Optical and Quantum Electronics (2021) 53:522
https://doi.org/10.1007/511082-021-03189-z

®

Check for
updates

Propagation of diverse solitary wave structures
to the dynamical soliton model in mathematical physics

Muhammad Bilal' - Usman Younas' - Jingli Ren’

Received: 16 July 2021 / Accepted: 7 August 2021 / Published online: 14 August 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

The extended sinh-Gordon equation expansion, the extended rational sine—cosine/sinh—
cosh, and modified direct algebraic methods are employed to investigate the different soli-
tary wave solutions to the (2+ 1)-dimensional soliton model that plays a significant role
in mathematical physics. The novel solutions are obtained in the different dark, bright,
singular, and combined forms. Moreover, hyperbolic, trigonometric, rational, and sin-
gular periodic wave solutions are also recovered. Some solutions have been exemplified
by graphical to understand the physical deportment of the proposed soliton model. The
achieved outcomes are verified by putting them into the governing equation with the aid
of Mathematica. The acquired results are valuable in grasping the elementary scenarios of
nonlinear sciences as well as in the related nonlinear higher dimensional wave fields. The
outcomes show that the governing model theoretically possesses extremely rich structures
of solitary waves. Hence our techniques via fortification of symbolic computations pro-
vide an active and potent mathematical implement for solving diverse benevolent nonlinear
wave problems.

Keywords Solitary wave structures - (2+ 1)-Dimensional soliton - Three symbolic
computational methods

1 Introduction

The mathematical models of the nonlinear physical phenomena are illustrated explic-
itly by the nonlinear evaluation equations (NLEEs) that have a significant influence on
the investigation of nonlinear sciences. So, recently, obtaining exact soliton solutions
to NLEEs with the help of computer programs that make repetitious and monotonous
mathematical computations easier, has been a marvelous field for analysts and research-
ers. NLEEs play out an extraordinary part in depicting the actual behavior of real phe-
nomena and dynamical processes in fluid mechanics, optical fibers, material science,
geochemistry, ocean engineering, geophysics, mathematical physics, plasma physical
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science, and numerous other logical regions. Nonlinear science is one of the best aston-
ishing fields for investigators in this bleeding-edge season of science. To track down
the analytically or exact results has been the focal point of researchers because of its
fundamental commitment to examine the genuine element of the frameworks. As we all
know, scholars have devised several methodologies and mathematical tools to aid in the
discovery of exact solutions to NLEEs, and each method is tailored to a certain sort of
solution (Al-Ghafri 2018; Lu et al. 2019; Ali et al. 2018; Younis et al. 2020; Bulut
et al. 2017; Arshad et al. 2020; Sulaiman and Bulut 2019, 2020; Aslan and Inc 2017a,
b; Aslan et al. 2017; Inc 2017; Inc et al. 2016; Barman et al. 2021; Hosseini et al.
2020; Kumar et al. 2021; Ding et al. 2019; Chen et al. 2021; Raza et al. 2020; Bilal
et al. 2021b).

