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Abstract
Arbitrary order partial differential equations involving nonlinearity have mostly been uti-
lized to portray interior behavior of numerous real-world phenomena during the couple of 
years. The research about the nonlinear optical context relating to saturable law, power law, 
triple-power law, dual-power law, logarithm law, polynomial low and mostly visible Kerr 
law media is increasing at a remarkable rate. In this exploration, the space and time frac-
tional nonlinear Schrodinger equation with the quadratic-cubic nonlinearity is taken into 
account for optical solitons and other solutions by means of the improved tanh method and 
the rational 

(

G
�∕G

)

-expansion method. An alteration of wave variable with the assistance 
of conformable fractional derivative reduces the suggested equation into an ordinary dif-
ferential equation. A successful adaptation of the mentioned techniques makes available 
plentiful solitons and other types solutions of the above equation. The originated solutions 
might be accommodating to analyze the underlying structures of nonlinear optics. We 
bring out the diverse 3-D and 2-D shapes for solitons to depict the physical appearances 
of the achieved solutions. The performance of the adopted methods is mentionable which 
claimed to be eligible for using to unravel any other nonlinear partial differential equations 
emerging in nature sciences.
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1 Introduction

The nature of world is full of nonlinear phenomena which has become a matter of con-
tent of interest to the researchers. These complex phenomena have mostly been modeled 
through partial differential equations for better analyzing the behavior of nature (Miller 
and Ross 1993; Xu et al. 2021; Waqas et al. 2021a). Scholars and specialists on math-
ematical science, chemical science, biological science, atomic science, nuclear science, 
engineering etc. have been exploring the new-general appropriate and approximate solu-
tions of nonlinear fractional partial differential equations on their respective area during 
the last few decades (Hu et al. 2008; Zhou et al. 2021; Shuaib et al. 2020a, b; Waqas 
et  al. 2021b,c; Li et  al. 2021; Ahmadian et  al. 2020a, b; Gepreel 2011; Ma and Lee 
2009; Guner and Eser 2014).

Firstly, we are interested to pay attention to some fractional nonlinear Schrodinger 
equations occurred in ample physical systems of nonlinear science. Mathematicians and 
physicists have taken into account various nonlinear Schrodinger types equations for 
wave solutions adopting several methods. Instantly, Li et  al. (2019) have studied the 
(2 + 1)-dimensional time-fractional Schrodinger equation by using the 

(

G�∕G
)

-expan-
sion method, Wazwaz and Kaur (2019) has constructed optical solitons for nonlinear 
Schrodinger equation in normal dispersive regimes, the modified 

(

1∕G�
)

-expansion 
method and the modified Kudryashov method were applied by Yokus et  al. (2021) to 
introduce the plasma and optical fiber related complex hyperbolic type solitary waves, 
Cheema and Younis (2016) have used the extended Fan sub-equation method to study 
nonlinear Schrodinger equation for new and general wave solutions, cubic-quartic and 
resonant nonlinear Schrodinger equation has been considered by Gao et al. (2020) for 
optical soliton solutions via 

(

m + G�∕G
)

-expansion method and exp-�(�)-expansion 
method, Kaplan et  al. (2016) have employed the 

(

G�∕G, 1∕G
)

-expansion method and 
the 

(

1∕G�
)

-expansion method to (1 + 1)-dimensional nonlinear Schrodinger equation for 
exact solutions, the (2 + 1)-dimensional hyperbolic nonlinear Schrodinger equation has 
been studied by Durur et al. (2020) by means of the 

(

m + 1∕G�
)

-expansion method for 
novel complex wave solutions and many others (Younis et  al. 2018; Liu et  al. 2017; 
Chowdhury et al. 2021; Ismael et al. 2021; Zayed et al. 2021; Rizvi et al. 2017,2021; 
Salam et al. 2016; Pandir and Duzgun 2019; Lu et al. 2017; Akinyemi et al. 2021).

In this study, we hunt further new and general appropriate traveling wave solutions 
to the space and time fractional quadratic-cubic nonlinear Schrodinger equation. This 
equation has been considered for wave solutions by Biswas et al. (2017) by applying the 
semi-inverse variational principle. Pal et al. (2017) have investigated the same equation 
of integer order via similarity transformation method for analytical self-similar wave 
solutions. The most recent, Attia et al. (2021) have employed modified Khater method, 
generalized exp-(−�(�))-expansion method and Adomian decomposition method and 
found analytical and semi-analytical solutions. We unravel the mentioned equation by 
making use of improved tanh method and rational 

(

G�∕G
)

-expansion method and con-
struct numerous different and novel huge analytic solutions successfully which might 
be significant to analyze the underlying behavior relating to optical and quantum 
mechanics.

A conversion of wave variable with the aid of conformable fractional derivative is 
used to convert the considered equations into the ordinary differential equations. Khalil 
et al. (2014) have proclaimed fractional derivative as follows:

The conformable derivative of a function u(x) is
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where x > 0 and � denotes the order of derivative such as 0 < 𝛼 ≤ 1 . The properties of this 
definition are brought out by the following theorems:

Theorem  1 If the functions g(x) and h(x) are �-differentiable at any point x > 0 for 
� ∈ (0, 1] , then.

(a) D�
x
(xn) = nxn−� ∀n ∈ R.

(b) D�
x
(�) = 0 , where � is any constant.

