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Abstract

Two efficient integration schemes, new extended hyperbolic function and generalized tanh
are employed to discover optical soliton solutions to magneto-optic waveguides that retains
anti-cubic form of nonlinear refractive index. Bright, dark, periodic singular, singular, and
combo soliton solutions have created. These solutions expose the comprehensive variety of
soliton solutions.

Keywords Magneto-optic waveguides with anti-cubic law nonlinearity - New extended
hyperbolic function method - Tanh method - Optical soliton solutions

1 Introduction

Optical solitons have a variety of applications in different optoelectronic tools such as opti-
cal couplers, birefringent fibers, polarization-preserving fibers, magneto-optic waveguides
(MOW), metasurfaces and metamaterials as well as in wavelength division multiplexed
structures and photonic crystal fibers. An abundant of results have been stated in all of
these areas (Khater et al. 2020; Akinyemi 2021; Ali Akbar et al. 2021; Akinyemi et al.
2020; Akinyemi 2019; Raza 2020; Dotsch et al. 2005; Fedele et al. 2003; Guzman et al.
2014; Haider 2017; Hasegawa and Miyazaki 1992; Raza and Arshed 2020; Rehman et al.
2021a; b; c; Khan 2020; Kudryashov 2019; Qiu et al. 2019; Shoji and Mizumoto 2018;
Wazwaz 2008; Yan et al. 2009; Zayed et al. 2020; Imran et al. 2020; Rehman et al. 2019;
Zayed et al. 0000; Dai et al. 2017; Dai et al. 2020; Wang et al. 2018; Dai et al. 2019; Younas
and Ren 2021; Bilal et al. 2021a; Bilal et al. 2021b; Bilal et al. 2021c; Bilal et al. 2021d).
This paper describes dynamics behavior of solitons for MOW that retains anti-cubic (AC)
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form of nonlinear refractive index (NLRI). The RI law was first suggested during 2003 and
far ahead it was considered all across (Fedele et al. 2003). In this paper the construction
of optical solitons solutions is made by using new extended hyperbolic function method
(EHFM) and generalized tanh methods. In this work, purpose is to construct dark, singular
and bright soliton solutions along with trigonometric and hyperbolic functions solutions
for MOW with AC form of nonlinear RI. It is important that these discovered results are
novel, correct and are being stated earliest in this paper. Likewise, it should be noted that
the solitons discovered to MOW with AC law nonlinearity will be highly favorable in the
fiber-optic communication technology.

This paper is structured as: Sect. 2 contains the governing medel. New extended hyper-
bolic function method and its application for MOW with AC nonlinearity are described in
Sect. 3. Section 4 consists generalized tanh method and its application for the MOW with
AC nonlinearity. Section 5 contains results and discussion and Sect. 6 occupys the conclu-
sion of this work.

2 Governing model

A set of two nonlinear Schrodinger equations (NLSEs) in MOW with AC law nonlinearity
is stated as

bu
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where a, by, by, by3, ¢y, €125 €13, Q1> @y, A, v; and 0, are constants, for [ = 1,2,
while 1 = \/J—JT . Where ¢(x, f) and r(x, #) are dependent variables of complex valued while
x and ¢ are spatial and temporal independent variables. Here a, is the coefficients of chro-
matic dispersion (CD), while coefficients of SPM are b,,, b, and b5, whetre ¢, ¢;, and
c,5 are the terms of XPM. On the right side, a; and Q, are the coefficients of inter-modal
dispersions (IMD) and magneto-optic parameters while A, gives the self-steepening (SS)
terms. Lastly, v, and 8, are the coefficients of nonlinear dispersion.