Moreover, solitons are stable, efficient, self-restricted, and persistent solitary waves that
do not disperse and retain their individuality as they pass through a medium. The funda-
mental perception about a soliton was shaped by Russell in 1844, attributable to a seren-
dipitous idea in 1834 on the Edinburgh—Glasgow Canal. He named it the “wave of trans-
lation”. In acknowledgment of its single pulse form, this phenomenon was later named
as a solitary wave. In this way, Boussinesq and Rayleigh, were between the preeminent
specialists who executed hypothetical contemplation of a solitary wave. From that point
forward, the Solitary wave’s examination has mounted to a prime field of examinations
of solitary waves. The stable, powerful, self-restricted and enduring solitary waves which
do not scatter and maintain their uniqueness as they travel in a medium- are ubiquitous
in nature are refereed to solitons and nonlinear wave excitation. Solitons in fact the result
of non-linearity (a tendency to increase the wave slope) and dispersion (the wave atten-
tive tendency). They emerge in numerous crucial areas of technology and physics from
high-piece rate media communications and controllable soliton super-continuum genera-
tion in ultra-fast photonics, condensed matter, and plasma physical science to elementary
particle physics, cosmology, and oceanic monster (rogue) waves as well as Bose—Einstein
condensates. Due to its Galilean symmetry the soliton is characterized by its own de Bro-
glie wavelength analogue as the self-localized wave entity. On the other hand, the soliton as
an extended particle-like entity, due to nonlinear self-interaction, becomes a bound state in
its own self-induced trapping potential and as a result, possesses negative self-interaction
(binding) energy. Ones may obtain the information about the form and the shape of the sol-
itons. The structural stability of the solitons and in the same way as nuclear binding energy,
the degree to which the quasi particles that make up the soliton are tightly bound together
can be considered (Russell 1844; Nguepjouo et al. 2014). Furthermore, different authors
studied via various schemes to search the exact traveling wave solution of the NLEEs. In
published work various computational techniques have been applied to discuss the exact
solutions such as, the (G’ /G)-expansion method (Kazi Sazzad Hossain et al. 2017), the
anstaz approach (Shi and Zhang 2020), the trial equation technique (Yildirim 2019), the
adomian decomposition method (Malaikah 2020), the variation iteration method (VIM)
(Anjum and He 2019), the modified exp(—@({))-expansion method (Baskonus et al.
2016), the direct algebraic method (Seadawy al. 2019), the extended Fan sub-equation
method (Osman et al. 2020), the F-expansion technique (Seadawy et al. 2020), the gener-
alized exponential rational function method (Ghanbari et al. 2019), new @°-model expan-
sion method (Seadawy et al. 2021) and several others (Mahak and Akram 2019; Gaber
et al. 2019; Chen et al. 2020; Dusunceli et al. 2021; Younis et al. 2017; Tian 2020; Ilie
et al. 2018; Bilal et al. 2021d; Younas and Ren 2021; Inc and Kilic 2017; Kilic and Inc
2017; Tchier et al. 2016a, b, 2017a, b, ¢c; Osman and Ali 2020; Malik et al. 2021; Tahir
etal. 2021; Kayum et al. 2021; Ali et al. 2020; Osman 2017; Osman et al. 2018).

@ Springer



Propagation of diverse solitary wave structures to the dynamical... Page30f20 522

The key idea of this study is to conceive a variety of soliton solutions in the (2 + 1)-dimen-
sional soliton equation by employing three analytical methods. In this article we will consider
the (2+ 1)-dimensional soliton equation given by Chowdhury et al. (2021)

M+ WD =0,
@, + D+ (PP, =0, o

where * represents the complex conjugate. The real and imaginary functions are
D =D(x,y,1), and ¥ = ¥ (x,y, t) respectively. Here x, y and 7 represent the spatial domains
and time respectively. The governing equation is similar to integrable Zakharov equation
in plasma physics which shows the significant role in several physical applications and
governs the behavior of weakly nonlinear ion-acoustic waves in a plasma. The physically
most important example involves the interaction between the Langmuir and ion-acoustic
waves in plasmas. So far many studies for the (2 4+ 1)-dimensional soliton have been done
in literature, for detail see refrences Ye and Zhang (2011), Maccari (1996), Porsezian
(1997), Yan (2002) and Darvishi et al. (2016). The authors attained a few solutions of
the above equation. The more effective, novel solitary wave solutions of the given model
will be achieved via three proposed methods. The discovered solutions are novel and have
potential applications in nonlinear sciences.

The content of this manuscript is summarized as follows: Extraction of soliton solutions
is given in Sect. 2. The results and discussion along with the graphical representation are pre-
sented in Sect. 3. The conclusion is revealed in Sect. 4.

2 Extraction of soliton solutions

In this section, the application of the proposed methods are utilized for Eq. (1) to establish the
new soliton solutions. Suppose the following traveling wave transformation:

P(x,y, 1) = HC)e?, d(x,y,0)=G(E) 0 =Ix+py+ct, E =Lx+Py=2l), (2

where [/, p, ¢, L and P are constants; H(¢) and G(¢) represent real functions. By inserting
Eq. (2) into Eq. (1), we attain,

L*H"(§) = (c+ PYH() + H)G() = 0. 3

(P —2DG'(©) + (H* () =0. “)
By integrating Eq. (4), we obtain

H*({)
(P—20)

G¢) = +a, (&)

where a is the constant of the integration and P # 2/. Substituting Eq. (5) into Eq. (4), we
get

(a—c—lz) 1

R 2 &) 1" —
T HO - G HO+H O =0. ©6)
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2.1 Solutions via extended ShGEEM

