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Abstract
We investigate the influence of intrinsic decoherence on the quantum correlations in a two-
qubit Heisenberg XYZ spin chain in the presence of the z-component of Dzyaloshinskii–
Moriya interaction by employing logarithmic negativity and trace distance discord as reli-
able quantum correlation quantifiers. We highlight the dynamics behaviours of suggested 
quantifiers for a system initially prepared in the extended Werner-like state. For an initial 
separable state, it is found that the robustness and the generation of the quantum correla-
tions depend on the physical parameters. While considering the entangled state as an ini-
tial state, the results show that despite the phase decoherence, all the correlations reach 
their steady state values after exhibiting some oscillations. We reveal that TDD is relatively 
more robust against the intrinsic decoherence compared to the logarithmic negativity and 
increasing the intrinsic decoherence rate leads to a drastic decrease of the quantum correla-
tions between the two qubits.
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1  Introduction

Quantum entanglement (Schrödinger 1935; Einstein et al. 1935; Nielsen and Chuang 2000; 
Vedral 2002; Horodecki et al. 2009; Gühne and Tóth 2009) is regarded as one of the most 
striking features of quantum mechanics which contributes in developing of many quantum 
information processing tasks, namely, quantum computing (Nielsen and Chuang 2000), 
quantum teleportation (Braunstein and Kimble 1998; Bouwmeester et  al. 1997; Bennett 
et al. 1993; Ekert 1991), quantum key distribution (Ekert 1991) and many others (Nielsen 
and Chuang 2000). Nonetheless, several recent works showed that the quantumness of cor-
relations that exist between a quantum systems parts is not necessarily always the entangle-
ment type (Datta et al. 2008; Lanyon et al. 2008; Datta and Vidal 2007; Ollivier and Zurek 
2001). In this respect, it has been shown that certain quantum mixed states exhibits quan-
tum correlations despite they are separable (Lanyon et  al. 2008; Datta and Vidal 2007). 
This type of correlation can only be captured by the so-called quantum discord that mainly 
aims to identify the correlations that go beyond entanglement (Henderson and Vedral 2001; 
Ollivier and Zurek 2001). But computing quantum discord under its entropic version is not 
a simple task in general. To avoid this calculation hindrance, Dakić et al. have developed a 
geometric variant of quantum discord by exploiting the metric in state space (Dakić et al. 
2010; Paula et al. 2013). This concept serves to characterize the quantum correlations by 
quantifying the minimum distance between an involved quantum state and its closest clas-
sical one (Dakić et al. 2010). In this context, the trace distance discord (TDD) was recently 
introduced as promising geometrical approach to describe quantum correlation in terms of 
the Schatten 1-norm (trace norm) (Debarba et al. 2012; Montealegre et al. 2013). Owing 
to its easiest computability, TDD has attracted a lot of attention and proved to be a reliable 
measure of nonclassical correlations (Khedif and Daoud 2018, 2019; Khedif et al. 2019; 
Khedif and Daoud 2021). But the major challenge lies mainly in how to protect and main-
tain the quantified quantum correlations between the parts of open and interacted quantum 
systems?

In recent years, a particular interests have been devoted to the investigation of the quan-
tum decoherence effects on the dynamics of quantum correlations (Khedif and Daoud 
2018; Dehghani et al. 2020). Such unavoidable process lose the significant properties of 
the quantum systems due to their unwanted interaction with surrounding environments. 
Generally, the decoherence degrades the quantum correlations and also prevents a proper 
implementation of quantum information protocols based on them. Most considered envi-
ronment in the literature are modeled by a thermal reservoir and the responsible on the 
quantum correlations degradation is the temperature (Khedif et  al. 2019; Mojaveri et  al. 
2018, 2019; Khedif and Daoud 2021; Khedif et al. 2021). As we already mentioned, the 
process of decoherence hampers and delimits the optimal employ of quantum correlations. 
Among the decoherence phenomena, we distinguish intrinsic decoherence introduced by 
Milburn (Caves and Milburn 1987; Milburn 1991). This quantum mechanics concept was 
intensively studied by several authors (Caves and Milburn 1987; Ghirardi et al. 1986; Diosi 
1989; Ghirardi et  al. 1990; Ellis et  al. 1989; Milburn 1991). It consists in modifying of 
the Schrödinger equation, characterizing the time evolution of the system, to destroy the 
coherence of the quantum system. The Milburn proposed model of intrinsic decoherence 
built on a specific modification of quantum mechanics by assuming that for a sufficiently 
short time steps, the system under consideration evolves continuously according to a sto-
chastic sequence of identical unitary phase transformations rather than under to the effect 
of an unitary evolution. It is worth of mentioning that the effect of intrinsic decoherence in 
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quantum systems is intensively studied in many works (He et al. 2006; Abdel-Aty 2008; 
Liang et al. 2008; Plenio and Knight 1997; Kuang et al. 1995; Buz̆ek and Konôpka 1998).