(c) D�
x
(ag(x) + bh(x)) = aD�

x
(g(x)) + bD�

x
(h(x)) ∀a, b ∈ R.

(d) D�
x
(g(x)h(x)) = g(x)D�

x
(h(x)) + h(x)D�

x
(g(x)).

(e) D�
x
(g(x)∕h(x)) =

h(x)D�
x
(g(x))−g(x)D�

x
(h(x))

h2(x)
.

  if u is differentiable, then D�
x
(g)(x) = x1−�

dg(x)

dx
.

Theorem 2 Suppose g(x) is differentiable and also �-differentiable with � ∈ (0, 1] . Let h(x) 
be a function defined in the same range of g(x) and also differentiable, then.

2  Explication of the method

Consider the following nonlinear partial differential equation involving u
(

t, x1, x2,… , xn
)

 
and its different partial derivatives:

where 0 < 𝛼 ≤ 1 . This equation with the assistance of wave variable transformation.

 become the following ordinary differential equation due to �:

Differentiate Eq. (3) as many times possible. We might ignore the constant of integra-
tion for investigating soliton solutions. The main procedures of the suggested techniques 
are as follows:

2.1  The improved tanh method

Equation (1) is supposed to be satisfied by

D�

x
(u(x)) = lim

�→0

u
(

x + �x1−�
)

− u(x)

�
,

D�

x
(g(x).h(x)) = x1−�h�(t)g�(h(t))

(1)
F
(

u,D�

t
u,D2�

tt
u,… ,D�

x1
u,D2�

x1
u,… ,D�

x2
u,D2�

x2
u,… ,D�

xn
u,D2�

xn
u,… ,D�

x1t
u,…

)

= 0

(2)u = u
(

t, x1, x2,… , xn
)

= U(�), � = �
(

t, x1, x2,… , xn
)

(3)R
(

U,U�,U��,U���,………
)

= 0,
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whose free parameters are calculated hereafter (Islam and Akter 2021). The value of n is 
fixed by considering the homogeneous balance principle for Eq. (3). The function � = �(�) 
satisfies the Riccati differential equation

where � is a constant. Eq. (5) has the following solutions:

(1) �(�) = −
√

−�tanh
�
√

−��
�

 or �(�) = −
√

−�coth
�
√

−��
�

 , 𝛿 < 0

(2) �(�) = −1∕� , � = 0

(3) �(�) =
√

�tan

�
√

��

�

 or �(�) = −
√

�cot

�
√

��

�

 , 𝛿 > 0.

Equation  (3) adopting Eqs. (4) and (5) creates a polynomial in �(�) whose coeffi-
cients are equated to zero and solved by any computational software for the values of the 
unknown constants involved in Eq. (4). Insert these values in Eq. (4) which alongside the 
solutions of Eq. (5) yield the solutions of Eq. (1).

2.2  The rational 
(

G�∕G
)

‑expansion method

The solution is supposed to be

where n is determined by homogeneous balance principle to Eq. (3) and unknown param-
eters a′

i
s and b′

i
s are calculated later (Islam et al. 2015). The function 

(

G�(�)∕G(�)
)

 satisfies

where primes denote the order of derivatives due to � . Eq. (7) has the following solutions:

(a) When B ≠ 0 , Ψ = A − C and Φ = B2 + 4EΨ > 0,

(b) For B ≠ 0 , Ψ = A − C and Φ = B2 + 4EΨ < 0,

(c) If B ≠ 0 , Ψ = A − C and Φ = B2 + 4EΨ = 0,

(4)u(�) =
a0 +

∑n

i=1

�

ai�
i(�) + bi�

−i(�)
�

c0 +
∑n

i=1

�

ci�
i(�) + di�

−i(�)
� ,

(5)��(�) = � + �2(�),

(6)u(�) =

∑n

i=0
ai
�

G�(�)∕G(�)
�i

∑n

i=0
bi(G

�(�)∕G(�))i
,

(7)AGG�� − BGG� − EG2 − CG�2 = 0,

(8)
�

G�(�)∕G(�)
�

=
B

2Ψ
+

√

Φ

2Ψ

C1 sinh

��
√

Φ∕2A
�

�

�

+ C2 cosh

��
√

Φ∕2A
�

�

�

C1 cosh

��
√

Φ∕2A
�

�

�

+ C2 sinh

��
√

Φ∕2A
�

�

�

(9)
�

G�(�)∕G(�)
�

=
B

2Ψ
+

√

−Φ

2Ψ

−C1 sin

��
√

−Φ∕2A
�

�

�

+ C2 cos

��
√

−Φ∕2A
�

�

�

C1 cos

��
√

−Φ∕2A
�

�

�

+ C2 sin

��
√

−Φ∕2A
�

�

�
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(d) Once B = 0 , Ψ = A − C and Δ = ΨE > 0,

(e) After B = 0 , Ψ = A − C and Δ = ΨE < 0,

Equation (3) with the assistance of Eqs. (6) and (7) creates a polynomial in 
(

G�(�)∕G(�)
)

 
whose coefficients assigning to zero give a set of algebraic equations. Solve the system by 
Maple and find the values of the constants involved in Eq. (6). Inserting these values in Eq. (6) 
and using the solutions of Eq. (7) yields the solutions of Eq. (1).