In this subsection, extended ShGEEM (Bilal et al. 2021a) is employed. The homogene-
ous balance between the linear term H” and the non-linear term H° to determine the
value of m in Eq. (6), yields m = 1. The solution of Eq. (6), becomes

H(w) =6, sinh(w) + f, cosh(w) + B, 7
H() = = 6, i sech({) = p, tanh({) + f, (8)
H() = % 6, csch({) £ B coth(§) + f. 9)

Substituting Eq. (7) and its second derivative along with @’ = sinh(w) and/or
w' = cosh(w) into Eq. (6), formulate a polynomial in terms of hyperbolic functions. A
system of strategic equations is attained by collecting the coefficients of same power of the
hyperbolic function and equating each summation to zero. Furthermore, by using Mathe-
matica, solving the system of strategic equations for the values of the coefficients involved.
Yields the solution sets as follows.

Set—1: f,=0, p,=0, 8 =\202P-2]), c=a—P+I2
yew-z2 o yie-2 o I
v TR >

Set—3: f,=0, p, =\202P=2I), 5 =0, c=a—F-2I2
VIA(P = 2]) VIA(P -2 el

Set—4: p,=0, f=- 6, = ,c=a

v: T >

Set—2: f,=0,p =

For Set-1:

Po=0, p, =0, 6, = \V202(P=2]), c=a—I>+ 12

Bright and singular solitons can be constructed as

P (x,y,0) = <i\/§\/L2(P — 2Dsech(L(=2It + Py + x))) x elbtpy+en) (10)

@, (x,y.1) = (21 ( V2 V2P = 2D)sech(L(=211 + Py + x))) ta. 11
Y (x, 1) = (\/E V(P = 2D)csch(L(=211 + Py + x))) x illrtpren (12)
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@17, 1) (21 <\/_ 2\/I2(P = 2)esch(L(=2it + Py +x))) (13)
For Set-2:
VIA(P-2I) VIA(P -2i) , 12
=0, §, = 5, = —a-P- =

s 01 — , C= .
it 2

We formulate bell shaped-shock wave and combo singular soliton, respectively.

Wiyt = < VIA(P = 2D tanh(L(=2lt + Py + ) | iv/I2(P —2Djsech(L(=2lt + Py + x))> T

v: v:
(14)
®y(x.y.1) 1 V/L2(P — 2I) tanh(L(=2It + Py + x)) + i\/L2(P — 2l)sech(L(=2It + Py + x)) : N
X, v, 1) = a
A pT ) 2 7
15)
Vet = < VIA(P = 2D coth(L(=2lt + Py +)) | VIA(P = 2Djesch((=2l1 + Py +2)) > T
e V2 V2 '
(16)
syt = — L VPP =2Dcoh(L(=2t+ Py+x) | VAP = 2Desch(L=2ir + Py + ) ? .
X, y,1) = a
S =0p) N 7
a7
For Set-3:

Bo=0, fy = V20L2(P-2l), 5, =0, c=a—I*-2L%

We attain shock wave and singular soliton, respectively.

W(x, y, 1) = (—\/E VI2(P = 20) tanh(L(~211 + Py + x))) x ilpyeen, (18)

Ds(x,y,1) =

( V2VI2(P - 21) tanh(L(~ 21t+Py+x))) a (19

(2[

Wer, v, 1) = (V2VIAP = 2D coth(L(=211 + Py + 1) ) x e+, 20)

¢6(x’y’

(\/_ VIZ(P = 21) coth(L(— 2lt+Py+x))) @n

(2[
For Set-4:

2
bo=0, p=—- , 6 = ,c=a—l2—L

V2 V2 2

We formulate bell shaped-shock wave and combo singular soliton, respectively.
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V/L2(P = 2]) tanh(L(=2It + Py + x)) . iVI2(P = 2D)sech(L(=21t + Py + x)) >

5”(’ J): —
[ < V2 NG

% ei(lx+p}*+ct) .
(22)
® (v t) 1 \/L*(P — 2I) tanh(L(=2It + Py + x)) N iV/L2(P — 2l)sech(L(=2It + Py + x)) : +
xX,y,1) = - a
1D =0 TR NG NG
(23)
o ( VIZP = 2Desch(L(=2it + Py +x)) /LA = 20) coth(L(=2lt + Py + x)) ) T
X, y,1) = - etrTPyTel |
' V2 V2
(24)
By (1) = 1 VLA(P = 2Desch(L(=2It + Py + 1)) V/LA(P = 2]) coth(L(=2lt + Py +x)) : e
S0 = TP NG NG
(25)