2.1 Mathematical analysis

From (1) and (2), we choose the supposition as follows

qe, 1) =P, (e, 3

r(-x7 t) =P2(’7)ely7 (4)

and
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n=x-vt, Y =—kx+wt+0,. )

where k, v, 6, and w are the frequency, speed, phase constant, and wave number, respec-
tively. Replacing (3) and (4) as well as (5) into (1) and (2). Real parts obtain

pry i g psy Cip P P2 +[by, — k(4 +0,)]P°
a1|+?+131+F1+61212+[12_(1+1)]1
1 2 (6)
+c;3P Py — [w+ ajk + a;k* 1P, — QP, =0,

n . b 5, €21 2 3
a2P2 + - + b23P2 + —P2 + 622P2P1 + [b22 — k(/12 + 492)]P2
P P )

2 1
+ cp3P, P} — [w+ ayk + a,k* 1P, — Q,P; =0,

imaginary parts give

v+ 2ark + a)P, + (34, +2v, + 0)PIP, =0, 8)

(v + 2a,k + ay)Py + (34, + 2v, + 0,)P3P, = 0. ©)

Using linearly independent principle, we obtain from (8) and (9).

v=—Qak+a)), (10)

34, +2v,+6, =0, (11)
and

v =—QQak + a,), (12)

30, +2v,+6, =0, (13)

we get frequency of soliton using (10) and (12),

a—a

provided

ay #ay, @ F ay. (15)
Set

Py(n) = xP(n), (16)
here y is a constant and y # 1. Next, (6) and (7) convert to
a, PP + <b11 + %) — W+ ak+ak+ 0 )P
x a7

+ [C]z)(z +b12 —k(ﬁl + 01)]P? +(b13 'i'cl?,),/‘l)f)ils = Os
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b
a,PiP| + <% + c21;(> = [W+ ok + a,k) x + Q, 1P}

(18)

F Cpx? + by — k(Ay + 0,) 1P + (by3 ° + 3 )P = 0.

Using the constraint conditions
ay =ai ¥, (19)
¢y, by

b+ —+—<+cux, 20
ntoatosto (20)
w+ak+a, K+ 0,y = [w+ ark + a,k 1y + 0,, 21
Cioxt+ by = k(A +0)) = Cory + [byy — k(A + 0,)]1°, (22)
bis+ eyt =bux’ + ez, (23)

(17) and (18) are similar to see. Next, the wave number w is attained from (19) and (21),

X0 — Q) —k(yay — ay)

w= 24
V4l @4
Balancing P3P/ and P¥in Eq. (17), yields N = %,
1
Py(m) = [Um)]>. (25)
(17) converts to
4Ny + AU? + A UP + A UY + a,QUU" = U?) =0, (26)
where
‘1
AO :bll + _4,
X
A2 =—(W+O(1k+a1k2+Q1)(), (27)
Ay =ciox* + by, — k(A +6)),
Ay =bys+cp3pt.
3 New EHFM

The new EHFM (Shang 2008; Shang et al. 2008; Nestor et al. 2020) have some phases as
follows

Form 1: Let PDE as given in (1)-(2) with the wave transformation in (4)-(5) along with
(6) using wave transformation ODE is obtained as in (26). We assume that (26) has a solu-
tion in the next form

@ Springer



Construction of optical solitons of magneto-optic waveguides... Page50f16 646

N
U = Y, F,@ (), (28)
i=0
where F;(i = (1,2, 3,.....N)) are constants and ®(») admits the ODE in next form, as
?:(D T+ 0d2, 7,0 €R. 29)
n

By using balancing rule in (26) the value of N is found. Replacing (28) into (26) with (29),
offers a set of equations for F;(i = (0, 1,2,3,....N)). On solving this set, we yield set of
solutions that admits (29), so

Set 1: Whenz >0 and ® > 0,

() = —\/gcscm\/?(n + 1)) (30)

Set 2: Whenz <0 and ® > 0,

D) = 4 /%SC‘C(\/—_‘L’(?] + 1)) 31

Set 3: When 7> 0and ® <0,

D) = | /%sech(\/;(n + 7). (32)

Set4: When7 <0 and ® > 0,

D) = /‘6’ esc(v/=z(n + 1p)). (33)

Set 5: Whent >0 and ® =0,

() = exp(\/7(n + 1p)). (34)
Set 6: When 7 <0 and ® =0,
() = cos(v/=7(11 + 1)) + 1sin(r/= (5 + 1)) (35)
Set 7: Whenz =0 and ® > 0,
1
) =+————. 36
(VO + ) (%6)
Set 8: Whenz =0 and ® <0,
D) = t—————.
(V=01 + 1) 37

