditions of s, ¢ and
rin Table 1:

In Table 2, we express to change hyperbolic and trigonometric functions for m — 0 and
m — 1 of the Jacobi elliptic functions. Thereby, solutions are structure of trigonometric and
hyperbolic functions.

3 Applications

In this section, we apply the Jacobi elliptic function method to Eq.(2). Firstly, by inserting Eq.
(4) into Eq.(2)

—ipU —wU + aU" = 2kaiU - ak*U + ipU*U

' ' , ®)
+ pkU? — iyU — ykU = 3ipUU — ukU® = 2i6UU =0,
is attain. We express the following parts of Eq.(8) as follows. The real part is
(-w — ak? = yk)U + aU" + k(p — m)U? = 0, )
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Table 1 Jacobi elliptic functions

No. s c r z(v)
1 1 —1—m? m? sn(v)
2 1—m? 2m? -1 —m? cn(v)
3 m? —-1-m? 1 ns(v)
4 —m? —142m? 1—m? ne(v)
5 1 1-2m? 1 ns(v) F cs(v)
4 2 4
6 1-m 1+m? 1-m? — _en(v)
= = : nc(v) F sc(v) or o)
7 1 m2=2 m? sn(v)
4 2 n 1xdn(v)
8 1 2 —m? 1—m? sc(v)
9 1 —m? 2 —m? 1 cs(v)
10 m? —1 2 —m? -1 dn(v)
11 mt m=2 1 ns(v) F ds(v)
4 2 4
12 1 Lm? (L=m?)? sn(v)
4 2 4 dn(v)Fcn(v)
Table 2 Jacobi elliptic functions mo0 mol mo0 mol
form - O0andm — 1
1 sn(v)  sin(v) tanh(v) 7 dc(v)  sec(v) 1
2 cn(v)  cos(v)  sech(v) 8 ne(v)  sec(v) cosh(v)
3 dn(v) 1 sech(v) 9 sc(v)  tan(v)  sinh(v)
4 cd(v)  cos(v) 1 10 ns(v)  cse(v) coth(v)
5 sd(v)  sin(v) sinh(v) 11 ds(v)  csc(v) csch(v)
6 nd(v) 1 cosh(v) 12 cs(v)  cot(v) csch(v)
and the imaginary part is
(—p = 2ka — y)U + (B —3u - 28)U*U = 0. (10)

Then, we set the coefficients of the components of the imaginary part equal to zero, we get
p = —2ka — y and § = 3u + 26. Considering these two constraints in the real part, we get

(=w — ak® = yk)U + aU" + 2k(u + 8)U? = 0. an

By using the balance principle, we get D = 1. Considering Eq. (6), we may express the
solution of Eq. (11) as below:

z2(v) 1 —z(v)?
1+ z(v)? +h 1 4+z(v)?’

Uv)=go+& 12)
If Eq. (12) is substituted in Eq. (11), we find the solutions by taking into account the equa-
tion system obtained for the following conditions by performing the necessary operations
(Figs. 1,2,3,4,5,6,7,8,9).

Result 1: Considering the case s = 1, r = m?

,c=—1—m?and z(v) = sn(v, m).
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Fig. 1 Dark-bright solitary wave solution of Eq. (13) for values of a = -1, k = 2,7 =0.05,6 = 0.0Ly = -2

Si=23,w=—2a—Ra—ky,pu = "k;‘,’;' P =3u+25andp=—2ka—y

Fig.2 Singular soliton solution of Eq. (15)for values of @ = —-0.25, k =0.7, n =09,u = 1.2, 6 = 0.02,
y=3,w=—8a—k*a—ky,f=3u+26,and p=—2ka -y

\
h\w

<05l W

Re(d5(x1))
Im(y5(x.t))

Fig. 3 Periodic solution of Eq. (17) for values of @« = 0.6, k = -1.7, =19, u =0.75,6 = —u, y = 0.04,
2, =03,f=102,w=—a—ka—ky,p=3u+25and p=—2ka -y

