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Abstract
In this paper, we investigate resonanat nonlinear Schrödinger equation (RNLSE) with self 
steeping phenomena to obtain some chirped periodic (CP) and soliton waves. A chirp is a 
signal in which the frequency increases (up chirp) or decreases (down-chirp) with time. 
It is commonly used in sonar, radar and laser systems and in other applications, such as 
in spread-spectrum communications. We obtain chirped periodic waves (CPW) with some 
Jacobi elliptic functions (JEF). We also obtain some solitary waves (SW) like dark, bright, 
singular waves of type I and II, hyperbolic, periodic and other solutions. The dynamical 
behaviour for these waves will also be presented.

Keywords  GRD-NLSE model · Optical soliton · Periodic wave (PW)

1  Introduction

The soliton phenomena has got a lot of attention because of its physical and commercial appli-
cations in various fields of sciences like optical fiber, optical metamaterial, fluid mechanics, 
plasma physics, biology, chemistry and so on. Solitons appear as a balance between nonlin-
earity and dispersion. Solitons solution comes from family of NLSEs which shows the light 
propagation of waves in many fields of sciences such as nonlinear optics, optical fiber and 
telecommunications (Xu et al. 2020a, b; Rizvi et al. 2021; Younas et al. 2021; Lan and Guo 
2020; Zhao 2021; Lan 2020; Özkan et al. 2021; Rizvi et al. 2020; Younas et al. 2020). Several 
sophisticated tools have been designed to evaluate NLS models and determine their precise 
solutions. Optical solitons are one of the most intriguing and fascinating topics in modern 
communications, aroused by its prospective uses in optical fiber transmission. The study of 
soliton pulse solutions with nonlinear chirping has shown to be an interesting field of research. 
The reason behind this is that chirped pulses can be useful in a variety of technological 
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applications, like optic fiber amplifier design, optical pulse compressor design and SW based 
communications link design (Seadawy et al. 2019; Mecozzi et al. 2012; Dianchen et al. 2018; 
Ozkan et al. 2020).

The generalised resonant dispersive NLSE (GRD-NLSE) is a mathematical physical model 
used in nonlinear sciences, such as nonlinear optics, fluid mechanics and condensed matter 
physics. Recently, many authors have studied the GRD-NLSE to examine the behaviour of 
solutions (El-Dessoky and Islam 2019; Wang et  al. 2007; Al-Ghafri 2019; Seadawy et  al. 
2019). To construct exact solutions several integration schemes have been implemented, such 
as ansatz approach (Raza Rizvi et al. 2020; Aly and Cheemaa 2019a), semi-inverse variational 
principle (Aly and Cheemaa 2019b), simplest equation scheme (Ali et al. 2020), first integral 
approach (Rizvi et  al. 2020a), functional variable scheme (Akram et  al. 2021), sine-cosine 
function approach (Younas et al. 2020a), G�∕G-expansion scheme, trial solution method and 
generalized extended tanh scheme (Younas et al. 2020b; 2021). In GRD-NLSE, the parameter 
n represents the generalized evolution and generalized group velocity dispersion (GVD).

When n = 1 , the GRD-NLSE reduces to the RNLSE (Aly and Cheemaa 2020; Ilie et al. 
2018; Raza Rizvi et  al. 2020; Aly and Cheemaa 2019a, b; Ali et  al. 2020; Rizvi et  al. 
2020a; Akram et  al. 2021; Younas et  al. 2020a; El-Dessoky and Islam 2019). A special 
type of NLSE that is used to describe the Madelung fluids and the dynamic of solitons in 
various nonlinear systems is the RNLSE. The dimensionless form of the RNLSE is given 
by:

where � is the coefficient of group-velocity dispersion, b is the coefficient of non-Kerr non-
linearity and c presents the coefficient of resonant nonlinearity. In an optical fiber medium 
with Kerr dispersion and quintic nonlinearity, we investigate the propagation characteris-
tics of nonlinear PW (Rizvi et al. 2019, 2021; Chow et al. 2003, 2008; Triki and Wazwaz 
2016; Palacios 2003). In such a system, the quintic derivative nonlinear NLSE is used to 
simulate the development of femtosecond light waves. Our findings demonstrate that Kerr 
dispersion is critical in producing a nonlinear chirp for PW and SW. In this paper, we will 
obtain chirped soliton solutions for RNLSE and also present SW solutions.

The paper is organised as follows: In Sect. 3, we will get CPW for RNLSE. In Sect. 4, we 
present various SW solutions. In Sect. 5, our results and profile of our solutions will be dis-
cussed. In Sect. 6, we will provide conclusion of our results.

2 � Mathematical analysis

We assume the following transformation:

where � = x − �t and h(�) and Y(�) are real functions of � , while p is the wave number con-
stant (p > 0) . The chirping that is associated with this as shown below:

(1)i(∣ Ξ ∣n−1 Ξ)t + �(∣ Ξ ∣n−1 Ξxx + b(∣ Ξ ∣n)Ξ + c
(∣ Ξ ∣n

)
xx

∣ Ξ ∣
Ξ = 0,

(2)iΞt + �Ξxx + b∣ Ξ ∣2Ξ + b∣ Ξ ∣4Ξ + b∣ Ξ ∣6Ξ + c
∣ Ξ ∣xx

∣ Ξ ∣
Ξ = 0,

(3)Ξ(x, t) = h(�) exp[i(Y(�) − Ωt)],
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Now putting Eq. (3) into Eq. (2). Then, we get the real and imaginary parts that are shown 
below:

and

Now multiply Eq. (5) with h(�) and integration yield,

where N is the constant of integration. Hence, the resultant chirping take the form:

Put the expression Eq. (7) into Eq. (5), hence the required differential equation is:

Divide by �(� + c) on both side of the Eq. (9), Since

Multiply the Eq. (10) by 2h′d� and integration;

Where R is a constant. Now after substituting Υ = h2 into Eq. (11) we get the equation:

where V(Υ) is expressed as:

with the coefficients:

Equation (12) shows the dynamics of partial with energy and potentials. The general wave 
solution of Eq. (2) is:

(4)�Ξ = −
�

�x
[Y(�) − Ωt] = Y �(�),

(5)�h�� + ch�� + hY �� + hΩ − �hY �2 + bh3 + bh5 + bh7 = 0,

(6)�hY �� + 2�h�Y � − �h� = 0,

(7)Y � =
N

�h2
+

�

2�
,

(8)�Ξ(X, t) = −
N

�h2
−

�

2�
,

(9)(� + c)h�� +

(

�2 + 4�Ω

4�

)

h + bh3 + bh5 + bh7 −
N2

�h3
= 0,

(10)h�� +

(

�2 + 4�Ω

4�(� + c)

)

h +
(

b

� + c

)

h3 +
(

b

� + c

)

h5 +
b

� + c
h7 −

N2

�(� + c)h3
= 0,

(11)
(h�)2 +

(

�2 + 4�Ω

4�(� + c)