In the current work, we shall explore the dynamics of pairwise quantum correlations 
in XYZ spin—1/2 chain system with a z-component of Dzyaloshinskii–Moriya (z–DM) 
interaction, under the influence of the intrinsic decoherence. The Heisenberg spin sys-
tems are regarded as a potential candidate for implementing quantum communication and 
many other quantum information tasks. The thermal entanglement and quantum correla-
tions which goes beyond entanglement in such systems are mainly investigated in the lit-
erature [see for instance (Rigolin 2004; Asoudeh and Karimipour 2005; Khedif et al. 2019; 
Habiballah et al. 2018; Mojaveri et al. 2018; Khedif et al. 2021; Khedif and Daoud 2021; 
Mansour and Daoud 2019; Mansour and Haddadi 2021; Sbiri et  al. 2021; Khedif et  al. 
2021; Sbiri et al. 2022)]. In particular, we will employ the logarithmic negativity to detect 
thermal entanglement and TDD for describing the thermal nonclassical correlations in two-
qubit Heisenberg XYZ chain that will evolve under the influence of intrinsic decoherence. 
In this study, we particularly calculate and compare the evolution of quantum entanglement 
and quantum correlation measures for a two-qubit system initially prepared in extended 
Werner-like (EWL) states under the interplay of z–DM interaction and the effect of the 
intrinsic decoherence.

We organized this paper in the following way. In Sect. 2, we review certain preliminar-
ies about the logarithmic negativity and trace distance discord for quantifying correlations 
contained in a two-qubit X state. In Sect. 3, we consider an exactly solvable Hamiltonian 
of a two-qubit Heisenberg XYZ model with z-DM interaction, and we derive the amounts 
of the pairwise quantum correlations contained in the system subjected to the influence 
of the intrinsic decoherence. The behaviors of quantum correlations for a physical system 
assumed initially prepared in EWL states under the intrinsic decoherence are illustrated 
and discussed in Sect. 4. Finally, concluding remarks are given in the Sect. 5 to summarise 
our main results.

2 � Quantum correlations measures

2.1 � Logarithmic negativity

The logarithmic negativity (log-negativity) is regarded as an appropriate quantifier of 
quantum entanglement in bipartite quantum system (Vedral 2002; Plenio 2005). For an 
arbitrary bipartite system AB described by a density matrix � acting on a Hilbert space 
HAB = HA ⊗HB , the log-negativity is given by

where �TB denotes the partial transposition of the composite density matrix � , with respect 
to subsystem B (Peres 1996; Horodecki et al. 1996). The notation ‖.‖1 in Eq. (1) stands for 
the Schatten–1 norm (trace norm) which can be defined for a generic operator � as

By construction, the log-negativity is additive and an entanglement monotone under 
deterministic local operations and classical communication. From (1), it follows that the 

(1)LN(�) = log2 ‖�TB‖1,

(2)‖�‖1 = Tr
�√

�†�
�
.
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log-negativity can be easily computed in terms of the absolute value of eigenvalues {�i} of 
the partially transposed density matrix (�)TB . Indeed, it is given by

It is worthwhile to notice that �N(�) ranging between 0 for product states and 1 for the 
maximally entangled ones.

