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Abstract
In this paper, we present a theoretical study of the propagation properties for Generalized 
Humbert-Gaussian beams (GHGBs) passing through a turbulent atmosphere. The axial 
intensity distribution of beams propagating through atmospheric turbulence is evaluated 
analytically based on the Huygens-Fresnel diffraction integral and the Rytov theory. The 
impact of the incident beam parameters and the turbulent strength on the output axial 
intensity is investigated through numerical illustrations. The results show that the propaga-
tion of GHGBs is faster when the atmosphere is very turbulent for small wavelength and 
small beam waist.

Keywords Generalized Humbert-Gaussian beams · Turbulent atmosphere · Huygens-
Fresnel diffraction integral · Rytov theory

1 Introduction

The propagation of laser beams in a turbulent atmosphere has received a lot of attention 
from many researchers for several years, due to their large applications in many areas of 
science and practical engineering including free space optical communications (Navid-
pour et al. 2007), active optical imaging system (Hajjarian et al. 2010), and remote sensing 
(Korotkova and Gbur 2007). On the other hand, the turbulent atmosphere has an important 
impact on the quality of the laser beam owing to the random changes in the refraction 
index along the path of beam propagation. This result from the small temperature varia-
tions in the atmosphere, which induce fluctuations in laser intensity.

In the literature, several works have focused on the study of the influence of the tur-
bulent atmospheric environment on the propagation of laser beams (Eyyuboğlu 2008; 
Wang and Zheng 2009; Qing et al. 2014; Mei et al. 2012; Zhou et al. 2009; Wen et al. 
2015). The propagation properties of elegant Laguerre-Gaussian beams (Qu et  al. 
2010), Laguerre-Gaussian Beams (Banakh and Falits 2014), flat-topped vortex hollow 
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beams (Liu et  al. 2016), Laguerre-Gaussian Schell beams (Xu et  al. 2014), truncated 
Bessel-Gauss beams (Cang and Zhang 2010), partially coherent Bessel-Gaussian beams 
(Chen et  al. 2008) and Hypergeometric-Gaussian beams (Tanyer Eyyuboglu and Cai 
2012) and so on, have greatly developed by the considered authors. On the other hand, 
in our research group Khannous et al. have interested to the propagation characteristics 
of some laser beams in turbulent atmosphere such as: Kummer beams (Khannous et al. 
2014), Hypergeometric-Gaussian beams Type II (Khannous et  al. 2015) and Hollow-
Gaussian beams (Khannous et al. 2016). Hennani et al. (Hennani et al. 2013) have stud-
ied the axial intensity distribution of the modified quadratic Bessel-Gaussian beam in 
turbulent atmosphere. Kinani et al. (Kinani et al. 2011) have examined the effects of the 
atmospheric turbulence on the propagating of Li’s flat-topped beams. More recently, 
Ez-zariy et  al. (Ez-zariy et  al. 2016) have investigated the propagation of Lommel-
Gaussian beams through atmospheric turbulence, Boufalah et al. (Boufalah et al. 2016, 
2018) have reported a study of the propagation of Pearcey-Gaussian beam and Gen-
eralized Laguerre-Bessel-Gaussian beams in turbulent atmosphere and Yaalou et  al. 
(Yaalou et  al. 2019; Hricha et  al. 2020) have developed theoretically the propagation 
characteristics of dark and antidark-Gaussian beams and double-half inverse Gaussian 
hollow beams in turbulent atmosphere.

We will interest in the present study to the propagation properties of the General-
ized Humbert beams modulated by Gaussian envelope (GHGBs) in turbulent atmos-
phere, where the Generalized Humbert beams (GHBs) are new hollow beams gener-
ated recently by Belafhal and Saad (Belafhal and Nebdi 2014). These last beams can 
be created by illuminating Circular beams (CiBs) (M. A. Bandres J. C. Gutierrez-Vega 
2008) with a spiral phase plate (SPP) passing through a paraxial ABCD optical system. 
The particular cases of GHGBs presented in this work are generated from Whittaker-
Gaussian beams (WGBs), Hypergeometric-Gaussian beams (HyGBs), elegant Laguerre-
Gaussien beams (eLGBs), standard Gaussian Laguerre beams (sLGBs), Generalized 
Laguerre-Gaussian beams (gLGBs) or quadratic Bessel-Gaussian beams (QBGBs) by 
the manipulation of the input beam parameters. This family of beams will give rise to 
different particular cases beams of GHGBs and possesses interesting properties; which 
are advantages for certain applications. For this reason, our attention was concen-
trated to study the behavior of this beams family during its propagation in a turbulent 
atmosphere.