)

h2 +

(

b

2(� + c)

)

h4 +

(

b

3(� + c)

)

h6

+

(

b

4(� + c)

)

h8 −
N

�(� + c)h2
+ 2R = 0,

(12)(Υ�)2 + V(Υ) = 0,

(13)V(Υ) = �Υ5 + �Υ4 + �Υ3 + �Υ2 + �Υ + G,

(14)

� =
b

� + c
, � =

4b

3(� + c)
, � =

2b

� + c
, � =

�2 + 4�Ω

�(� + c)
, � = 8R, G =

4N2

�(� + c)
,
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where Υ(�) satisfies the Eq. (12) and Y(�) can be obtained with the help of Eq. (7). Now 
using these relations into Eq. (8) we can obtained chirping function �u(x, t) as:

The structure of above equation is nontrivial. The first term in Eq. (16) are intensity 
dependent term and the last one is linear. Now it is clear from the Eq. (16) that the first 
term is inversely proportional to the intensity and the last term shows the linear chirp. Our 
aim is to obtain the chirped solutions for Eq. (16) with the condition that Υ(�) ≠ 0 along 
with N ≠ 0 and under some constrained conditions.

3 � CPW solution

The exact periodic wave (PW) solutions of Eq. (2) are obtained by applying the transformation 
Eq. (14) to various types of elliptic ordinary differential Eq. (12).

3.1 � CPW of the cn‑type

We use the following transformation for cn-type PW:

where �o is the constant and cn(x, p) is JEF with modulus p taking values 0 < p < 1 . By 
solving this, we find the equations that are as follows:

The values of W and A in the solutions are obtained as:

After solving the above equation we also obtained the following values:

(15)Ξ(x, t) =
√

Υ(�) exp[i(Y(�) − Ωt)],

(16)�Ξ(x, t) = −
N

�Υ(�)
−

�

2�
,

(17)Υ(�) = A{1 ±Wcn[�(� − �o), p]},

(18)G + A5� + A2� + A3� + A� + A4� = 0,

(19)5A5W� + 2A2W� + 3A3W� + AW� + 4A4W� = 0,

(20)10A5W2� + A2W2� + 3A3W2� + 6A4W2� = 0,

(21)10A5W3� + A3W3� + 4A4W3� = 0,

(22)5A5W4� + A4W4� = 0,

(23)W =
4p�

√

�

�
, A = −

�

5�
,

(24)� =
�(100�2� + 3�(�2 − 5��))

125�3
, G =

�2(11�3 + 375�2�)

3124�4
,
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By the substitution of the Eqs. (18, 19, 20, 21, 22) along with Eq. (23) into Eq. (15), we get 
a following periodic solutions for the Eq. (1) as:

where � = x − �t − �o . We can find the integration constant N and R by equating the Eq. 
(14) and Eq. (24) that are:

The chirping that corresponds to this PW can be easily obtained as:

3.2 � CPW of the cd‑type

We use the following transformation for cd-type PW:

where �o is the constant and cd(x, p) is JEF with modulus p taking values 0 < p < 1 . By 
solving this, we find the equations that are as follows:

The values of j and L in the solutions are obtained as:

After solving the above equation we also obtained the following values:

(25)Ξ(x, t) = {A[1 ±Wcn(�� , p)]}
1

2 exp[i(Y(�) − Ωt)],

(26)N2 =
�2�(� + c)(11�3 + 375�2�)

12500�4
,

(27)R =
�2(100�2� + 3�(�2 − 5��))

1000�3
,

(28)�Ξ(x, t) = −
N

�A[1 ±Wcn(�� , p)]
−

�

2�
,

(29)Υ(�) = j{1 ± Lcd[�(� − �o), p]},

(30)G + j5� + j2� + j3� + j� + j4� = 0,

(31)5j5L� + 2j2L� + 3j3L� + jL� + 4j4L� = 0,

(32)10j5L2� + j2L2� + 3j3L2� + 6j4L2� = 0,

(33)10j5L3� + j3L3� + 4j4L3� = 0,

(34)5j5L4� + j4L4� = 0,

(35)L =
4p�

√

�

�
, j = −

�

5�
,

(36)� =
�(100�2� + 3�(�2 − 5��))

125�3
, G =

�2(11�3 + 375�2�)

3124�4
,
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By substituting the Eqs. (30, 31, 32, 33, 34) with Eq. (35) into Eq. (15), we get a periodic 
solutions of cd-type for the Eq. (2) as:

where � = x − �t − �o . We can find the integration constant N and R by equating the Eqs. 
(14) and (36) that are:

The chirping that corresponds to this PW can be easily obtained as:

3.3 � CPW of the cs‑type

We use the following transformation for cs-type PW.

where �o is the constant and cs(x, p) is JEF with modulus p taking values 0 < p < 1 . By 
solving this, we find the equations that are as follows:

The values of Θ and Γ in the solutions are obtained as:

After solving the above equation we also obtained the following values:

(37)Ξ(x, t) = {j[1 ± Lcd(�� , p)]}
1

2 exp[i(Y(�) − Ωt)],

(38)N2 =
�2�(� + c)(11�3 + 375�2�)

12500�4
,

(39)R =
�2(100�2� + 3�(�2 − 5��))

1000�3
,

(40)�Ξ(x, t) = −
N

�j[1 ± Lcd(�� , p)]
−

�

2�
,

(41)Υ(�) = Θ{1 ± Γcs[�(� − �o), p]},

(42)G + Θ5� + Θ2� + Θ3� + Θ� + Θ4� = 0,

(43)5Θ5Γ� + 2Θ2Γ� + 3Θ3Γ� + ΘΓ� + 4Θ4Γ� = 0,

(44)10Θ5Γ2� + Θ2Γ2� + 3Θ3Γ2� + 6Θ4Γ2� = 0,

(45)10Θ5Γ3� + Θ3Γ3� + 4Θ4Γ3� = 0,

(46)5Θ5Γ4� + Θ4Γ4� = 0,

(47)Γ =
4p�

√

�

�
, Θ = −

�

5�
,

(48)� =
�(100�2� + 3�(�2 − 5��))

125�3
, G =

�2(11�3 + 375�2�)

3124�4
,



Applications of the Resonanat nonlinear Schrödinger equation…

1 3

Page 7 of 36  256

By substitution of the Eqs. (42, 43, 44, 45, 46) with Eq. (47) into Eq. (15), we get a solu-
tions of cs-type for the Eq. (2) as:

where � = x − �t − �o . We can find the integration constant N and R by equating the Eqs. 
(14) and (48) that are:

The chirping that corresponds to this PW can be easily obtained as:

3.4 � CPW of the dn‑type

The PW solution of dn-type of Eq. (12) are given by:

where dn(x, p) is JEF with modulus p taking values 0 < p < 1 . By solving this, we get the 
some equations that are:

In this solution, the parameters e and F are defined as:

We also find the value of � and G in contrast to the above relations:

The dn-type periodic solutions to Eq. (2) can be written as:

(49)Ξ(x, t) = {j[1 ± Lcd(�� , p)]}
1

2 exp[i(Y(�) − Ωt)],

(50)N2 =
�2�(� + c)(11�3 + 375�2�)

12500�4
,

(51)R =
�2(100�2� + 3�(�2 − 5��))

1000�3
,

(52)�Ξ(x, t) = −
N

�Θ[1 ± Γcd(�� , p)]
−

�

2�
,

(53)Υ(�) = e{1 ± Fdn[�(� − �o), p]},

(54)G + e5� + e2� + e3� + e� + e4� = 0,

(55)5e5F� + 2e2F� + 3e3F� + eF� + 4e4F� = 0,

(56)10e5F2� + e2F2� + 3e3F2� + 6e4F2� = 0,

(57)10e5F3� + e3F3� + 4e4F3� = 0,

(58)5e5F4� + e4F4� = 0,

(59)F =
4p�

√

�

�
, e = −

�

5�
,

(60)� =
�(100�2� + 3�(�2 − 5��))

125�3
, G =

�2(11�3 + 375�2�)

3124�4
,
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where � = x − �t − �o.By Equating Eqs. (14) and (60), we can get the integration constant 
N and R for this case are given by:

The following chirping is given by:

3.5 � CPW of the dc‑type

The PW solution of dc-type of Eq. (12) are given by:

where dc(x, p) is JEF with modulus p taking values 0 < p < 1 . By solving this, we obtain 
the equations that are given below:

In this solution, the parameters m and n are defined as:

We also find the value of � and G by the above relations:

The dc-type periodic solutions to Eq. (2) can be written as:

(61)Ξ(x, t) = {e[1 ± Fdn(�� , p)]}
1

2 exp[i(Y(�) − Ωt)],

(62)N2 =
�2�(� + c)(11�3 + 375�2�)

12500�4
,

(63)R =
�2(100�2� + 3�(�2 − 5��))

1000�3
,

(64)�Ξ(x, t) = −
N

�e[1 ± Fdn(�� , p)]
−

�

2�
,

(65)Υ(�) = n{1 ± mdc[�(� − �o), p]},

(66)G + n5� + n2� + n3� + n� + n4� = 0,

(67)5n5m� + 2n2m� + 3n3m� + nm� + 4n4m� = 0,

(68)10n5m2� + n2m2� + 3n3m2� + 6n4m2� = 0,

(69)10n5m3� + n3m3� + 4n4m3� = 0,

(70)5n5m4� + e4m4� = 0,

(71)m =
4p�

√

�

�
, n = −

�

5�
,

(72)� =
�(100�2� + 3�(�2 − 5��))

125�3
, G =

�2(11�3 + 375�2�)

3124�4
,

(73)Ξ(x, t) = {n[1 ± mdc(�� , p)]}
1

2 exp[i(Y(�) − Ωt)],
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where � = x − �t − �o . By Equating Eqs. (14) and (72), we can get the integration constant 
N and R for this case are given by:

The chirping that accompanies with it is given by:

3.6 � CPW of the ds‑type

The PW solution of ds-type of Eq. (12) are given by:

where ds(x, p) is JEF with modulus p taking values 0 < p < 1 . By solving this, we obtain 
the some equations that are given below:

In this solution, the parameters J and � are defined as:

We also find the value of � and G in contrast to the above relations:

The ds-type periodic solutions to Eq. (2) can be written as:

where � = x − �t − �o . By Equating Eqs. (14) and (84), we can get the integration constant 
N and R for this case are given by:

(74)N2 =
�2�(� + c)(11�3 + 375�2�)

12500�4
,

(75)R =
�2(100�2� + 3�(�2 − 5��))

1000�3
,

(76)�Ξ(x, t) = −
N

�n[1 ± mdc(�� , p)]
−

�

2�
,

(77)Υ(�) = J{1 ± �ds[�(� − �o), p]},

(78)G + J5� + J2� + J3� + J� + J4� = 0,

(79)5J5�� + 2J2�� + 3J3�� + J�� + 4J4�� = 0,

(80)10J5�2� + J2�2� + 3J3�2� + 6J4�2� = 0,

(81)10J5�3� + J3�3� + 4J4�3� = 0,

(82)5J5�4� + J4�4� = 0,

(83)� =
4p�

√

�

�
, J = −

�

5�
,

(84)� =
�(100�2� + 3�(�2 − 5��))

125�3
, G =

�2(11�3 + 375�2�)

3124�4
,

(85)Ξ(x, t) = {J[1 ± �ds(�� , p)]}
1

2 exp[i(Y(�) − Ωt)],
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The chirping that accompanies with it is given by:

3.7 � CPW of the sn‑type

Equation (12) provides the sn-type PW solution as:

where sn(x, p) is JEF with modulus p taking values 0 < p < 1 . By solving this, we obtain 
the some equations that are given below:

In this solution, the parameters B and X are defined as:

We also find the value of � and G in contrast to the above relations:

The sn-type periodic solutions to Eq. (2) can be written as:

where � = x − �t − �o . By Equating Eqs. (14) and (96), we can get the integration constant 
N and R for this case are given by:

(86)N2 =
�2�(� + c)(11�3 + 375�2�)

12500�4
,

(87)R =
�2(100�2� + 3�(�2 − 5��))

1000�3
,

(88)�Ξ(x, t) = −
N

�J[1 ± �ds(�� , p)]
−

�

2�
,

(89)Υ(�) = B{1 ± Xsn[�(� − �o), p]},

(90)G + B5� + B2� + B3� + B� + B4� = 0,

(91)5B5X� + 2B2X� + 3B3X� + BX� + 4B4X� = 0,

(92)10B5X2� + B2X2� + 3B3X2� + 6B4X2� = 0,

(93)10B5X3� + B3X3� + 4B4X3� = 0,

(94)5B5X4� + B4X4� = 0,

(95)X =
4p�

√

�

�
, B = −

�

5�
,

(96)� =
�(100�2� + 3�(�2 − 5��))

125�3
, G =

�2(11�3 + 375�2�)

3124�4
,

(97)Ξ(x, t) = {B[1 ± Xsn(�� , p)]}
1

2 exp[i(Y(�) − Ωt)],
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The chirping that accompanies with it is given by:

3.8 � CPW of the sc‑type

Equation (12) provides the sc-type PW solution as:

where sc(x, p) is JEF with modulus p taking values 0 < p < 1 . By solving this, we obtain 
the some equations that are given below:

In this solution, the parameters Λ and d are defined as:

We obtain the values of � and G in contrast of the above relations:

The sc-type periodic solutions to Eq. (2) can be written as:

where � = x − �t − �o . By Equating Eqs. (14) and (108), we can get the integration constant 
N and R for this case are given by:

(98)N2 =
�2�(� + c)(11�3 + 375�2�)

12500�4
,

(99)R =
�2(100�2� + 3�(�2 − 5��))

1000�3
,

(100)�Ξ(x, t) = −
N

�B[1 ± Xsn(�� , p)]
−

�

2�
,

(101)Υ(�) = Λ{1 ± dsc[�(� − �o), p]},

(102)G + Λ5� + Λ2� + Λ3� + Λ� + Λ4� = 0,

(103)5Λ5d� + 2Λ2d� + 3Λ3d� + Λd� + 4Λ4d� = 0,

(104)10Λ5d2� + Λ2d2� + 3Λ3d2� + 6Λ4d2� = 0,

(105)10Λ5d3� + Λ3d3� + 4Λ4d3� = 0,

(106)5Λ5d4� + Λ4d4� = 0,

(107)d =
4p�

√

�

�
, Λ = −

�

5�
,

(108)� =
�(100�2� + 3�(�2 − 5��))

125�3
, G =

�2(11�3 + 375�2�)

3124�4
,

(109)Ξ(x, t) = {Λ[1 ± dsc(�� , p)]}
1

2 exp[i(Y(�) − Ωt)],
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The chirping that accompanies with it is given by:

3.9 � CPW of the sd‑type

Equation (12) provides the sd-type PW solution as:

where sd(x, p) is JEF with modulus p taking values 0 < p < 1 . By solving this, we obtain 
the some equations that are given below:

In this solution, the parameters q and � are defined as:

We also find the value of � and G in contrast to the above relations:

The sd-type periodic solutions to Eq. (2) can be written as:

where � = x − �t − �o . By Equating Eqs. (14) and (120), we can get the integration constant 
N and R for this case are given by:

(110)N2 =
�2�(� + c)(11�3 + 375�2�)

12500�4
,

(111)R =
�2(100�2� + 3�(�2 − 5��))

1000�3
,

(112)�Ξ(x, t) = −
N

�Λ[1 ± dsc(�� , p)]
−

�

2�
,

(113)Υ(�) = q{1 ±�sd[�(� − �o), p]},

(114)G + q5� + q2� + q3� + q� + q4� = 0,

(115)5q5�� + 2q2�� + 3q3�� + q�� + 4q4�� = 0,

(116)10q5�2� + q2�2� + 3q3�2� + 6q4�2� = 0,

(117)10q5�3� + q3�3� + 4q4�3� = 0,

(118)5q5�4� + q4�4� = 0,

(119)� =
4p�

√

�

�
, q = −

�

5�
,

(120)� =
�(100�2� + 3�(�2 − 5��))

125�3
, G =

�2(11�3 + 375�2�)

3124�4
,

(121)Ξ(x, t) = {q[1 ±�sd(�� , p)]}
1

2 exp[i(Y(�) − Ωt)],
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The chirping that accompanies with it is given by:

3.10 � CPW of the nc‑type

The PW solution of nc-type of Eq. (12) are given by:

where nc(x, p) is JEF with modulus p taking values 0 < p < 1 . By solving this, we obtain 
the some equations that are given below:

In this solution, the parameters M and O are defined as:

We also find the value of � and G in contrast to the above relations:

The nc-type periodic solutions to Eq. (2) can be written as:

where � = x − �t − �o . By Equating Eqs. (14) and (132), we can get the integration constant 
N and R for this case are given by:

(122)N2 =
�2�(� + c)(11�3 + 375�2�)

12500�4
,

(123)R =
�2(100�2� + 3�(�2 − 5��))

1000�3
,

(124)�Ξ(x, t) = −
N

�q[1 ±�sd(�� , p)]
−

�

2�
,

(125)Υ(�) = M{1 ± Onc[�(� − �o), p]},

(126)G +M5� +M2� +M3� +M� +M4� = 0,

(127)5M5O� + 2M2O� + 3M3O� +MO� + 4M4O� = 0,

(128)10M5O2� +M2O2� + 3M3O2� + 6M4O2� = 0,

(129)10M5O3� +M3O3� + 4M4O3� = 0,

(130)5M5O4� +M4O4� = 0,

(131)O =
4p�

√

�

�
, M = −

�

5�
,

(132)� =
�(100�2� + 3�(�2 − 5��))

125�3
, G =

�2(11�3 + 375�2�)

3124�4
,

(133)Ξ(x, t) = {M[1 ± Onc(�� , p)]}
1

2 exp[i(Y(�) − Ωt)],
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The chirping that accompanies is given by:

3.11 � CPW of the ns‑type

The PW solution of ns-type of Eq. (12) are given by:

where ns(x, p) is JEF with modulus p taking values 0 < p < 1 . By solving this, we obtain 
the some equations that are given below:

In this solution, the parameters k and T are defined as:

We also find the value of � and G in contrast to the above relations:

The ns-type periodic solutions to Eq. (2) can be written as:

where � = x − �t − �o . By Equating Eqs. (14) and Eq. (144), we can get the integration 
constant N and R for this case are given by:

(134)N2 =
�2�(� + c)(11�3 + 375�2�)

12500�4
,

(135)R =
�2(100�2� + 3�(�2 − 5��))

1000�3
,

(136)�Ξ(x, t) = −
N

�M[1 ± Onc(�� , p)]
−

�

2�
,

(137)Υ(�) = k{1 ± Tns[�(� − �o), p]},

(138)G + k5� + k2� + k3� + k� + k4� = 0,

(139)5k5T� + 2k2T� + 3k3T� + kT� + 4k4T� = 0,

(140)10k5T2� + k2T2� + 3k3T2� + 6k4T2� = 0,

(141)10k5T3� + k3T3� + 4k4T3� = 0,

(142)5k5T4� + k4T4� = 0,

(143)T =
4p�

√

�

�
, k = −

�

5�
,

(144)� =
�(100�2� + 3�(�2 − 5��))

125�3
, G =

�2(11�3 + 375�2�)

3124�4
,

(145)Ξ(x, t) = {k[1 ± Tns(�� , p)]}
1

2 exp[i(Y(�) − Ωt)],
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The following chirping is provided by:

3.12 � CPW of the nd‑type

The PW solution of nd-type of Eq. (12) are given by :

where nd(x, p) is JEF with modulus p taking values 0 < p < 1 . By solving this, we obtain 
the some equations that are given below:

In this solution, the parameters z and r are defined as:

We also find the value of � and G in contrast to the above relations:

The nd-type periodic solutions to Eq. (2) can be written as:

where � = x − �t − �o . By Equating Eqs. (14) and (156), we can get the integration constant 
N and R for this case are given by:

(146)N2 =
�2�(� + c)(11�3 + 375�2�)

12500�4
,

(147)R =
�2(100�2� + 3�(�2 − 5��))