2.2 � Trace norm measure

To quantify the discord-like quantum correlations, we employ here the TDD. It quanti-
fies nonclassical correlations via the trace norm distance between a given state and its 
closest zero quantum discord one. In our study, we mainly focus on the case where the 
quantum system under consideration is described in the two-qubit standard computa-
tional basis B = {�00⟩, �01⟩, �10⟩, �11⟩} of HAB by a X-shape density matrix given as

And let � ∈ HAB denotes the closest state of � that possesses only classical correlations 
between A and B (called also classical-quantum state). Phrased mathematically, the TDD 
between density operators � and � is defined in terms of trace norm (2) as Paula et  al. 
(2013)

where the optimization is performed over the set Ω0 of states with zero quantum discord. 
We notice that, the set of classical-quantum states � with respect to local measurements on 
subsystem A can be expressed as Luo (2008)

where {�k⟩A} is an orthonormal basis of A subsystem’s Hilbert space HA , �Bk  a general 
reduced density operator of the subsystem B on its Hilbert space HB and {pk} is a set of 
statistical probability distribution with a convex combination ( pk ≥ 0 and 

∑
k=1

pk = 1 ). It 
is worth noting that DT is invariant under any local unitary transformation (Ciccarello et al. 
2014). Accordingly, the density matrix � (4) can be rewritten as

and then the Eq. (5) becomes

(3)�N(�) = log2

(∑
i

|�i|
)
.

(4)� =

⎛⎜⎜⎜⎝

a 0 0 w

0 b z 0

0 z∗ c 0

w∗ 0 0 d

⎞⎟⎟⎟⎠
.

(5)DT(�) = min
�∈Ω0

‖� − �‖1,

(6)𝜁 =

2�
k=1

pk�k⟩⟨k�A ⊗ 𝜚B
k
,

(7)𝜚 ⟹ 𝜚 =

⎛⎜⎜⎜⎝

a 0 0 �w�
0 b �z� 0

0 �z� c 0

�w� 0 0 d

⎞⎟⎟⎟⎠
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In order to evaluate TDD (8) explicitly, the state (7) should be expanded by means of the 
Fano–Bloch decomposition as (Bloch 1946; Fano 1983)

wherein the correlation matrix elements R�� are expressed in terms of 2D-Pauli matrices �A
�
 

and �B
�
 , corresponding respectively to subsystems A and B, as R𝛼𝛽 =< 𝜎A

𝛼
⊗ 𝜎B

𝛽
> . By mak-

ing use of Eqs. (7) and (9), it follows that the non zero R�� are such that

An elegant formula of the trace distance quantum discord of the state � (4) takes the form 
(Ciccarello et al. 2014)

where R2
min

= min{R2
11
,R2

33
} and R2

max
= max(R2

33
,R2

22
+ R2

30
).

3 � The model and the initial state dynamics

3.1 � Model and quantum correlations dynamics

In order to understand the behaviour of quantum correlations and then its evolution in a 
physical system under the intrinsic decoherence influences, we consider an interacting pair 
of quantum spin-1/2 particles on a one-dimensional (1D) lattice with nearest-neighbour 
anisotropic XYZ interaction in the presence of DM interactions. The suggested model is 
described by the Hamiltonian

where Ji ’s are the strength of nearest-neighbor anisotropic spin–spin exchange interaction 
constant in the respective directions and ��⃗D is the DM vector which we choose to be along 
the z-axis. In the two-qubit standard basis B , the Hamiltonian (11) has the matrix form

with Δ = Jx − Jy can be considered as an anisotropy measures of spin interaction couplings 
and Σ = Jx + Jy . The eigenvalues and their corresponding eigenvectors of the given Ham-
iltonian can be easily computed by using a simplified block Hamiltonian eigenvalue equa-
tion procedure H��⟩ = E��⟩ . It follows that

(8)DT(𝜚) = min
𝜁∈Ω0

‖𝜚 − 𝜁‖1.

(9)𝜚 =
1

4

3∑
𝛼,𝛽=0

R𝛼𝛽𝜎
A
𝛼
⊗ 𝜎B

𝛽

R00 = 1, R11(22) = 2(|z| ± |w|), R33 = 1 − 2(b + c), R03 = 2(a + c) − 1, R30 = 2(a + b) − 1.

(10)DT(𝜚) = DT (𝜚) =

√√√√ R2
11
R2
max

− R2
22
R2
min

R2
max

− R2
min

+ R2
11
− R2

22

(11)H =
∑
i=x,y,z

Ji
(
𝜎A
i
⊗ 𝜎B

i

)
+ ��⃗D ⋅

(
�⃗𝜎A × �⃗𝜎B

)