3  Formulation of solutions

Consider the space–time fractional quadratic-cubic fractional nonlinear Schrodinger equation.

 where i =
√

−1 , 0 < 𝛼 < 1 ; � , � and � are free parameters with � standing for the dispersion 
of group velocity. The variable v depends on the time variable t and space variable x . Intro-
ducing the change of wave variable as

confirm imaginary part to serve � = 2�� and real part to be.

In the transformation (14), u(x, t) is the wave amplitude component, � is the wave velocity, 
� stands for soliton frequency and � is the wave number. Balancing principle to Eq. (3.3) gives 
the value n = 1.

3.1  Construction of solutions by improved tanh method

Due to the balance number calculated above, the solution of Eq. (15) is appeared from Eq. (4) 
as

(10)
(

G�(�)∕G(�)
)

=
B

2Ψ
+

C2

C1 + C2�

(11)
�

G�(�)∕G(�)
�

=

√

Δ

Ψ

C1 sinh

��
√

Δ∕A
�

�

�

+ C2 cosh

��
√

Δ∕A
�

�

�

C1 cosh

��
√

Δ∕A
�

�

�

+ C2 sinh

��
√

Δ∕A
�

�

�

(12)
�

G�(�)∕G(�)
�

=

√

−Δ

Ψ

−C1 sin

��
√

−Δ∕A
�

�

�

+ C2 cos

��
√

−Δ∕A
�

�

�

C1 cos

��
√

−Δ∕A
�

�

�

+ C2 sin

��
√

−Δ∕A
�

�

�

(13)iD�

t
v + �D2�

x
v − �v|v| + �v|v|2 = 0

(14)v(x, t) = ei�u(�), �(x, t) = (x� + �t�)∕�, �(x, t) = (−�x� + �t�)∕�

(15)�u�� −
(

� + ��2
)

u − �u2 + �u3 = 0.

(16)u(�) =
a0 + a1�(�) + b1�

−1(�)

c0 + c1�(�) + d1�
−1(�)

.
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Equation (15) becomes a polynomial in �(�) with the aid of Eq. (16) and Eq. (2.5). Set 
like terms to zero and solve for the parameters involved in Eq.  (3.1.1) by Maple 20. We 
obtain the outcomes.

Case 1: a0 = ±

√

−2��(a1�−6d1�)
6��

 , b1 =
d1�

3�
 , c0 = ±

a1

√

−2��

2�
 , c1 = 0 , � =

�2

18��
 , � = −

9���2+2�2

9�
.

Case 2: a1 = 0 , b1 = ±
a0�

3
√

−2��
 , c1 = 0 , d1 = ±

3�a0−�c0

3
√

−2��
 , � =

�2

18��
 , � = −

9���2+2�2

9�
.

Case 3: a0 =
c0�

3�
 , a1 = ±

c0

√

−2��

�
 , b1 = ±

c0�
2

18�
√

−2��
 , c1 = d1 = 0 , � = −

�2

36��
 , � = −

9���2+2�2

9�
.

Case 4: a0 = 0 , a1 =
6�d1

�
 , b1 = −

3d1(�+��2)
2�

 , c0 = ±
3d1

√

−2��

�
 , c1 = 0 , � = −

�+��2

4�
,

Case 5: a0 = ±

√

−2��(a1�−6d1�)
6��

 , b1 = −
(�a1�−6d1�)

36��
 , c0 = ±

a1

√

−2��

2�
 , c1 = 0 , 

� = −
a2
1
�2+6��a1d1−72�

2d2
1

36a2
1
��

 , � = −
2�2a2

1
+9a2

1
���2−6��a1d1−36�

2d2
1

9a2
1
�

.

Case 6: a0 =
c0�

3�
 , a1 = ±

c0

√

−2��

�
 , b1 = ±

c0�
2

36�
√

−2��
 , c1 = d1 = 0 , � =

�2

72��
 , � = −

9���2+2�2

9�
.

Case 7: a0 =
c0�

3�
 , a1 = ±

c0

√

−2��

�
 , b1 = c1 = d1 = 0 , � =

�2

18��
 , � = −

9���2+2�2

9�
.

Case 8: a0 = ±
3b1

√

−2��

�
 , a1 = 0 , c0 = ±

9�b1

√

−2��

�2
 , c1 = d1 = 0 , � =

�2

18��
 , � = −

9���2+2�2

9�
.

Case 9: a0 = ±
d1

√

−2��

�
 , a1 = 0 , b1 =

d1�

3�
 , c0 = c1 = 0 , � =

�2

18��
 , � = −

9���2+2�2

9�
.

Considering all cases abundant wave solutions might be found. For simplicity, we con-
struct the solutions only for first three cases as follows:

Solution family 1: Inclusion case 1 in Eq. (16) and hence in Eq. (14) provides

where �(x, t) = (x� + 2��t�)∕� , �(x, t) = −
(

�x� +
9���2+22

9�
t�
)

∕�.