1000�3
,

(148)�Ξ(x, t) = −
N

�k[1 ± Tns(�� , p)]
−

�

2�
,

(149)Υ(�) = z{1 ± rnd[�(� − �o), p]},

(150)G + z5� + z2� + z3� + z� + z4� = 0,

(151)5z5r� + 2z2r� + 3z3r� + zr� + 4z4r� = 0,

(152)10z5r2� + z2r2� + 3z3r2� + 6z4r2� = 0,

(153)10z5r3� + z3r3� + 4z4r3� = 0,

(154)5z5r4� + z4r4� = 0,

(155)r =
4p�

√

�

�
, z = −

�

5�
,

(156)� =
�(100�2� + 3�(�2 − 5��))

125�3
, G =

�2(11�3 + 375�2�)

3124�4
,

(157)Ξ(x, t) = {z[1 ± rnd(�� , p)]}
1

2 exp[i(Y(�) − Ωt)],
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The chirping that accompanies with it is given by:

3.13 � CPW of the nc + sc‑type

Equation (12) admits the nc + sc-types of the PW solution of the form:

where nc + sc(x, p) is JEF of modulus p taking values 0 < p < 1 . we found some equation 
by the solution of periodic solutions in this type:

The parameters are S and � in the solutions are shown in this expressions:

the value of � and G are:

the nc + sc-type periodic solutions for the Eq. (2) is given below:

where � = x − �t − �o . By equating Eqs. (14) and (168), integration constant N and R can 
be obtained as:

(158)N2 =
�2�(� + c)(11�3 + 375�2�)

12500�4
,

(159)R =
�2(100�2� + 3�(�2 − 5��))

1000�3
,

(160)�Ξ(x, t) = −
N

�z[1 ± rnd(�� , p)]
−

�

2�
,

(161)Υ(�) = S{1 ± �(nc + sc)[�(� − �o), p]},

(162)G + S5� + S2� + S3� + S� + S4� = 0,

(163)5S5�� + 2S2�� + 3S3�� + S�� + 4S4�� = 0,

(164)10S5�2� + S2�2� + 3S3�2� + 6S4�2� = 0,

(165)10S5�3� + S3�3� + 4S4�3� = 0,

(166)5S5�4� + S4�4� = 0,

(167)� =
4p�

√

�

�
, S = −

�

5�
, ,

(168)� =
�(100�2� + 3�(�2 − 5��))

125�3
, G =

�2(11�3 + 375�2�)

3124�4
,

(169)Ξ(x, t) = {S[1 ± �(nc + sc)(�� , p)]}
1

2 exp[i(Y(�) − Ωt)],
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The chirped PW may be written as:

3.14 � CPW of the ns + cs‑type

Equation (12) admits the ns + cs-form of the PW solution of the form:

where ns + cs(x, p) is JEF of modulus p taking values 0 < p < 1 . By solving periodic solu-
tions in this type, we found certain equations.:

The parameters are D and � in the solutions are shown in this expressions:

the value of � and G are:

the ns + cs-type periodic solutions for the Eq. (2) is given below:

where � = x − �t − �o . By equating Eqs. (14) and (180), integration constant N and R can 
be obtained as:

(170)N2 =
�2�(� + c)(11�3 + 375�2�)

12500�4
,

(171)R =
�2(100�2� + 3�(�2 − 5��))

1000�3
,

(172)�Ξ(x, t) = −
N

�S[1 ± �(nc + sc)(�� , p)]
−

�

2�
,

(173)Υ(�) = D{1 ± �(ns + cs)[�(� − �o), p]},

(174)G + D5� + D2� + D3� + D� + D4� = 0,

(175)5D5�� + 2D2�� + 3D3�� + D�� + 4D4�� = 0,

(176)10D5�2� + D2�2� + 3D3�2� + 6D4�2� = 0,

(177)10D5�3� + D3�3� + 4D4�3� = 0,

(178)5D5�4� + D4�4� = 0,

(179)� =
4p�

√

�

�
, D = −

�

5�
, ,

(180)� =
�(100�2� + 3�(�2 − 5��))

125�3
, G =

�2(11�3 + 375�2�)

3124�4
,

(181)Ξ(x, t) = {D[1 ± �(ns + cs)(�� , p)]}
1

2 exp[i(Y(�) − Ωt)],
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The PW’s chirping can be found as:

3.15 � CPW of the ns + ds‑type

Equation (12) provides ns + ds-type of the PW solution:

where ns + ds(x, p) is JEF of modulus p taking values 0 < p < 1 . We obtained some equa-
tions in this type by solving periodic solutions.:

The parameters are Q and � in the solutions are shown in this expressions:

the value of � and G are:

the ns + ds-type periodic solutions for the Eq. (2) is given below:

where � = x − �t − �o . By equating Eqs. (14) and (192), integration constant N and R can 
be obtained as:

(182)N2 =
�2�(� + c)(11�3 + 375�2�)

12500�4
,

(183)R =
�2(100�2� + 3�(�2 − 5��))

1000�3
,

(184)�Ξ(x, t) = −
N

�D[1 ± �(ns + cs)(�� , p)]
−

�

2�
,

(185)Υ(�) = Q{1 ± �(ns + ds)[�(� − �o), p]},

(186)G + Q5� + Q2� + Q3� + Q� + Q4� = 0,

(187)5Q5�� + 2Q2�� + 3Q3�� + Q�� + 4D4�� = 0,

(188)10Q5�2� + Q2�2� + 3Q3�2� + 6Q4�2� = 0,

(189)10Q5�3� + Q3�3� + 4Q4�3� = 0,

(190)5Q5�4� + Q4�4� = 0,

(191)� =
4p�

√

�

�
, Q = −

�

5�
, ,

(192)� =
�(100�2� + 3�(�2 − 5��))

125�3
, G =

�2(11�3 + 375�2�)

3124�4
,

(193)Ξ(x, t) = {Q[1 ± �(ns + ds)(�� , p)]}
1

2 exp[i(Y(�) − Ωt)],
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The chirping associated with this PW is as shown below:

3.16 � CPW of the sn + icn‑type

Equation (12) has the following constrained periodic solutions:

where sn + icn(x, p) is JEF of modulus p taking values 0 < p < 1 . By the solution of peri-
odic solutions in this type we fond some equations:

The parameters H and � are:

the value of � and G are:

The periodic solutions for Eq. (2) in sn + icn-type are shown below:

where � = x − �t − �o . By equating Eqs. (14) and (204), integration constant N and R can 
be obtained as:

(194)N2 =
�2�(� + c)(11�3 + 375�2�)

12500�4
,

(195)R =
�2(100�2� + 3�(�2 − 5��))