(12)H =

⎛⎜⎜⎜⎝

Jz 0 0 Δ

0 − Jz Σ + 2iD 0

0 Σ − 2iD − Jz 0

Δ 0 0 Jz

⎞⎟⎟⎟⎠
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with � = Σ − 2iD and the kets �0⟩ and �1⟩ denote spin-up and spin-down states, respectively. 
In the following, we review some basics about the Milburn model of decoherence (Milburn 
1991). Based on the assumption that on sufficiently short time steps, the system does not 
evolve continuously under unitary evolution but rather in a stochastic sequence of identical 
unitary transformations. In this context, Milburn has derived the master equation describ-
ing the time evolution of the quantum system as Milburn (1991)

where H is the Hamiltonian of the considered system (11), �(t) denotes the evolved state 
of the system and � refers to the intrinsic decoherence parameter. It is interesting to notice 
that there is no intrinsic decoherence when �−1 → ∞ . According to this last condition, the 
Eq. (14) reduces to the standard von Neumann equation for the density matrix of closed 
quantum systems. The Milburn model of decoherence, called intrinsic decoherence, serves 
to modify the Schrödinger equation in such a way that the quantum coherence is automati-
cally destroyed as the quantum system evolves. Expanding Eq. (14) to first order in � , we 
obtain, after neglecting the higher order terms, the following dynamical equation

It is worth mentioning that the system’s non unitary evolution, under intrinsic decoherence 
effect, is guaranteed by the second term on the right hand side of Eq. (15). The formal 
solution of the above equation can be written in operator-sum representation using Kraus 
operators Ml as Milburn (1991); Massashi et al. (2007); Bose (2003); Guo and Song (2008)

where �(0) is the initial density operator describing the considered quantum system and the 
operators Mk(t) are defined as

such that

In Milburn’s model of intrinsic decoherence, the entries of the evolved state �(t) of the two-
qubit anisotropic Heisenberg XYZ system described by the Hamiltonian (11) are expressed 
in the energy eigenbasis as

(13)

E1,2 = Jz ± Δ, ��1,2⟩ = 1√
2

(�00⟩ ± �11⟩),

E3,4 = −Jz ± ���, ��3,4⟩ = 1√
2

�
�01⟩ ± �

��� �10⟩
�

(14)
d�(t)

dt
=

1

�

[
exp(−i�H)�(t) exp(i�H) − �(t)

]
,

(15)
d�(t)

dt
= −i[H, �(t)] −

�

2
[H, [H, �(t)]].

(16)�(t) =

∞∑
k=0

Mk(t)�(0)Mk
†(t)

Mk(t) =

√
(�t)k

k!
H

k exp (−iHt) exp
(
−
�t

2
H

2
)
.

(17)
∞∑
k=0

Mk(t)Mk
†(t) = 1.
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where Em,n and ��m,n⟩ are, respectively, the eigenvalues and the corresponding eigenvectors 
of Hamiltonian H of the system. We notice that the dynamical evolution (18) of the state 
�(t) describes an intrinsic decay of quantum coherence in the energy basis.

In what follows, we examine the intrinsic decoherence effects on quantum correlations cap-
tured by entanglement and trace distance discord. Our analysis should be focused on the cor-
relation dynamics of mixed states ( Tr(𝜚2) < 1 ). Specifically, we consider a real X-state of the 
form (4). The evolution of X-state (4) under the Hamiltonian Eq. (12) also retains the form of 
X-state. Substituting the Eqs. (13) and �(0) = � (4) into master equation as given in Eq. (18), 
the exact time evolved density matrix can be straightforwardly expressed in B as

with the diagonal entries are given by

and off-diagonal elements are easily calculated to be

where ℜ(Ω) ( ℑ(Ω) ) denotes the real (imaginary) part of Ω and z∗(�∗) is the conjugate of 
z(�).

The amount of entanglement in the evolved state �(t) (19) is computed by considering the 
logarithmic negativity �N(�t) as

where the possible negative eigenvalues {�i, i = 1, 2} of the transposed density matrix 
(�(t))T2 are given as

(18)�(t) =
�
m,n

exp
�
−
�t

2
(Em − En)

2 − i(Em − En)t
�
⟨�m��(0)��n⟩��m⟩⟨�n�

(19)�(t) =

⎛⎜⎜⎜⎝

�11(t) 0 0 �14(t)

0 �22(t) �23(t) 0

0 �∗
23
(t) �33(t) 0

�∗
14
(t) 0 0 �44(t)

⎞⎟⎟⎟⎠

�11(t) =
a + d

2
+
(
a − d

2
cos (2Δt) −ℑ(w) sin (2Δt)