— ;- kf
When 8 = 0’ g = +2[f‘], fl =f], U= akle

have z(v) — tanh(v) and the general solution is given by

and w = —2a — k*a — ky. For m — 1, we
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Im(ys(x.1))

Fig.4 Periodic solution of Eq. (18) for values of @« = —0.06, k = —1.7,n =12, u =0.75,6 = —pu, y = 0.4,
g =03,f=05w= —a—k*a—ky,p=3u+26and p = —2ka —y

0.05 +

o

1 ()

-0.05 /1)

Fig.5 Hyperbolic function solutions of Eq. (19) for values of « = 0.06, k = -57,n =15, u=1,6 =2.09
y=04,w=—2a—kKa—ky,f=3u+25and p=—2ka —y

- ::2 ‘MH\‘ \HH‘WJM”‘

ol il
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Re(t -8(x,l))
Im(gsg (X))

Fig.6 Periodic solution of Eq. (20) for values of @ =2.06, k=0.1, y =5, py=-6, 6§ =025, y =2.6,
fi=03,w=-2a—kKa—ky, =3u+25 and p = —2ka —y

v, (x,1) = (—if; tanh(2x — 2pt) + f;sech(2x — 2pt))e i+, (13)

which is a dark-bright solitary wave solution.
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Fig. 7 Exponential solution of Eq. (22) for values of « = 1.06, k =0.1, 7 = 0.1, y =
fi=02,w=2a—ka—ky,f=3u+26 andp=—2ka—y
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Fig.8 Singular solitary wave solution of Eq. (23) for valuesof a = 1, k= 0.5,y = 1.5, u =
r =02, f; =3,w=3(—a = 2k%a — 2%ky), f = 3u +26and p = —2ka —y

,0=0.3,
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Fig.9 Trigonometric function solution of Eq. (24) for values of a =6.02, k =0.1, n =1.05, y = -6,
6§=03,y=52,f =1, w=—a—ka—ky, =3u+25 and p = —2ka —y

Result2: Fors =1 —-m?,r=—-m%c= -1+ 2;112 and z(v) = cn(v, m).
When g, = f;‘, g =0,fi=fi,m= %, U= a;];]; 5, and w = %(Sa —2k*>a — 2ky), we have
1
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_ _ 2
l[lz(x, l) _ <Jl + fl (1 (cn(x Pl‘)) ) )ei(_k)ﬁ—WH—m. (14)

(1 + (en(x = p1))?)

¥ 2 r=1¢=—-1—-m?and z(v) = ns(v, m),
4y/a _ _a—kfls
T h=0kr=g

we have z(v) — coth(v) and the general solution is given by

) = 4\/_ coth(x — pt) UG e— (15)
’ \ /——/«s T (1 + (coth(x — p1))?) ’

which represents a singular soliton solution under conditions ak(6 + u) < 0.
Result 4: For s = —m?, r = 1 —m?, ¢ = =1 + 2m? and z(v) = nc(v, m).
g = -%1, g =0 fi=f.m= ?, U= a}f‘ and w = —( —5a — 2k*>a — 2ky), we have
£ A= O O v

Vi = <5 (4 (ncx— p0)?)

Result 3: Considering the case s = m

When g, =0, g, = F and w = —8a — k*a — ky. For m — 1,

(16)

Result 5: Fors = 1, r = i, c= 1_§m2 and z(v) = ns(v, m) F cs(v, m).
When g, =0, g, =g, f; =f» #=—6 and w = —a — k*a — ky. For m — 0, we have

z(v) = csc(v) F cot(v). Thus, we get

_ cot(v) F csc(v) (1 = (cot(x — pt) F csc(x — p1)?) i(—kx-twi-Hn)
w5 ) = <g1 1 + (cot(x — pt) F csc(x — p1))? +h (1 + (cot(x — pt) F csc(x — pt))2)>e ’
7
which is a periodic solutzion. , ,
Result 6: For s = I_Tm, r= 1_4'" ,C= HT'" and z(v) = nc(v, m) F sc(v, m).