(17)v1,2(x, t) = e
i𝜓 ×

±
√

2𝜄𝜖𝛿
�

a1 − 6d1𝜄
�

tanh

�
√

−𝛿𝜙
�

+ 6a1𝜄𝜀𝛿 tanh
2
�
√

−𝛿𝜙
�

− 2d1𝜄

3𝜀

�

±a1

√

2𝜄𝜖𝛿 tanh

�
√

−𝛿𝜙
�

− 2d1𝜖𝜄

� , 𝛿 < 0

(18)v3,4(x, t) = e
i𝜓 ×

±
√

2𝜄𝜖𝛿
�

a1 − 6d1𝜄
�

coth

�
√

−𝛿𝜙
�

+ 6a1𝜄𝜀𝛿 coth
2
�
√

−𝛿𝜙
�

− 2d1𝜄

3𝜀

�

±a1

√

2𝜄𝜖𝛿 coth

�
√

−𝛿𝜙
�

− 2d1𝜖𝜄

� , 𝛿 < 0

(19)v5,6(x, t) = ei� ×
±
√

−2��
�

a1 − 6d1�
�

− 6a1�� − 2d1��
2

3��

�

±a1

√

−2�� − 2d1���
� , � = 0

(20)v7,8(x, t) = e
i𝜓 ×

±
√

−2𝜄�𝛿
�

a1 − 6d1𝜄
�

tan

�
√

𝛿𝜙

�

+ 6a1𝜄�𝛿 tan
2

�
√

𝛿𝜙

�

+ 2d1𝜄

3�

�

±a1

√

−2𝜄�𝛿 tan
�
√

𝛿𝜙

�

+ 2d1𝜖𝜄

� , 𝛿 > 0

(21)v9,10(x, t) = e
i𝜓 ×

±
√

−2𝜄�𝛿
�

a1 − 6d1𝜄
�

cot

�
√

𝛿𝜙

�

+ 6a1𝜄�𝛿 cot
2

�
√

𝛿𝜙

�

+ 2d1𝜄

3�

�

±a1

√

−2𝜄�𝛿 cot
�
√

𝛿𝜙

�

+ 2d1𝜖𝜄

� , 𝛿 > 0



Further innovative optical solitons of fractional nonlinear…

1 3

Page 7 of 19 562

Solution family 2: Attachment case 2 in Eq. (16) and hereafter Eq. (14), we found the 
following exact solutions:

where �(x, t) = (x� + 2��t�)∕� , �(x, t) = −
(

�x� +
9���2+22

9�
t�
)

∕�.
Solution family 3: Merging case 3 with Eq.  (16) and hence Eq.  (14) carries the 
traveling wave solutions as follows:

(22)v11,12(x, t) = ei𝜓 ×
±a0 − 3a0

√

2𝜄�𝛿 tanh

�
√

−𝛿𝜙
�

±
�

3�a0 − �c0
�

− 3c0

√

2𝜄�𝛿 tanh

�
√

−𝛿𝜙
� , 𝛿 < 0

(23)v13,14(x, t) = ei𝜓 ×
±a0 − 3a0

√

2𝜄�𝛿 coth

�
√

−𝛿𝜙
�

±
�

3�a0 − �c0
�

− 3c0

√

2𝜄�𝛿 coth

�
√

−𝛿𝜙
� , 𝛿 < 0

(24)v15,16(x, t) = ei� ×
±a0� − 3a0

√

−2��

±
�

3�a0 − �c0
�

� − 3c0

√

−2��
, � = 0

(25)v17,18(x, t) = ei𝜓 ×
3a0

√

−2𝜄�𝛿 tan
�
√

𝛿𝜙

�

± a0

3c0

√

−2𝜄𝜖𝛿 tan
�
√

𝛿𝜙

�

±
�

3�a0 − �c0
�

, 𝛿 > 0

(26)v19,20(x, t) = ei𝜓 ×
3a0

√

−2𝜄�𝛿 cot
�
√

𝛿𝜙

�

± a0

3c0

√

−2𝜄𝜖𝛿 cot
�
√

𝛿𝜙

�

±
�

3�a0 − �c0
�

, 𝛿 > 0

(27)v21,22(x, t) = ei𝜓 ×

6𝜖
√

−2𝜄� ± 36𝜄�
√

−𝛿 tanh
�
√

−𝛿𝜙
�

∓
2

√

−𝛿
coth

�
√

−𝛿𝜙
�

18�
√

−2𝜄�
, 𝛿 < 0

(28)v23,24(x, t) = ei𝜓 ×

6𝜖
√

−2𝜄� ± 36𝜄�
√

−𝛿 coth
�
√

−𝛿𝜙
�

∓
2

√

−𝛿
tanh

�
√

−𝛿𝜙
�

18�
√

−2𝜄�
, 𝛿 < 0

(29)v25,26(x, t) = ei� ×
6�
√

−2�� ± 36��∕� ∓2 �

18�
√

−2��
, � = 0

(30)v27,28(x, t) = ei𝜓 ×

6𝜖
√

−2𝜄� ∓ 36𝜄�
√

𝛿 tan

�
√

𝛿𝜙

�

±
2

√

𝛿
cot

�
√

𝛿𝜙

�

18�
√

−2𝜄�
, 𝛿 > 0
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 where �(x, t) = (x� + 2��t�)∕� , �(x, t) = −
(

�x� +
9���2+2�2

9�
t�
)

∕�.

3.2  Formulation of solutions by rational 
(

G�∕G
)

‑expansion method

Balancing number from Eq. (15) forces Eq. (4) to be

Equation (15) along with the aid of Eq. (3.1.4) and Eq. (2.5) forms a polynomial in 
(

G�(�)∕G(�)
)

 . Setting like terms to zero and solving by Maple provides the following 
outcomes:

Case 1: a1 =
a0

�

B∓
√

B2+4E(A−C)
�

2E
 , b1 =

Bb0�±(b0�−3a0�)
√

B2+4E(A−C)

2E�
 , � = −

2A2�2

9�{B2+4E(A−C)}
 , 

� =
2�2[A2�2−{B2+4E(A−C)}]

9�{B2+4E(A−C)}
.