The coming parts of this article are structured as follows: Sect. 2 is devoted to per-
form the average intensity distribution of GHGBs propagating in atmospheric turbu-
lence. An approximate analytical expression of the axial intensity distribution for 
the considered beams is expressed in Sect.  3. In Sect.  4, special cases of GHGBs are 
derived. The numerical simulations and discussions are treated in Sect. 5. A conclusion 
is outlined in the end of this work.

2  The average intensity distribution of GHGBs in a turbulent 
atmosphere

Let us consider the electric field distribution of GHGBs in the cylindrical coordinates 
system (r, z0,�) given by Belafhal and Nebdi (2014)



Behavior of the central intensity of generalized…

1 3

Page 3 of 13 665

where

with

and

Ef  is the amplitude of the beam, �0 is the spot size of the fundamental Gaussian mode, 
� is the radial order, 

(

q0, q̃0
)

 are two complex beam parameters, k = 2�

�
 represents the wave 

number, � is the wavelength, l is the topological charge, m is the beam order, Γ(.) denotes 
the gamma function and Ψ1(.) is the Humbert confluent hypergeometric function. We con-
sider that the field is situated at a distance z = z0 from the source plane, with z′ is the trans-
verse coordinate of the Circular beams.

In the following, we will interest to the Generalized Humbert beams modulated by a 
Gaussian envelope. The electric field expression of these beams is given by Nossir et al. 
2020a; Nossir et al. 2020b)

with � is a positive constant.
The optical system representing the propagation of the GHGBs through a turbulent 

atmosphere is schematized in Fig. 1. The receiver plane is positioned at propagation dis-
tance z away from the transmitter plane.
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Fig. 1  Schematic illustration 
of the GHGBs propagating in a 
turbulent atmosphere

Input plane Output plane Atmospheric 
turbulence
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In this section, we will interest to the determination of the analytical average intensity 
distribution of GHGBs propagating in the turbulent atmosphere.

Based on the extended Huygens-Fresnel diffraction integral in the paraxial approxi-
mation and on the Rytov theory, the average intensity at the output plane is expressed as 
(Andrews and Phillips 1998)

where z is the propagation distance, a is the radius of the aperture, Φ
(

r⃗, 𝜌
)

 represents the 
random part, in the Rytov method, of the complex phase of a spherical wave propagating 
from the source plane to the output plane, f  is the frequency and t denotes the time. Here 
E
(

r⃗, z0
)

  is the electric field of the GHGBs at the input plane.
The average intensity distribution at the z-plane can be written as

where the average term in the last equation is given by Andrews and Phillips (1998)

In these equations, asterisk * denotes the complex conjugate, <  > is the average, 
DΦ

(
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)

 is the phase structure function of the random complex in Rytov’s representa-
tion given by

with

is the coherence length of a spherical wave spreading in the turbulent atmosphere 
medium where C2

n
 is the refractive index structure constant, which characterizes the local 

strength of the turbulent atmosphere. By using the development of Humbert confluent 
hypergeometric function in terms of the Hypergeometric function 2F1(a, b;c;x) (Luke 1969)

and by introducing Eqs. (3), (6a), (6b) and (7) into Eq. (5), we can evaluate the average 
intensity distribution of GHGBs as
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From Eq. (8), we will deduce the on-axis average intensity distribution of GHGBs prop-
agating in turbulent atmosphere in the following section.

3  Axial intensity distribution of truncated GHGBs in turbulent 
atmosphere

In this part, we will give an approximate evaluation of the axial intensity distribution of the 
GHGBs propagating in a turbulent atmosphere. To evaluate the integral of Eq. (8), we will 
introduce the hard aperture function defined as

with a is the half-width of the rectangular function.
The approximate expression of H(r) is given by expanding into a finite sum of complex 

Gaussian functions with finite numbers in the rectangular coordinates system (Wen et al. 
1988)

where Ak and Bk designate the expansion and Gaussian coefficients, respectively. N is the 
number of the expansion of Gaussian function. By substituting Eq. (10) into Eq. (8) then, 
we put � = 0 and the average axial intensity destribution becomes
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with

and

For resolution of the integrals in Eq.  (11), we will apply the well-known formulas 
(Gradshteyn and Ryzhik 1994)

and

where Im(.) is the m-order modified Bessel function and mFn is the confluent Hypergeo-
metric function. After some algebraic calculations, we find the analytical expression of the 
axial intensity distribution of GHGBs as follows
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This last equation is the main result obtained in this work. To understand the GHGBs 
properties propagating in atmospheric turbulence, we will treat, in the next section, some 
particular cases by using Eq. (15).