When g,=0, g, =g, fi=f, #u=-6 and w=—-a—ka—ky. For m— 0,
z(v) = sec(v) F tan(v) and the solution is given by

sec(v) F tan(v) (1 — (sec(v) F tan(v))?) kot
we(x, 1) = | & — s +fi — = )T (18)
1+ (sec(v) F tan(v)) (1 + (sec(v) F tan(v))?)
which is a periodic solution.
1 m? _ m =2 _ sn(v,m)
Result 7: For s = = 2— c= = Todntvy
When g, =0, g, = \/% fi=0, u=-6 and w = —2a —k*a —ky. For m — 1,
tanh(v)
z(v) > e’ we have
wy(x, 1) = w2V SO PO ) ket (19)
Vké — ku 1 F sinh(x — pr)

which is a hyperbolic function solution under conditions ak(6 + u) < 0.

Result 8: Fors = 1,r = 1 —m?, ¢ =2 — m? and z(v) = sc(v, m).

When g,=0, g, =0, fi=f, yu=-6 and w= —4a —k*a —ky. For m — 0,
z(v) =— tan(v) and we get

(= 0 i
we(x, 1) = < Tr (tan(x — pt)) >e ’ 20)

which is a periodic solution.
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Result 9: Fors =1 —m?,r=1,c =2 —m? and z(v) = cs(v, m).
2 =0,g, =0, f, =f, u=—6and w = —da — k’a — ky. For m = 0, z(v) — cot(v) and
we get

1= (cotlr = p0)* ) ikt @)

wy(x, 1) = < "1 + (cot(x — p1))?

which is a periodic solution.
Result 10: Fors = m? — 1,r = —1, ¢ = 2 — m? and z(v) = dn(v, m).

——kf2
When g, =0, g, =F2if}, fi=fi, u= akfkf‘é and w = 2a — k*a — ky. For m — 0,
z(v) — 1. Thus, we have I
wio(x, 1) = (Fify e (22)

which is an exponential function solution.

Result 11: For s = ’“7 r=1c= ’"T‘Z and 2(v) = ns(v, m) F ds(v, m),
. a—kf=6
‘When g0=0, 81 =$2lfpf1 =f1a/4= kf?

z(v) = coth(v) F csch(v). So, we have

and w = 3(—a — 2k%a — 2ky). For m — 1,

. coth(x — pr) F csc h(x — pt) 1 — (coth(x — pt) F csch(x = pO)* \ i kerm
D= (F2 + i X+v»t+v,)’
Vi <+ i 1 + (coth(v) F csch(v))2 )y + (coth(c — p1) T eschtr — pn? )
(23)
which represents a singular solitary wave solution.
Result 12: Fors = L, p = 4= o 1 o4 () = —2W
’ 4’ 4 7 2 dn(v)Fen(v)’
When g,=0, g =0, fi=f, u=-6 and w=-a—ka—ky. For m— 1,
2(v) > 229 and we have
1Fcos(v)

_ sin(x—pt) \2
IFcos(x—pt) i(—ktwin)
1+ ( sin(x—pt) )2

1Fcos(x—pt)

(1) = |y (24)

which is a trigonometric function solution.

4 Conclusions

In this article, we have found several novel solutions to the perturbed Chen-Lee-Liu equa-
tion by using the Jacobi elliptic function method. These solutions are Jacobi elliptic func-
tion, dark-bright, trigonometric, exponential, hyperbolic, periodic, and singular soliton
solutions. The constraint conditions are determined to vouch the existence of valid solu-
tions. For some values of free parameters, the 2D and 3D graphs to some of the obtained
solutions are depicted. The obtained results can be effective in interpreting the physical
meaning of this nonlinear system. The Jacobi elliptic function method is a powerful mathe-
matical technique which can be utilized to acquire the analytical solutions to different com-
plex nonlinear mathematical models.

Acknowledgements Author Sibel TARLA is a 100\ 2000 the council of Higher Education (CoHE) PhD
scholar in computational science and engineering subdivision.
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