Case 2: a1 =
a0

�

B±
√

B2+4E(A−C)
�

2E
 , b0 =

3a0�

�
 , b1 =

3Ba0�

2E�
 , � = −

2A2�2

9�{B2+4E(A−C)}
 , 

� =
2�2[A2�2−{B2+4E(A−C)}]

9�{B2+4E(A−C)}
.

Case 3: a0 =
b0

2�
 , a1 = ±

b0

�

4E(A−C)+B2±
√

B2+4E(A−C)
�

4E�
√

B2+4E(A−C)
 , b1 = ±

b0

�

2B±
√

B2+4E(A−C)
�

4E
 , 

� = −
2A2�2

9�{B2+4E(A−C)}
 , � =

2�2[A2�2−{B2+4E(A−C)}]
9�{B2+4E(A−C)}

.

Case 4: a0 =
b0�

3�
 , a1 = ±

b0�[9��
�

−4E(A−C)−B2±B
√

B2+4E(A−C)
�

+2A22

54E�2�
√

B2+4E(A−C)
 b1 =

b0

�

B±
√

B2+4E(A−C)
�

2E
 , 

� = −
A2�2+3A2�2��−3B2��−12E��(A−C)

3A2�
.

Case 5: a0 = ±
2b1E�

3�
√

B2+4E(A−C)
 , a1 = ±

4b1�
�

4E(A−C)+B2±
√

B2+4E(A−C)
�

12�{B2+4E(A−C)}
 , b0 = 0 , 

� = −
2A2�2

9�{B2+4E(A−C)}
 , � =

22[A2�2−{B2+4E(A−C)}]
9�{B2+4E(A−C)}

.

These cases provide abundant traveling wave solutions. Avoiding the similar tasks, 
we record the solutions only for first three cases. Combining case 1, case2 and solutions 
of Eq. (7) Eq. (32) makes available the following results:

Solution family 1: Utilizing the values appeared in case 1 in Eq. (32) and combining 
with Eqs. (8)–(12), we gain the following exact solutions:

When B ≠ 0 , Ψ = A − C and Φ = B2 + 4EΨ > 0 , ( C1 ≠ 0,C2 = 0;C1 = 0,C2 ≠ 0):

(31)v29,30(x, t) = ei𝜓 ×

6𝜖
√

−2𝜄� ∓ 36𝜄�
√

𝛿 cot

�
√

𝛿𝜙

�

±
2

√

𝛿
tan

�
√

𝛿𝜙

�

18�
√

−2𝜄�
, 𝛿 > 0

(32)u(�) =
a0 + a1

(

G�(�)∕G(�)
)

b0 + b1(G
�(�)∕G(�))

(33)

v1,2(x, t) = ei� ×
4Ψ�Ea0 + �a0

�

B ∓
√

Φ
��

B +
√

Φ tan h
��

√

Φ∕2A
�

�

��

4ΨEb0� + 2ΨBb0� ±
�

b0� − 3a0�
�
√

Φ
�

B +
√

Φ tan h
��

√

Φ∕2A
�

�

�� ,
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where �(x, t) = (x� + 2��t�)∕� , �(x, t) =
(

−�x� +
2�2(A2�2−Φ)

9�Φ
t�
)

∕�.
For B ≠ 0 , Ψ = A − C and Φ = B2 + 4EΨ < 0 , ( C1 ≠ 0,C2 = 0;C1 = 0,C2 ≠ 0):

where �(x, t) = (x� + 2��t�)∕� , �(x, t) =
(

−�x� +
2�2(A2�2−Φ)

9�Φ
t�
)

∕�.
If B ≠ 0 , Ψ = A − C and Φ = B2 + 4EΨ = 0 , the solution is inconsistent.
Once B = 0 , Ψ = A − C and Δ = ΨE > 0 , ( C1 ≠ 0,C2 = 0;C1 = 0,C2 ≠ 0):

where �(x, t) = (x� + 2��t�)∕� , �(x, t) =
(

−�x� +
2�2(A2�2−4Δ)

36�Δ
t�
)

∕�.
After B = 0 , Ψ = A − C and Δ = ΨE < 0 , ( C1 ≠ 0,C2 = 0;C1 = 0,C2 ≠ 0):

where �(x, t) = (x� + 2��t�)∕� , �(x, t) =
(

−�x� +
2�2(A2�2−4Δ)

36�Δ
t�
)

∕�.
Solution family 2: Employing the values involved in case 2 in Eq.  (32) and combining 

with Eqs. (8)–(12) the following wave solutions are achieved:
For B ≠ 0 , Ψ = A − C and Φ = B2 + 4EΨ > 0 , ( C1 ≠ 0,C2 = 0;C1 = 0,C2 ≠ 0):