4  Particular cases of GHGBs

We not that from Eq.  (15) we can obtain the particular cases of GHGBs denoted by 
GHGBsQBGBs,GHGBsWGBs , GHGBssLGBs,GHGBseLGBs, GHGBsgLGBs  and GHGBsHyGGBs 
and given in Table 1. Here, n is the high radial order of eLGBs and sLGBs beams, l is the 
beam parameter of the CiBs and h is a positive real number. In Table 1, d+
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and

5  Numerical examples and analysis

In this section, using the analytical expression of the average intensity distribution of 
GHGBs propagating in atmospheric turbulence derived in Sect. 3, we present some numer-
ical results of the propagation characteristics for the particular cases of GHGBs given in 
Table 1.

Figure 2 shows the evolution of the distribution of the axial intensity for GHGBs versus 
the propagation distance z . The plots are given for three values of the beam orders: m = 0, 
m = 1, and m = 2 and for two values of the turbulent strengths C2

n
= 1.10−14m−2∕3 and 

C2
n
= 1.10−15m−2∕3. We can note from the plots that the intensity of GHGBs increases upon 

propagation when the atmosphere is very turbulent and the beam orders are small. Further-
more, it observed that GHGBsWGBs present a high intensity in comparison with other beams 
while GHGBseLGBs are characterized by a small intensity. It is seen that the position of the 
maximum intensity tends toward small values of the propagation distance when C2

n
 is large 

which means that the propagation distance of GHGBs family becomes shorter when the 
atmosphere is very turbulent.

To show the influence of the wavelength on the propagation of GHGBs, the dis-
tribution of the axial intensity is depicted versus the axial distance z in Fig.  3 for dif-
ferent beam orders (m = 0, 1 and m = 2). Several curves are plotted for two wave-
length value � = 632.8mm and � = 1330mm with a fixed value of the turbulent strength 
C2
n
= 1.10−14m−2∕3 . It can be observed that the greater the beam orders and the wavelength, 

the lower the axial intensity of GHGBs becomes.
It is clear that GHGBseLGBs have a minimal intensity, whereas the maximum intensity 

appears for the GHGBsWGBs for all beam orders. However, we can also note that the posi-
tion of the maximum intensity tends to higher values of propagation distance with large 
values of wavelength. We conclude that the GHGBs with small wavelength have a faster 
propagation in turbulent atmosphere.
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Figure 4 represents the variation of on-axis average intensity of GHGBs with propaga-
tion distance z for � = 1330nm  and C2

n
= 1.10−14m−2∕3 , with three beams orders.

For every beam, and for a fixed beam order, the curves are plotted for two beams waist 
�0 = 0.5mm and �0 = 0.8mm . The plots of the figure show that the average intensity of 
GHGBs propagating through an atmospheric turbulence becomes lower for higher val-
ues of the beam orders. It is noted that the GHGBsWGBs have a higher intensity however 
GHGBseLGBs have the lower intensity compared to the other beams. We can deduct from 
Fig. 4, that the propagation distance for all beams becomes shorter when the beam waist is 
smaller.

Fig. 2  The average axial intensity distribution versus the propagation distance z for GHGBs for different 
beam orders: m = 0, m = 1 and m = 2, with two values of turbulent strength: a C2

n
= 1.10

−15m−2∕3 and b 
C2

n
= 1.10

−14m−2∕3 . The others parameters are chosen as: l = 1 , �
0
= 0.5mm , � = 1330 nm , a = 0.5m , � = 1 

and h = 1
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6  Conclusion

In this paper, we have discussed the propagation properties of GHGBs as hollow beams 
in a turbulent atmospheric environment. Through this study, we developed the average 
axial intensity distribution of GHGBs using the extended Huygens-Fresnel diffraction 
integral and the Rytov theory. We can conclude from the numerical results, that the 
propagation distance for GHGBs in turbulent atmosphere becomes shorter when the 
wavelength and the beam waist are small and the atmospheric environment is highly 
turbulent. The present study is a generalization of some special cases deduced from our 

Fig. 3  The average axial intensity distribution versus the propagation distance z for GHGBs for m = 0, 
m = 1, and m = 2, with different beam orders and two values of wavelength: a � = 632.8 nm , b � = 1330 nm . 
The other parameters are:�

0
= 0.5mm , C2

n
= 1.10

−14m−2∕3 , a = 0.5m , � = 1 , h = 1 and l = 1
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finding result concerning the GHGBs. We can note that GHGBsWGBs are characterized 
by the greatest intensity distribution in comparison with the other beams family during 
the propagation in turbulent atmosphere, which may be the more desirable for certain 
applications.
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