Form 2: Using the same pattern as previous, we adopt that ®(x) admits the ODE as
follows
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‘fl_i’ — 7 +0d% 7,0 €R. (38)

Substituting (28) into (26) along with (38) along value of N, makes a set of equations as
well the values of F;(i =1,2,3,...N).
Let the (38) accepts the solutions, so

Set 1: When 70 > 0,
M@=wﬂﬂ¢%ﬁmvi%+%» (39)

Set 2: When 70 > 0,
() = —sgn(r)1 | & cor(V/O( +np)) (40)

Set 3: When 0 < 0,
() = sgn(x)y | Zgtanh(V =@ + ). @1)

Set 4: When 0 < 0,
(1) = sgn(x) | Zg coh(/=z0( + o)) 42)

Set5: Whenz=0 and ® > 0,

1

0 =~ S+

(43)

Set 6: Whent € R and © =0,
O(n) = =(n + ny). (44)

Note: sgn is the famous sign functions.

3.1 Application of the new EHFM

Form 1: Here, we employ the new EHFM for the MOW with AC form of NLRI to con-
struct the optical solitons solutions. Using balancing method in (26), gives N =1, so
(28) gives

Un) =Fy+ FOM0), (45)

where F, and F, are constants. Replacing (45) into (26) and equating the coefficients poly-
nomials of ®(y) to zero, we get a set of equations in Fy,, F|, 7, © and A,,.
On resolving the set of equations, we attain
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3 A,
Fy=——"2, F =F,

8 A,

9 A2
T—__32A2+ A43 __4Ff A4
B 8 a, T 3a,

9.(15 A4 +64 A, A2 A)

. 4096 A2

Set 1: Whenz > 0and © > 0,

w < 3A < 3(=9 A2+32 A, Ay
)= —-—+ -
o : 32 F2 A2

9 A .

A E :
4 (’1+’70))>> Xel(—kw+wt+90).

csch( 3
a

r = xq,(x,0).
Set 2: Whenzt <0and © > 0,

3(-9 Ag +32A, Ay)
F1< - 2 A2
32 F A

2
3 1

4(n+mm>>2xd“mﬂ“%l

Iy, = ,}/QQ(.X, t)
Set 3: Whenz > 0and ® < 0,

) 3, - 3(-9AT+32M, A
X, 1) = ——=+ -
% : 32 F2 A2

2
9 A2

32 A, +

_—4(’1 + ’70))) % et(—kw+wt+00).
8a,

r3 =/¥Q3(-x’ t)
Set 4: When 7 < 0and ® < 0,

(46)

(47)

(48)

(49)

(50)

S1Y)

(52)
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3A, 3(-9AI+32A, A)
q4(x,t)=<——‘+F1< - -
4 32 F} A

e (53)
“32M+ 3
csc( _8—“(’1 + ’70))>> X el(—kw+wt+90)'
a;
ry =xq4(x,0). (54)
Set5: Whent =0and ® > 0,
3
3A
g5ty = |-=—= +F)|+ ! x !hwtwitho), (55)
8 A, 4FLA,
=+ )
1
rs =xqs(x, ). (56)
Set 6: Whent = 0and ® < 0,
3
3A
Qo5 1) = | =3 + Fy| g [| x @R, (57)
8 Ay 4F A,
> — 1+ 1)
1
e =Xqs(X, 1). (58)
wheren = (x —vt), and Y = —kx + wt + 0,
Form 2:
Operating balancing rule in (26), gives N = 1, so (28) brings to
Uln) = Fo + F,©(n), (59)

where F, and F, are constants. Replacing (59) into (26) and equating the coefficients of
polynomials of ®(#) to zero, we get a set of equations in F,,, F;, 7, ©, and A,
On resolving the set of equations, we attain

3 A, 4F7 A
F°=_8_A4’ Fi=F, oy =-—5~
3O(=9A2+32 A, A) (60)
T= , =0,
64 F? A
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39 A3 —96 Ay A3 Ay +256 A3 AY)