1000�3
,

(196)�Ξ(x, t) = −
N

�Q[1 ± �(ns + ds)(�� , p)]
−

�

2�
,

(197)Υ(�) = H{1 ± �(sn + icn)[�(� − �o), p]},

(198)G + H5� + H2� + H3� + H� + H4� = 0,

(199)5H5�� + 2H2�� + 3H3�� + H�� + 4H4�� = 0,

(200)10H5�2� + H2�2� + 3H3�2� + 6H4�2� = 0,

(201)10H5�3� + H3�3� + 4H4�3� = 0,

(202)5H5�4� + H4�4� = 0,

(203)� =
4p�

√

�

�
, H = −

�

5�
, ,

(204)� =
�(100�2� + 3�(�2 − 5��))

125�3
, G =

�2(11�3 + 375�2�)

3124�4
,

(205)Ξ(x, t) = {H[1 ± �(sn + icn)(�� , p)]}
1

2 exp[i(Y(�) − Ωt)],
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The nonlinearity chirped PW’s chirping has the following form:

3.17 � CPW of the 
√

1 −m2sd + cd‑type

Equation (12) may be get for 
√

1 − m2sd + cd-type of the PW solution:

where 
√

1 − m2sd + cd(x, p) is JEF of modulus p taking values 0 < p < 1 . we get some 
equation by the solution of periodic solutions in this type:

The parameters are � and Δ in the solutions are given as:

the value of � and G are:

the 
√

1 − m2sd + cd-type periodic solutions for the Eq. (2) is given below:

where � = x − �t − �o . By equating Eqs. (14) and (216), integration constant N and R can 
be obtained as:

(206)N2 =
�2�(� + c)(11�3 + 375�2�)

12500�4
,

(207)R =
�2(100�2� + 3�(�2 − 5��))

1000�3
,

(208)�Ξ(x, t) = −
N

�H[1 ± �(sn + icn)(�� , p)]
−

�

2�
,

(209)Υ(�) = �{1 ± Δ(
√

1 − m2sd + cd)[�(� − �o), p]},

(210)G + �5� + �2� + �3� + �� + �4� = 0,

(211)5�5Δ� + 2�2Δ� + 3�3Δ� + �Δ� + 4�4Δ� = 0,

(212)10�5Δ2� + �2Δ2� + 3�3Δ2� + 6�4Δ2� = 0,

(213)10�5Δ3� + �3Δ3� + 4�4Δ3� = 0,

(214)5�5Δ4� + �4Δ4� = 0,

(215)Δ =
4p�

√

�

�
, � = −

�

5�
, ,

(216)� =
�(100�2� + 3�(�2 − 5��))

125�3
, G =

�2(11�3 + 375�2�)

3124�4
,

(217)Ξ(x, t) = {�[1 ± Δ(
√

1 − m2sd + cd)(�� , p)]}
1

2 exp[i(Y(�) − Ωt)],
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As a result, Eq. (2)’s CP solution is given as:

3.18 � CPW of the mcd + i

√

1 −m2nd‑type

Equation (12) admits the mcd + i
√

1 − m2nd-type of the PW solution of the form:

where mcd + i
√

1 − m2nd(x, p) is JEF of modulus p taking values 0 < p < 1 . we found 
some equation by the solution of periodic solutions in this type:

The parameters are Σ and � in the solutions are shown in this expressions:

the value of � and G are:

the 
√

1 − m2sd + cd-type periodic solution for the Eq. (2) is:

where � = x − �t − �o.By equating Eqs. (14) and (228), integration constant N and R can be 
get as:

(218)N2 =
�2�(� + c)(11�3 + 375�2�)

12500�4
,

(219)R =
�2(100�2� + 3�(�2 − 5��))

1000�3
,

(220)�Ξ(x, t) = −
N

��[1 ± Δ(
√

1 − m2sd + cd)(�� , p)]
−

�

2�
,

(221)Υ(�) = �{1 ± Σ(mcd + i
√

1 − m2nd)[�(� − �o), p]},

(222)G + �5� + �2� + �3� + �� + �4� = 0,

(223)5�5Σ� + 2�2Σ� + 3�3Σ� + �Σ� + 4�4Σ� = 0,

(224)10�5Σ2� + �2Σ2� + 3�3Σ2� + 6�4Σ2� = 0,

(225)10�5Σ3� + �3Σ3� + 4�4Σ3� = 0,

(226)5�5Σ4� + �4Σ4� = 0,

(227)Σ =
4p�

√

�

�
, � = −

�

5�
, ,

(228)� =
�(100�2� + 3�(�2 − 5��))

125�3
, G =

�2(11�3 + 375�2�)

3124�4
,

(229)Ξ(x, t) = {�[1 ± Σ(mcd + i
√

1 − m2nd)(�� , p)]}
1

2 exp[i(Y(�) − Ωt)],
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The resultant chirping can be given as:

4 � The SW limit

It’s quite interesting to look for alternative explicit and exact local pulse solutions that 
propagate in a fiber optic system. We can appreciate the physical phenomena and dynamic 
process described by the NLS model very well with the assistance of these closed form 
solutions on their existence. We can find the precise chirped SW solutions of Eq. (2). In the 
long-wave limit, the JEF degenerate into hyperbolic functions, which correspond to prigh-
tarrow0 and prightarrow1 respectively. Each of these optical pulses has a nonlinear chirp, 
which is calculated as well.

4.1 � Chirped bright SW

In the limiting case p → 1 , the function cn(� , p) → sech (� ) and Eq. (25) yields the follow-
ing SW solution of Eq. (2):

The values of A and W in the solution are expressed as:

The chirping that relates to the nonlinearly chirped SW can be easily achieved as:

4.2 � Chirped periodic‑I SW

In the limiting case p → 0 , the function cn(� , p) → cos(� ) and Eq. (25) yields the following 
SW solution of Eq. (2):

The values of A and W in the solution are expressed as:

(230)N2 =
�2�(� + c)(11�3 + 375�2�)

12500�4
,

(231)R =
�2(100�2� + 3�(�2 − 5��))

1000�3
,

(232)�Ξ(x, t) = −
N

��[1 ± Σ(mcd + i
√

1 − m2nd)(�� , p)]
−

�

2�
,

(233)Ξ(x, t) = {A[1 ±W sech [�o(x − �t − �o)]]}
1

2 exp[i(Y(�) − Ωt)],

(234)W =
4p�

√

�

�
, A = −

�

5�
,

(235)�Ξ(x, t) = −
N

�A[1 ±W sech [�o(x − �t − �o)]]
−

�

2�
,

(236)Ξ(x, t) = {A[1 ±W cos[�o(x − �t − �o)]]}
1

2 exp[i(Y(�) − Ωt)],
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The chirping that relates to the nonlinearly chirped SW can be obtained as:

4.3 � Chirped periodic‑II SW

In the limiting case p → 0 , the function cs(� , p) → cot(� ) and Eq. (49) yields the following 
SW solution of Eq. (2):

where the parameters are given:

The chirping that corresponds to the nonlinearly chirped SW may be obtained as:

4.4 � Chirped periodic‑III SW

In the limiting case p → 0 , the function sn(� , p) → sin(� ) and Eq. (97) gives the SW solu-
tion of Eq. (2) as follows:

where the variables are expressed as:

The nonlinear chirped SW’s chirping may be represented as:

4.5 � Chirped periodic‑IV SW

In the limiting case p → 0 , the function ns(� , p) → csc(� ) and Eq. (145) shows the SW 
solution of Eq. (2) as follows:

(237)W =
4p�

√

�

�
, A = −

�

5�
,

(238)�Ξ(x, t) = −
N

�A[1 ±W cos[�o(x − �t − �o)]]
−

�

2�
,

(239)Ξ(x, t) = {Θ[1 ± Γ cot[�o(x − �t − �o)]]}
1

2 exp[i(Y(�) − Ωt)],

(240)Γ =
4p�

√

�

�
, Θ = −

�

5�
,

(241)�Ξ(x, t) = −
N

�Θ[1 ± Γ cot[�o(x − �t − �o)]]
−

�

2�
,

(242)Ξ(x, t) = {B[1 ± X sin[�o(x − �t − �o)]]}
1

2 exp[i(Y(�) − Ωt)],

(243)X =
4p�

√

�

�
, B = −

�

5�
,

(244)�Ξ(x, t) = −
N

�B[1 ± X sin[�o(x − �t − �o)]]
−

�

2�
,
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where the variables are expressed as:

The chirping of a nonlinear chirped SW can be expressed in the form::

4.6 � Chirped dark SW

In the limiting case p → 1 , the function sn(� , p) → tanh(� ) and Eq. (97) expressed the SW 
solution of Eq. (2) as follows:

where the variables are given as:

The nonlinearly chirped SW’s chirping may be written as

4.7 � Chirped singular‑I SW

In the limiting case p → 1 , the function ns(� , p) → coth(� ) and Eq. (145) represents the SW 
solution of Eq. (2) as follows:

where the variables are shown as:

The chirping that belongs to the nonlinearly chirped SW may be shown as:

(245)Ξ(x, t) = {k[1 ± T csc[�o(x − �t − �o)]]}
1

2 exp[i(Y(�) − Ωt)],

(246)T =
4p�

√

�

�
, k = −

�

5�
,

(247)�Ξ(x, t) = −
N

�k[1 ± T csc[�o(x − �t − �o)]]
−

�

2�
,

(248)Ξ(x, t) = {B[1 ± X tanh[�o(x − �t − �o)]]}
1

2 exp[i(Y(�) − Ωt)],

(249)X =
4p�

√

�

�
, B = −

�

5�
,

(250)�Ξ(x, t) = −
N

�B[1 ± X tanh[�o(x − �t − �o)]]
−

�

2�
,

(251)Ξ(x, t) = {k[1 ± T coth[�o(x − �t − �o)]]}
1

2 exp[i(Y(�) − Ωt)],

(252)T =
4p�

√

�

�
, k = −

�

5�
,

(253)�Ξ(x, t) = −
N

�k[1 ± T coth[�o(x − �t − �o)]]
−

�

2�
,
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4.8 � Chirped singular‑II SW

In the limiting case p → 1 , the function cs(� , p) → csch (� ) and Eq. (49) yields the follow-
ing SW solution of Eq. (2):

where the parameters are given:

obtain the chirping that corresponds to the nonlinearly chirped SW as:

4.9 � Chirped hyperbolic‑I SW

In the limiting case p → 1 , the function sc(� , p) → sinh(� ) and Eq. (109) shows the SW 
solution of Eq. (2) as follows:

where the variables are expressed as:

The chirping that belongs to the nonlinearly chirped SW may be expressed as:

4.10 � Chirped hyperbolic‑II SW

In the limiting case p → 1 , the function nc(� , p) → cosh(� ) and Eq. (133) gives the SW 
solution of Eq. (2) as follows:

where the variables are given as:

The chirping that belongs to the nonlinearly chirped SW may be expressed as:

(254)Ξ(x, t) = {Θ[1 ± Γ csch [�o(x − �t − �o)]]}
1

2 exp[i(Y(�) − Ωt)],

(255)Γ =
4p�

√

�

�
, Θ = −

�

5�
,

(256)�Ξ(x, t) = −
N

�Θ[1 ± Γ csch [�o(x − �t − �o)]]
−

�

2�
,

(257)Ξ(x, t) = {Λ[1 ± d sinh[�o(x − �t − �o)]]}
1

2 exp[i(Y(�) − Ωt)],

(258)d =
4p�

√

�

�
, Λ = −

�

5�
,

(259)�Ξ(x, t) = −
N

�Λ[1 ± d sinh[�o(x − �t − �o)]]
−

�

2�
,

(260)Ξ(x, t) = {M[1 ± O cosh[�o(x − �t − �o)]]}
1

2 exp[i(Y(�) − Ωt)],

(261)O =
4p�

√

�

�
, M = −

�

5�
,
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4.11 � Chirped bell SW

In the limiting case p → 0 , the function nc(� , p) → sec(� ) and Eq. (133) gives the SW solu-
tion of Eq. (2) as follows:

where the variables are expressed as:

The chirping that belongs to the nonlinearly chirped SW may be represent as:

4.12 � Chirped kink SW

In the limiting case p → 0 , the function sc(� , p) → tan(� ) and Eq. (109) gives the SW solu-
tion of Eq. (1) as follows:

where the variables are expressed as:

The chirping that belongs to the nonlinearly chirped SW may be expressed as:

5 � Results and discussion

In this section, we will discuss our results. El-Dessoky and Islam (2019) studied the 
chirped solitons of the GRD-NLSE equation. Ekiki et  al. studied the extended JEF 
expansion technique to obtain traveling wave solutions of RNLSE. Akram et al. (2021) 
discussed the soliton solutions of the RNLSE in fibre optics with time dependent 
co-coefficients obtained by using G�∕G-expansion approach. over and above, many 
researchers studied the RNLSE model to obtain different types of solutions solutions 
like bright soliton, singular soliton, peaked soliton, compacton solutions, solitary pat-
tern solutions, rational solution, Weierstrass elliptic doubly periodic type solution, 

(262)�Ξ(x, t) = −
N

�M[1 ± O cosh[�o(x − �t − �o)]]
−

�

2�
,

(263)Ξ(x, t) = {M[1 ± O sec[�o(x − �t − �o)]]}
1

2 exp[i(Y(�) − Ωt)],

(264)O =
4p�

√

�

�
, M = −

�

5�
,

(265)�Ξ(x, t) = −
N

�M[1 ± O sec[�o(x − �t − �o)]]
−

�

2�
,

(266)Ξ(x, t) = {Λ[1 ± d tan[�o(x − �t − �o)]]}
1

2 exp[i(Y(�) − Ωt)],

(267)d =
4p�

√

�

�
, Λ = −

�

5�
,

(268)�Ξ(x, t) = −
N

�Λ[1 ± d tan[�o(x − �t − �o)]]
−

�

2�
,
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explicit bright solitons, singular periodic solutions, rogue wave solutions and many 
other solitons solutions (Ilie et  al. 2018; Raza Rizvi et  al. 2020; Aly and Cheemaa 
2019a, b; Ali et  al. 2020; Rizvi et  al. 2020a; Younas et  al. 2020a; El-Dessoky and 
Islam 2019).