)
e−2�Δ

2t

�22(t) =
b + c

2
+

(
b − c

2
cos (2|�|t) + 2ℜ(z)D −ℑ(z)Σ

|�| sin (2|�|t)
)
e−2�|�|2t

�33(t) =
b + c

2
−

(
b − c

2
cos (2|�|t) + 2ℜ(z)D −ℑ(z)Σ

|�| sin (2|�|t)
)
e−2�|�|2t

�44(t) =
a + d

2
−
(
a − d

2
cos (2Δt) −ℑ(w) sin (2Δt)

)
e−2�Δ

2t

�14(t) = ℜ(w) + i
(
a − d

2
sin (2Δt) +ℑ(w) cos (2Δt)

)
e−2�Δ

2t

�23(t) =
z

2

(
1 + cos (2|�|t)e−2�|�|2t

)

+
z∗(�∗)2

2|�|2
(
1 − cos (2|�|t)e−2�|�|2t

)
−

−i�∗

2|�| (c − b) sin (2|�|t)e−2�|�|2t

(20)�N(�t) = Log2
(
1 + 2(max{0, �1} +max{0, �2})

)
,
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On the other hand, the TDD dynamics can be guaranteed through Eq. (10) by taking into 
account the Fano-Bloch decomposition of the evolved state �(t) (19) with

3.2 � Dynamics of EWL states with intrinsic decoherence

For the detailed investigations of the dynamics of quantum correlations under the intrinsic 
decoherence effects, we assume that the two-qubit system is initially prepared in the followig 
EWL

In which 0 ≤ p ≤ 1 denoting the pureness degree of the initial two-qubit states, 12 is the 
2 × 2 identity operator and �Φ⟩ is the so-called pure Bell-like state given by

with 0 ≤ 𝜃 < 𝜋 and 0 ≤ 𝜙 < 2𝜋 . We note that when the above Bell-like state reduces to 
Bell state, those of EWL reduces to Werner state (Werner 1989). We shall note that in the 
two-qubit states computational basis B , the EWL state (21) has an X structure

We notice that the X structure of the initial extended Werner-like (EWL) state (23) is pre-
served during its intrinsic dynamics evolution under the Hamiltonian (12). It is worthwhile 
to note that the EWL state �Φ

p
(0) is entangled for p >

1

1 + 2 sin 𝜃
.

�1 =

(
−�11(t) − �44(t) +

√
(�11(t) − �44(t))

2 + 4|�23(t)|2
)
,

�2 =

(
−�22(t) − �33(t) +

√
(�22(t) − �33(t))

2 + 4|�14(t)|2
)
.

R11(t) =2
(|�23(t)| + |�14(t)|

)
,

R22(t) =2
(|�23(t)| − |�14(t)|

)
,

R33 =1 − 2
(
�22(t) + �33(t)

)
,

R03 =2
(
�11(t) + �33(t)

)
− 1,

R30 =2
(
�11(t) + �22(t)

)
− 1.

(21)𝜚Φ
p
(0) = p�Φ⟩⟨Φ� + 1 − p

4
12 ⊗ 12.

(22)�Φ⟩ = cos
�
�

2

�
�01⟩ + sin

�
�

2

�
ei��10⟩

(23)�Φ
p
(0) =

⎛⎜⎜⎜⎜⎝

1−p

4
0 0 0

0
1−p

4
+ p cos2(

�

2
) p cos(

�

2
) sin(

�

2
) 0

0 p cos(
�

2
) sin(

�

2
)

1−p

4
+ p sin2(

�

2
) 0

0 0 0
1−p

4

⎞⎟⎟⎟⎟⎠
.
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4 � Results and discussion

In what follows, our main interest focuses on the study of the intrinsic decoherence rate, 
along with other physical parameters, effects on the dynamical behavior of the pair-
wise quantum correlations captured by log-negativity and TDD. Let us first examine the 
bipartite EWL initial state (21) degree’s of purity p influences on the intrinsic dynamics 
of the quantified nonclassical correlations.

Figure 1 results display the time changes of the geometric discord and entanglement 
by varying the mixing parameter p.