Ay =
0 102442
Set 1: When 70 > 0,
- 3A, clr 3(-9A3+32A, Ay
X, ) =|—5—+ -
@ §A, ! 64 F2 A2
1
30%(-9A3+32A, A4)( ) ’
tan + X
64 F2 A2 1
rr =xq;(x, 1)

Set 2: When 70 > 0,

.1 ( 38 . < - 3(-9A;+32A,A)
xf)=( ——=+ -
% SA, 64 F2 A2

1

( 30%(-9AJ+32A, A4)( ))>>2
cot + X
64 F2 A2 (N

rg =/Yq8(-xa t)
Set 3: When 70 < 0,
1) 38 e lp 3(-9A;+32A,A)
X1 =|———+ - -
% 8A, ! 64 F2 A2

30%(-9AJ+32A,A))
tanh - (n+ny)

2 A2
64 F2 A2

ro =xqo(x, D).
Set 4: When 70 < 0,

.1 38 e lp 3(-9A;+32A,A))
X, 1) =[——+ -
q10 8 A, 1 64F12Ai

[SIES

(n +mnp)

30%(=9A3+32A, Ay
coth -
64 F2 A2

et(—kw+wt+90) .

et(—kw+wt+90) .

% et(—kw+ wi+6,)

X et(—kw+wt+90)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

(68)
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1o =X4q10(%: ). (69)
Set 5: Whent=0and ® > 0,

3 A4 1 3
= ———+ F _ X t(—kw+wt+90)' 70
g (x, 1) < A, 1< —®(n+;70)>> e (70)

ri =x41 (0. (71)

4 The generalized Tanh method Ullah et al. (2020)

Let the PDE, as given in (1)-(2) with the wave transformation in (3)-(4) along with (5)
using wave transformation ODE is obtained as in (26). We assume that (26) has a solution,
as

N
Utn) = ) F@'(n), (72)
i=0
here, F;(i = (1,2,3, ... N)) are constants and ®(#)
do 2
—=h+®
dn (m (73)

By using balancing rule in (26) the value of N is found. Replacing (72) into (26) with (73),
offers a set of equations for F;(i = (0, 1,2,3,... N)). On solving this set, we yield set of
solutions that admits (73), as follows

Consider the solutions of (21) are, as

Case 1. If h < 0, then

®(n) = —\V—h tanh(\/—hn), (74)

and

O(n) = —\/—_h coth(\/—_hn). (75)

Case 2. If h = 0, then

1
D) = ——.
== (76)
Case 3. If 1 > 0, then
@) = Vh tan(\ ), 7
and
®(n) = —Vh cot(\/hn). (78)
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4.1 Application of the generalized Tanh method

According the balancing rule in (26), we get, N = 1, (72) reduces to

U = Fy + F D), (79)

Putting (79) and (73) in (26) produces a polynomial in form of ®(#). We get a system on
making a comparison of the coefficients of ®(y) to zero, after solving it, we get solutions as

3A; 4
Fy=— TA, F,=F,, a = —gFfA4,
2 2 2 A2)2 80
Ml B2 ONHERFIAD (80)
2T o3A, 3 1T 12288 A3
If h < 0, then
3A :
2
q,(x,0) :<(_8_A3 +F\—=h tanh(\/—hn))> x e!hvtwitty) 81)
4
ro=xq,(x,0), (82)
or
3A :
2
4 (x5, 1) :<(_8—A3 + F,\=h coth(\/ —hn))> X e Thwrwitto) (83)
4
ry =xq,(x, ). (84)
If h =0, then
1
37 1.\? ,
= - F.(—= X t(—kw+wt+90). 85
q3(x, 1) < —8A4+1( n)> e (85)
ry =xqs(x, ). (86)
If & > 0, then

3A 3

ga(x.1) = <<—S—A3 +F,vVh tan(\/ﬁn)» T ettty (87)
4

ry =xq4(x, D). (88)

or

qs(x, 1) = < (—3& +F, \/ﬁ cot(\/ﬁn)) > : x ' hvHwi+0y) (89)

8 A,
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(a) (a-1)

Fig.1 a 3-d graph of (47) with a, = 1.75, A, = =13, A, = 1.4, A, = 0.9, v = 0.65, k = 0.8, 0, = 0.56,
A, =12,F, =06, w=2.(a-1) 2-d plot of (47) with 7 = 1