(34)

v3,4(x, t) = ei� ×
4ΨE�a0 + a0

�

B ∓
√

Φ
��

B +
√

Φ cot h
��

√

Φ∕2A
�

�

��

4ΨEb0� + 2ΨBb0� ±
�

b0� − 3a0�
�
√

Φ
�

B +
√

Φ cot h
��

√

Φ∕2A
�

�

�� ,

(35)

v5,6(x, t) = ei� ×
4ΨEa0 + a0

�

B ∓
√

Φ
��

B −
√

−Φ tan

��
√

−Φ∕2A
�

�

��

4ΨEb0 + 2ΨBb0 ±
�

b0 − 3a0�
�
√

Φ
�

B −
√

−Φ tan

��
√

−Φ∕2A
�

�

�� ,

(36)

v7,8(x, t) = ei� ×
4ΨE�a0 + �a0

�

B ∓
√

Φ
��

B +
√

−Φ cot

��
√

−Φ∕2A
�

�

��

4ΨEb0� + 2ΨBb0� ±
�

b0 − 3a0�
�
√

Φ
�

B +
√

−Φ cot

��
√

−Φ∕2A
�

�

�� ,

(37)v9,10(x, t) = ei� ×
E�a0Ψ ∓ �a0Δ tan h

��
√

Δ∕A
�

�

�

Eb0�Ψ ±
�

b0� − 3a0�
�

Δ tan h
��

√

Δ∕A
�

�

� ,

(38)v11,12(x, t) = ei� ×
Ea0Ψ ∓ a0Δ cot h

��
√

Δ∕A
�

�

�

Eb0Ψ ±
�

b0 − 3a0�
�

Δ cot h
��

√

Δ∕A
�

�

� ,

(39)v13,14(x, t) = ei� ×
Ea0Ψ ∓ a0Δ tan

��
√

−Δ∕A
�

�

�

Eb0Ψ ±
�

b0 − 3a0�
�

Δ tan

��
√

−Δ∕A
�

�

� ,

(40)v15,16(x, t) = ei� ×
E�a0Ψ ± �a0Δ tan

��
√

−Δ∕A
�

�

�

Eb0�Ψ ∓
�

b0� − 3a0�
�

Δ tan

��
√

−Δ∕A
�

�

� ,
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where �(x, t) = (x� + 2��t�)∕� , �(x, t) =
(

−�x� +
2�2(A2�2−Φ)

9�Φ
t�
)

∕�.
Utilizing B ≠ 0 , Ψ = A − C and Φ = B2 + 4EΨ < 0 , ( C1 ≠ 0,C2 = 0;C1 = 0,C2 ≠ 0):

where �(x, t) = (x� + 2��t�)∕� , �(x, t) =
(

−�x� +
2�2(A2�2−Φ)

9�Φ
t�
)

∕�.
When B ≠ 0 , Ψ = A − C and Φ = B2 + 4EΨ = 0 , the solution is inconsistent.
Once B = 0 , Ψ = A − C and Δ = ΨE > 0 , ( C1 ≠ 0,C2 = 0;C1 = 0,C2 ≠ 0):

where �(x, t) = (x� + 2��t�)∕� , �(x, t) =
(

−�x� +
2�2(A2�2−4Δ)

36�Δ
t�
)

∕�.
If we consider B = 0 , Ψ = A − C and Δ = ΨE < 0 , ( C1 ≠ 0,C2 = 0;C1 = 0,C2 ≠ 0):

where �(x, t) = (x� + 2��t�)∕� , �(x, t) =
(

−�x� +
2�2(A2�2−4Δ)

36�Δ
t�
)

∕�.

(41)v17,18(x, t) = ei� ×
4ΨE� + �

�

B ±
√

Φ
��

B +
√

Φ tan h
��

√

Φ∕2A
�

�

��

12ΨE� + 3B�
�

B +
√

Φ tan h
��

√

Φ∕2A
�

�

�� ,

(42)v19,20(x, t) = ei� ×
4ΨE +

�

B ±
√

Φ
��

B +
√

Φ cot h
��

√

Φ∕2A
�

�

��

12ΨE� + 3B�
�

B +
√

Φ cot h
��

√

Φ∕2A
�

�

�� ,

(43)v21,22(x, t) = ei� ×
4ΨE� + �

�

B ±
√

Φ
��

B −
√

−Φ tan

��
√

−Φ∕2A
�

�

��

12ΨE� + 3B�
�

B −
√

−Φ tan

��
√

−Φ∕2A
�

�

�� ,

(44)v23,24(x, t) = ei� ×
4ΨE� + �

�

B ±
√

Φ
��

B +
√

−Φ cot

��
√

−Φ∕2A
�

�

��

12ΨE� + 3B�
�

B +
√

−Φ cot

��
√

−Φ∕2A
�

�

�� ,

(45)v25,26(x, t) = ei� ×
2Δ� ± 2�Δ tan h

��
√

Δ∕A
�

�

�

6Δ� + 3B�
√

Δ tan h
��

√

Δ∕A
�

�

� ,

(46)v27,28(x, t) = ei� ×
2Δ� ± 2�Δ cot h

��
√

Δ∕A
�

�

�

6Δ� + 3B�
√

Δ cot h
��

√

Δ∕A
�

�

� ,

(47)v29,30(x, t) = ei� ×
2Δ� ∓ 2�Δ tan

��
√

−Δ∕A
�

�

�

6Δ� − 3B�
√

−Δ tan

��
√

−Δ∕A
�

�

� ,

(48)v31,32(x, t) = ei� ×
2Δ� ± 2�Δ cot

��
√

−Δ∕A
�

�

�

6Δ� + 3B�
√

−Δ cot

��
√

−Δ∕A
�

�

� ,
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Solution family 3: Engaging the values from case 2 in Eq.  (32) and merging with 
Eqs. (8)–(12) the analytic wave solutions are found as follows:

Under the conditions B ≠ 0 , Ψ = A − C and Φ = B2 + 4EΨ > 0 , 
( C1 ≠ 0,C2 = 0;C1 = 0,C2 ≠ 0):

where �(x, t) = (x� + 2��t�)∕� , �(x, t) =
(

−�x� +
2�2(A2�2−Φ)

9�Φ
t�
)

∕�.
If B ≠ 0 , Ψ = A − C and Φ = B2 + 4EΨ < 0 , ( C1 ≠ 0,C2 = 0;C1 = 0,C2 ≠ 0):

where �(x, t) = (x� + 2��t�)∕� , �(x, t) =
(

−�x� +
2�2(A2�2−Φ)

9�Φ
t�
)

∕�.
When B ≠ 0 , Ψ = A − C and Φ = B2 + 4EΨ = 0 , the solution is inconsistent.
For the usage of B = 0 , Ψ = A − C and Δ = ΨE > 0 , ( C1 ≠ 0,C2 = 0;C1 = 0,C2 ≠ 0):

where �(x, t) = (x� + 2��t�)∕� , �(x, t) =
(

−�x� +
2�2(A2�2−4Δ)

36�Δ
t�
)

∕�.
If we assign B = 0 , Ψ = A − C and Δ = ΨE < 0 , ( C1 ≠ 0,C2 = 0;C1 = 0,C2 ≠ 0):

(49)

v33,34(x, t) = ei� ×
4ΨE�

√

Φ ± �

�

4EΨ + B2 ±
√

Φ
��

B +
√

Φ tan h
��

√

Φ∕2A
�

�

��

�
√

Φ
�

8EΨ ±
�

2B ±
√

Φ
��

B +
√

Φ tan h
��

√

Φ∕2A
�

�

��� ,

(50)

v35,36(x, t) = ei� ×
4ΨE�

√

Φ ± �

�

4EΨ + B2 ±
√

Φ
��

B +
√

Φ cot h
��

√

Φ∕2A
�

�

��

�
√

Φ
�

8EΨ ±
�

2B ±
√

Φ
��

B +
√

Φ cot h
��

√

Φ∕2A
�

�

��� ,

(51)

v37,38(x, t) = ei� ×
4ΨE�

√

Φ ± �

�

4EΨ + B2 ±
√

Φ
��

B −
√

−Φ tan

��
√

−Φ∕2A
�

�

��

�
√

Φ
�

8EΨ ±
�

2B ±
√

Φ
��

B −
√

−Φ tan

��
√

−Φ∕2A
�

�

��� ,

(52)

v39,40(x, t) = ei� ×
4ΨE�

√

Φ ± �

�

4EΨ + B2 ±
√

Φ
��

B +
√

−Φ cot

��
√

−Φ∕2A
�

�

��

�
√

Φ
�

8EΨ ±
�

2B ±
√

Φ
��

B +
√

−Φ cot

��
√

−Φ∕2A
�

�

��� ,

(53)v41,42(x, t) = ei� ×
2�Δ ± �

�

2Δ ±
√

Δ
�

tan h
��

√

Δ∕A
�

�

�

2�

�

2Δ ± Δ tan h
��

√

Δ∕A
�

�

�� ,

(54)v43,44(x, t) = ei� ×
2�Δ ± �

�

2Δ ±
√

Δ
�

cot h
��

√

Δ∕A
�

�

�

2�

�

2Δ ± Δ cot h
��

√

Δ∕A
�

�

�� ,

(55)v45,46(x, t) = ei� ×
2�Δ ∓ i�

�

2Δ ±
√

Δ
�

tan

��
√

−Δ∕A
�

�

�

2�

�

2Δ ∓ iΔ tan

��
√

−Δ∕A
�

�

�� ,
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where �(x, t) = (x� + 2��t�)∕� , �(x, t) =
(

−�x� +
2�2(A2�2−4Δ)

36�Δ
t�
)

∕�.

Remarks The employed schemes are provided ample exact analytic solutions of the space 
and time fractional quadratic-cubic nonlinear Schrodinger equation stands for optical sol-
itons and other solutions successfully. The found results are compared with those avail-
able in the earlier study. Instantaneously, Attia et al. (2021) have discussed the analytical 
and semi-analytical solutions to the fractional order quadratic-cubic nonlinear Schrodinger 
equation by using modified Khater method, the generalized exp-(−�(�))-expansion method 
and Adomian decomposition method (Attia et al. 2021). Biswas et al. 2017 have studied 
the same equation of integer order by semi-inverse variational principle. Pal et  al. 2017 
obtained chirped self-similar wave solutions for the same equation of integer order. It is 
worth-mentioning that the found solutions in this exploration beers the newness and gen-
erality than the earlier recorded results. As this research article have made available much 
more solutions, they might be useful to illustrate the concerned theme in wide range.