It is clearly seen, that Fig.  1 manifests a typical difference by comparing the TDD 
(Fig. 1a) and entanglement measured by log-negativity (Fig.1b) during their dynamics. 
For initial parameters � =

�

6
 and � =

�

2
 , it is shown that there is non entanglement since 

p ≤ 1∕3 . Nonetheless, a monotonic oscillating form of entanglement can occur when 
p > 1∕3 . In contrast, the TDD is completely vanished only for maximally mixed separa-
ble state, i.e., for p = 0 . This means that discord can reveal certain nonclassicality that 
cannot be captured by entanglement (Khedif and Daoud 2018). That is to say, the non-
classical correlations quantified by TDD is more robust against the decoherence phe-
nomenon than entanglement quantified by log-negativity. It is worth of mentioning that 
for initial entangled pure state (i.e. for p → 1 ), the entanglement and geometric discord 
display an almost similar behaviours against to the intrinsic decoherence (see Fig. 1c).

Next, the effect of the parameter � for the initial EWL state on the nonclassical cor-
relations, including entanglement, is also demonstrated in Fig. 2.

As displayed in this figure, the decay of coherence can emerge also by adjusting � . 
We can also see that the collapse-revival of entanglement occurs only for small value of 
� . Near � = �∕2 , both log-negativity and TDD exhibit oscillating decays (see Fig.  2). 
By contrast, in the region far away from � = �∕2 where there is little amount of initial 
nonclassical correlations, both log-negativity and TDD increase to their maximums at 
first and then decay with revivals. The difference between log-negativity and TDD is 
clearly visualized in Fig. 2c. From this figure results, we can observe that the log-nega-
tivity can revival after vanishing value of entanglement in the edge, while the TDD can 
revive immediately several times without vanishing for a period of time.

To see the DM exchange coupling effects on the quantum correlations dynamics, we 
examine the extreme case of an initial state given as 𝜚p(0) = p�01⟩⟨01� + 1−p

4
12 ⊗ 12 

(a) (b) (c)

Fig. 1   Time evolution of TDD (a) and log-negativity (b) versus the degree of purity p for EWL state (21) 
with initial parameters � =

�

6
 and � =

�

2
 . For numerical results, we pick Σ = 0.5 , D = 1 and � = 0.01 . The 

2D plot (c) illustrates the comparison of two nonclassical correlations quantifiers dynamics for Bell-like 
state (22), i.e. when p = 1 is considered
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which is a mixture of product states. Figure 3 plot illustrates the time evolution of both 
suggested quantum correlations versus DM parameter by considering Σ = 0 and p = 2∕3.

It is clearly seen that, even without any initial quantum correlation between the two 
qubits, both quantifiers, TDD (Fig. 3a) and log-negativity (Fig. 3b), can reveal nonclassi-
cal correlations with an oscillating behaviours. It is worth of mentioning that the oscilla-
tions number increases with D, which implies that the intrinsic decoherence effect can be 
modulated by the spin-orbit coupling D. Besides, the difference between entanglement and 
nonclassical correlations captured by TDD lies in the fact that TDD can be induced imme-
diately with both D and t while entanglement is suddenly created after certain finite time of 
evolution.

To go further, we explore the influence of the phase � on the behavior of the pairwise 
quantum correlations in the physical system. In this respect, we visualize in Fig.  4 the 
dynamics of the TDD and log-negativity by changing the phase �.

We remark that the two quantifiers TDD (Fig. 4a) and log-negativity (Fig. 4b) behave 
similarly and both measures can reveal quantum correlations with an oscillating behav-
iours. The difference between log-negativity and TDD is that the log-negativity can revival 
after zero entanglement in the edge, while the TDD can revive immediately several times 
without complectly vanishing for a period of time and for fixed value of the phase � . From 

(a) (b) (c)

Fig. 2   TDD (a) and log-negativity (b) as a function of � and time for EWL state (21) with initial parameters 
p = 2∕3 and � = 0 . We pick Σ = 1.5 , D = 1 and � = 0.01 . For the 2D plot (c), we considered � = �∕12

(a) (b) (c)

Fig. 3   TDD (a) and log-negativity (b) as a function of DM parameter and time for Σ = 0 , p = 2∕3 , � = 0 
and � = 0.04 . The 2D plot (c), is given for D = 1
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Fig. 4c, we see that the TDD is more resistant against to the effects of intrinsic decoherence 
compared to entanglement quantified by log-negativity.

To study the influence of the coupling parameter Σ = Jx + Jy on the pairwise quantum 
correlations captured by TDD and log-negativity, we depict in Fig. 5 the variations of both 
quantum correlations quantifiers in terms of the coupling parameter Σ and t.