(b) (b-1)

Fig.2 b 3-d graph of (51) with @, = 1.77, A, = —12, Ay = 1.6, A, = 0.9, v=10.65, k= 0.8, 0, = 0.86
LA, =12,F, =0.6, w=2.(b-1) 2-d plot of (51) with ¢ = 1

rs =xqs(x, 1). (90)

where n = (x —vt), and Y = —kx + wt + 6,

5 Results and discussions

The results of this paper will be valuable for researchers to study the most noticeable
applications of the MOW equation in optic fibers. Figures 1, 2, 3, 4, 5, 6 clearly reveals
the surfaces of the solution acquired for 3-dim and 2-dim plots, with selection of suit-
able parameters for the MOW equation. Likewise, 3D plots provide us to model and

@ Springer



Construction of optical solitons of magneto-optic waveguides... Page 130f 16 646

() (c-1)

3

e P —————— ————
>

e ——— — e

o A "

-3 -2 -1 0 1 2 3

Fig.3 ¢ 3-d graph of (62) with A, =11 A;=13, A, =190=175 v=065 k=09, 0, =0.56
LA, =13,F, =16, w=2, T =044. (c-1) 2-d plot of (64) with = 1

(d) (d-1)

Fig.4 d 3-d graph of (64) with A, =2.1, A; =17, A, =-190=0.75,v=0.65, k=0.7, 0, = 1.66
A =1.1,F =06, w=2, I'=0.35. (d-1) 2-d plot of (64) witht =1

exhibit accurate physical behavior. Through this study, we consider the optical soliton
solutions to the nonlinear MOW model using new EHFM and tanh method. The authors
proposed different analytic approach in newly issued article and reported some fascinat-
ing findings. The authors can understand from all the graphs that the new EHFM and
generalized tanh are very effectual and more specific in assessing the equation under
consideration. Figures 1 and 2 designate the solutions stated by (47) and (51) which
are bright and singular respectively. Figures3 and 4 are the graphical representations of
the solutions stated by (62) and (64) which are dark and singular solitons respectively.
While Figures 5 and 6 present the solutions stated by (81) and (89) which are combined
dark-bright and periodic singular solitons respectively.
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(e) (e-1)
_____ ==
\
0.9\
\
o8
\
\
071
\
06—\
\
\
05 \
\
04 \
\
~_
-10 -5 0 s 10

Fig.5 e 3-d graph of (81) with h=-0.75, A; =15 A, =08 v=0.65 k=009, 0, =057, w=2
,F, =0.5. (e-1) 2-d plot of (81) witht =1

® (f-1)

| '

x

Fig.6 f 3-d graph of (89) with h=0.76, A; =13 A;=09,v=0.66, k=07 6, =059, w=2,
F, =0.7. (f-1) 2-d plot of (89) withr =1

6 Conclusion

This article includes a comprehensive variety of optical soliton solutions that are discov-
ered for magneto-optic waveguides with AC form of nonlinear refractive index. The out-
comes are in the form of bright, singular, dark and combo solitons solutions. These solu-
tions have wide applications in the arena of optoelectronics. As stated in the introduction
section, the bright soliton solutions will be a vast advantage in controlling the soliton dis-
order. This shows that the solitons can be transformed to a shape of parting from a shape
of magnetism which would mean clearing the clutter. Consequently, this would carry a
factor of “easiness” to the internet bottleneck that is an increasing problem to the present
day communications industry where the internet is an important tool for existence. For the
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period of the present pandemic time of COVID-19, where all trade happenings are super-
vised online, it is bossy to have a flat and continuous flow of pulses for continuous Internet
communications. Also, dark solitons are also beneficial for soliton communication when a
background wave is exict. Although, singular soliton solutions are only elaborate the shape
of solitons and show a total spectrum of soliton solutions created from the model. Fur-
thermore, these novel solutions have many applications in physics and other branches of
applied sciences. Further, these solutions may be suitable for understanding the procedure
of the nonlinear physical phenomena in wave propagation. We will report these results in
future research studies.
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