4  Graphical representations of found solutions

The wave solutions of the space and time fractional quadratic-cubic nonlinear Schrodinger 
equation stands for optical solitons and other solutions are successfully achieved by employing 
the improved tanh method and the rational 

(

G�∕G
)

-expansion method. The solutions are fig-
ured out in 3D and 2D regions to depict their physical appearances in the shape of kink type, 
anti-kink type, singular kink type, bell shape, anti-bell shape, singular bell shape, periodic, 
singular periodic etc. We portray some of figures as follows:

5  Conclusions

In this paper, we unravel the space and time fractional Schrodinger equation with the quad-
ratic-cubic nonlinearity by making use of the improved tanh method and the rational 

(

G�∕G
)

-expansion method. This effort accumulates a heap of closed form traveling wave solutions 
in different forms such as rational function, trigonometric function and hyperbolic function. 
The well-furnished solutions are portrayed in two- and three-dimensional spaces for illustrat-
ing their physical phenomena which brings out different shape solitons and other solutions 
like kink type, anti-kink type, singular kink type, bell shape, anti-bell shape, singular bell 
shape, periodic, singular periodic etc. A comparable study of the acquired results is made with 
those of literature and claimed the newness, novelty and generality of our found outcomes. 
The attained solutions might be advantageous for better comprehending the mechanisms of 
the intricate nonlinear anatomical phenomena alongside further applications in real-world life. 
The whole inspection ensures that the adopted techniques are efficient, productive and con-
cise tools which will be considered to unravel any other nonlinear partial differential equations 
arising in applied mathematics, mathematical physics and engineering. (Figs. 1, 2, 3, 4, 5, 6, 
7, 8, 9, 10).

(56)v47,48(x, t) = ei� ×
2�Δ ± i�

�

2Δ ±
√

Δ
�

cot

��
√

−Δ∕A
�

�

�

2�

�

2Δ ± iΔ cot

��
√

−Δ∕A
�

�

�� ,
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Fig. 1  a 3D plot of (3.1.7) for � = � = � = d1 = 1 , a1 = � = −1 , � = 0.5 within the range −0.1 ≤ x, t ≤ 0.1 . 
b 2D plot of (19) for � = � = � = d1 = 1 , a1 = � = −1 , � = 0.5 , t = 2 within the interval −5 ≤ x ≤ 5

Fig. 2  a 3D shape of (3.1.10) for � = � = � = c0 = 1 , = −1.75 , � = 3 , a0 = −4 within the range 
−10 ≤ x, t ≤ 10 . b 2D profile of (22) for � = � = � = c0 = 1 , = −1.75 , � = 3 , a0 = −4 , t = 0.5 in the inter-
val −10 ≤ x ≤ 10
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Fig. 3  a 3D outline of (24) for � = � = � = 1 , � = −1 , � = 3 , a0 = −3 , c0 = 0.5 within the interval 
−5 ≤ x, t ≤ 5 . b 2D sketch of (24) for � = � = � = 1 , � = −1 , � = 3 , a0 = −3 , c0 = 0.5 , t = 2 in the interval 
−15 ≤ x ≤ 15

Fig. 4  a 3D plot of (44) for � = c0 = 1 , � = 0.5 , � = −0.5 , � = −1 , � = 3 , a0 = −2 in the range 
−10 ≤ x, t ≤ 10 . b 2D shape of (44) for � = c0 = 1 , � = 0.5 , � = −0.5 , � = −1 , � = 3 , a0 = −2 , t = 1 in the 
interval −10 ≤ x ≤ 10



Further innovative optical solitons of fractional nonlinear…

1 3

Page 15 of 19 562

Fig. 5  a 3D shape of (40) for � = � = � = 1 , � = 6 , � = −1 within the interval −15 ≤ x, t ≤ 15.b 2D figure 
of (50) for � = � = � = 1 , � = 6 , � = −1 , t = 2 within −10 ≤ x ≤ 10

Fig. 6  a. 3D outline of (40) for � = � = a0 = b0 = A = E = 1 , � = � = 0.001 , C = 2 within the interval 
−15 ≤ x, t ≤ 15 . b. 2D shape of (40) for � = � = a0 = b0 = A = E = 1 , � = � = 0.001 , C = 2 , t = 2 in the 
range −15 ≤ x ≤ 15
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Fig. 7  a 3D sketch of (41) for � = � = A = 1 , � = 1.75 , � = −0.3 , B = 1.5 , C = 2 , E = −1 in the interval 
−5 ≤ x, t ≤ 4 . b 2D drawing of (41) for � = � = A = 1 , � = 1.75 , � = −0.3 , B = 1.5 , C = 2 , E = −1 , t = 0.5 
in −5 ≤ x ≤ 2

Fig. 8  a 3D shape of (45) for � = C = E = 1 , � = � = 0.5 , � = 0.1 , A = 2 within the interval 
−15 ≤ x, t ≤ 15 . b 2D outline of (45) for � = C = E = t = 1 , � = � = 0.5 , � = 0.1 , A = 2 in the range 
−15 ≤ x ≤ 15
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Fig. 9  a. 3D plot of (53) for � = A = 1 , � = � = 0.01 , � = −5 , C = 3 ., E = −1 within the interval 
−5 ≤ x, t ≤ 5 . b 2D sketch of (53) for � = A = t = 1 , � = � = 0.01 , � = −5 , C = 3 , E = −1 within the range 
−3 ≤ x ≤ 3

Fig. 10  a. 3D outline of (56) for � = A = E = 1 , � = � = 0.01 , � = −5 , C = 3 within the range 
−10 ≤ x, t ≤ 10 . b 2D shape of (56) for � = A = E = t = 1 , � = � = 0.01 , � = −5 , C = 3 in the interval 
−13 ≤ x ≤ 13
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