It is clearly seen that TDD (Fig. 5a) and log-negativity (Fig. 5b) reveal nonclassical cor-
relations and hence they have a similar oscillating aspects. Furthermore, we also observe 
that both quantifiers they reach the steady state value in the asymptotic limit t → ∞ . It 
is interesting to notice that for initial separable state, the TDD is relatively more robust 
against to the interplay of the intrinsic decoherence and DM interaction compared to the 
log-negativity.

Now, we will study how TDD and log-negativity change over time t with and the intrin-
sic decoherence rate �.

As can be seen from Fig. 6a and b, we observe a drastic decrease of TDD and log-
negativity of the physical system in the presence of intrinsic decoherence. It is also 
seen from Fig. 6c that the local maximum values at the revival time of both quantifiers 
decreases gradually during the time evolution. We remark also a monotonic relation-
ship between TDD and log-negativity and that the both quantum correlation quantifiers 

(a) (b) (c)

Fig. 4   Time evolution of TDD (a) and log-negativity (b) in terms of the phase � for Σ = 1 , p =
2

3
 , � =

�

2
 , 

D = 1 and � = 0.01 . For (c), we pick � = �∕6

(a) (b) (c)

Fig. 5   TDD (a) and log–negativity (b) as a function of Σ = Jx + Jy parameter and time for p =
2

3
 , � =

�

4
 , 

� =
�

2
 and � = 0.04 . For the 2D plot (c), Σ = 2 is considered
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drop rapidly to be zero at larger time-scales as the intrinsic decoherence is introduced. 
Besides, Fig. 6c shows that both quantum correlation quantifiers are wiggles and reach 
the steady state value when the asymptotic limit t → ∞ is achieved. To get more helpful 
insight into the intrinsic decoherence effect on the variation of quantum correlations, we 
plot in Fig. 7a and b the time evolution of TDD and log-negativity by considering fixed 
values of the intrinsic decoherence rate �.

We can see particularly form these figures that increasing values of � causes a rapid 
decay of the quantum correlation quantifiers. Furthermore, each one of them reach its 
own constant value in the asymptotic limit t → ∞ . It is also observed that log-negativity 
collapses faster than TDD which decreases more slowly. This implies that TDD is more 
resistant to the effect of the intrinsic decoherence. Finally, it was revealed that the peri-
odic behavior of TDD and log-negativity became modest with increasing the intrinsic 
decohrence rate and disappear for large scale of time.

5 � Concluding remarks

In this paper, we are concerned by the exploration of the quantum correlations in a phys-
ical system described by a two-qubit XYZ Heisenberg spin chain model in the presence 
of DM interaction along the z-axis and under the effect of intrinsic decoherence. We 

(a) (b) (c)

Fig. 6   Time evolution of TDD (a) and log–negativity (b) versus the intrinsic decoherence rate � for Σ = 2 , 
D = 1 , � =

�

6
 , � =

�

2
 and p =

2

3
 . For the 2D plot (c), � = 0.1 is considered

(a) (b)

Fig. 7   TDD (a) and log-negativity (b) dynamics for various values of the intrinsic decoherence rate � . We 
pick Σ = 2 , D = 1 , � =

�

5
 , � =

�

2
 and p =

2

3
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have used logarithmic negativity to characterise the entanglement between the two com-
ponents of the system, while the existing nonclassical correlations are captured by the 
distance trace. We have investigated numerically the intrinsic decoherence effect on the 
dynamics of the two quantifiers in the presence of the DM interaction. We have showed 
that, in the presence of intrinsic decoherence, both TDD and log-negativity exhibit peri-
odic behaviors and in the asymptotic limit t → ∞ , they saturate to their lower levels for 
longer time scales and increasing the intrinsic decoherence rate � causes rapid decay of 
the amount of quantum correlations exist between the two qubits.

We have restricted our study on the quantum correlations intrinsic dynamics by con-
sidering only the nearest neighbors two-qubit Heisenberg XYZ model in the presence of 
the spin-orbit coupling antisymmetric contribution. We believe that the quantum corre-
lations dynamics will be efficiently adjusted by introducing the effect of Kaplan–Shekht-
man–Entin–Wohlman–Aharony (KSEA) interactions Khedif et al. (2021), as a symmet-
ric contribution of spin-orbit coupling, as well as the external inhomogeneous magnetic 
field. We hope to report in this issue in a forthcoming paper.
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