In this manuscript, we obtained the several forms of CP and optical solitons. Equa-
tion (25) illustrating a cn-type periodic solution that degenerates into a bright soliton 
when p → 1 and periodic-I solitons when p → 0 . Equation (49) depicts a periodic 
cs-type solution that degenerates into solitary-II solitons when p → 1 and periodic-II 
solitons when p → 0 . Equation (97) displays the sn-type PW solution, which degener-
ates to dark solitons when p → 1 and to periodic-III solitons when p → 0 . Equation 
(109) displays the sc-type PW solution, which degenerates to hyperbolic-I solitons 
when p → 1 and to kink solitons when p → 0 . Equation (133) shows a periodic nc-type 
solution that degenerates into hyperbolic-II solitons when p → 1 and Bell type solitons 
when p → 0 . Equation (145) shows a periodic ns-type solution that degenerates into 
solitary-I solitons when p → 1 and periodic-IV solitons when p → 0 (Figs. 1, 2, 3, 4, 5, 
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 and 24).                        

Fig. 1   The dynamical behaviour of the Ξ(x, t) in Eq. (25) at � = 0.6 , b = 0.15, c = 0.7 , � = 1.02 , � = 0.5 , 
p = 0.5 , � = 1

Fig. 2   The graphical representation of the Ξ(x, t) in Eq. (37) at � = 0.98 , b = 0.56, c = 0.78 , � = 1.25 , 
� = 0.82 , p = 0.57 , � = 1
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6 � Conclusion

In this paper, we have studied RNLSE for chirped waves with JEF functions. As a 

Fig. 3   The graphical representation of the Ξ(x, t) in Eq. (49) at � = 0.88 , b = 0.6, c = 0.66 , � = 1.05 , 
� = 0.6 , p = 0.5 , � = 1

Fig. 4   The graphical description of Ξ(x, t) in Eq. (61) at � = 0.5 , b = 0.7, c = 1.2, p = 1.09 , � = 1.04 , 
� = 0.9 , � = 1

Fig. 5   The graphical description of Ξ(x, t) in Eq. (73) at � = 0.7 , b = 0.75, c = 1.02, p = 1.09 , � = 1 , 
� = 1.32 , � = 0.85
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consequence, several chirped soliton solutions such as bright, dark, singular, periodic, 
hyperbolic, and other solitons have been studied. For each of these optical solitons, the 
corresponding chirp is also produced. By selecting appropriate parameter values, graph-
ical representations for certain obtained chirped solitons are also displayed.

Fig. 6   The graph of Ξ(x, t) in Eq. (85) at � = 0.78 , b = 0.75, c = 1.05, p = 1.09 , � = 1 , � = 1.35 , � = 0.95

Fig. 7   The dynamical behaviour of Ξ(x, t) in Eq. (97) at � = 0.9 , b = 1, c = 1.5, p = 1.5 , � = 1.5 , � = 1.06 , 
� = 0.7

Fig. 8   The dynamical behaviour of Ξ(x, t) in Eq. (109) at � = 0.86 , b = 0.73, c = 1.4, p = 1.35 , � = 1 , 
� = 1.43 , � = 0.35
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Fig. 9   The graphical description of Ξ(x, t) in Eq. (133) at � = 0.956 , b = 0.725, c = 1.53, p = 0.98 , � = 1 , 
� = 1.523 , � = 0.525

Fig. 10   The graphical description of Ξ(x, t) in Eq. (145) at � = 0.956 , b = 0.515, c = 1.753, p = 0.28 , � = 1 , 
� = 1.523 , � = 0.525

Fig. 11   The graphical description of Ξ(x, t) in Eq. (157) at � = 0.856 , b = 0.815, c = 1.653, p = 0.88 , � = 1 , 
� = 1.653 , � = 0.725



Applications of the Resonanat nonlinear Schrödinger equation…

1 3

Page 31 of 36  256

Fig. 12   The shape profile of Ξ(x, t) in Eq. (169) at � = 0.96 , b = 0.72, c = 1.43, p = 1.6 , � = 1.25 , 
� = 1.423 , � = 0.55 , Ω = 1.5

Fig. 13   The shape profile of Ξ(x, t) in Eq. (181) at � = 1.2 , b = 0.92, c = 1.3, p = 1.1 , � = 1.25 , � = 1.623 , 
� = 0.75 , Ω = 1.5

Fig. 14   The shape profile of Ξ(x, t) in Eq. (205) at � = 0.87 , b = 1.02, c = 1.3 , p=1.65, � = 1.25 , � = 1.8 , 
� = 0.57 , Ω = 1.5 , i =

√

−1
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Fig. 15   The graphical representation of Ξ(x, t) in Eq. (229) at � = 0.87 , b = 1.02, c = 1.3 , p=1.2, � = 1.25 , 
� = 1.8 , � = 0.7 , Ω = 1.5 , m=0.5, i =

√

−1

Fig. 16   The graphical description of Ξ(x, t) in Eq. (233) at � = 0.6 , b = 0.15, c = 0.7 , � = 1 , � = 1 , Ω = 1 , 
� = 1

Fig. 17   The graph of Ξ(x, t) in Eq. (236) at � = 0.6 , b = 0.15, c = 0.7 , � = 1 , � = 1 , Ω = 1 , � = 1
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Fig. 18   The graphical description of Ξ(x, t) in Eq. (239) at � = 0.9 , b = 1, c = 1.5 , Ω = 1.5 , � = 1.5 , � = 1 , 
� = 0.8

Fig. 19   Graph of Ξ(x, t) in Eq. (242) at � = 0.88 , b = 0.6, c = 0.66 , � = 1 , � = 0.6 , Ω = 1.5 , � = 1

Fig. 20   The graphical description of Ξ(x, t) in Eq. (245) at � = 0.956 , b = 0.515, c = 1.753 , Ω = 1.28 , 
� = 1 , � = 1.2 , � = 0.525
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Fig. 21   The graphical description of Ξ(x, t) in Eq. (248) at � = 0.9 , b = 1, c = 1.5 , Ω = 1.5 , � = 1.5 , � = 1 , 
� = 0.8

Fig. 22   Graph of Ξ(x, t) in Eq. (251) at � = 0.956 , b = 0.515 , c=1.753, Ω = 1.28 , � = 1 , � = 1.2 , � = 0.525

Fig. 23   The figure of Ξ(x, t) in Eq. (263) at � = 0.956 , b = 0.515, c = 1.753 , Ω = 1.9 , � = 1.25 , � = 1.5 , 
� = 0.7
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