2.2 Solutions via extended rational sine-cosine method (Rehman et al. 2020)

By applying balance rule in above Eq. (6), we have n = 1, the proposed method has the
solution to Eq. (6) as follows:

ag sin(pg)

MO = ool

(26)

Plugging Eq. (26) along its derivative into Eq. (6) and by equating the coefficients of each
powers of cos(p{)™ to 0, we seek the following nonlinear equations. On the above system
of equations through symbolic equation solver Mathematica, we secure the solution sets as
follows:

e 2
Set —1: pz%m, ag=x,V2l—-PVa-c-B, aj=ay, a, =0.
2L

A/ — 2
Set — 2 : p= M, aozial\/Z[_P\/a_C_IZ’ a =a;, a, = +a,.

Periodic solutions for the Eq. (1) corresponding to set 1 can be formulated as:

V- P2(=20t+P -
¥, (x,y,1) =\/21—P\/a—c—12tan< ares \(/_ b y+x)> x eilbetpyten,
2

e2))
—_— 2
D, (x,y,1) = (ZII_P)<\/21—P\/a—c— l2tan< —a+c+lz\(/—§2h+Py+x))> +a.
(28)

V—a+c+P(-2lt+Py+ (ebpyte
¥y, y,0) = —\/21—P<Va—c—12>tan< are \(/_ ) x)>><e’(lx+”’+").
2

(29)
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—_— 2
D ,(x,y,1) = (ZII—P) <—\/21—P(\/a—c— 12>tan< —a+c+l2\(/—§21t+Py+x)>) +a.

(30)
Similarly, mixed periodic solutions for Eq. (1) corresponding to set 2 can be constructed
as:

V2l —P\a-c—Psin <\/§\/—a + o+ (=2l + Py +x)>
cos (\/E\/—a + ¢ + 2(-2It + Py +x)> +1

X ei(lx+py+ct)

Yy (xy,0) =

€1Y)
2
1 \/21—P\/a—c—lZSin(\/z\/—a+c+lz(—21t+Py+x)>

D, (x,y,1) = +a.

@i-P) cos(ﬁ\/—a+c+l2(—2lz+Py+x))+1

(32)
V2l—PVa-c—PEsin (\/5\/—51 +c+ 12(—th+Py+x))
cos (\/E\/—a +c+ lz(—2lt+Py+x)> -1

X ei(bc+py+ct)

szz(% .1 =

(33)

2
|| Va=PVa=c=P sin(ﬁ\/—a+c+12(—21t+1>y+x)>
D,,(x,y,1) = +a.

@I-P) cos(\/5\/—61+c+12(—2h+Py+x)> -1

(34
V2= PVa-c-Psin (x/E\/—a + ot P(=21i+Py+ x)) ‘
ng(x’y, t) — X el(lx+py+cr).
cm(y@V—a+c+P@Qh+Py+m>+l
(35)
2
| V2I-PVa—c—-1I sin(\/E\/—a+c+lz(—21t+Py+x)>
D, ; (x,y,1) = - + a.
* @l-P) cos<\/§\/—a+c+12(—2h+Py+x)>+1
(36)
V2i-PVa—c-P sin(\/5\/—51+c+l2(—21t+Py+x))
'{/2’4()6,)), Z l) - _ X ei(1x+py+t,‘t)'
-~ (ﬁ\/—a + o+ (=2l + Py +x)> —1
(37)
2
| V2I-PVa—c—-1I sin(\/E\/—a+c+lz(—21t+Py+x)>
4), (X,J’J)= - +a.
. @l-P) cos<\/§\/—a+c+12(—2h+Py+x)>—1
(38)
OR

Suppose that Eq. (6) has solutions of the form
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ay cos(pf)

He = @ + a; sin(pl)’

(39)

Inserting Eq. (39) along its derivative into Eq. (6) and by equating the coefficients of each
powers of sin(p¢)™ to 0, we secure the following nonlinear equations. On simplifying the
above set of equations with the assistance of Mathematica, we secure the following solu-
tion sets:

va 2
Set—3: p= %m, ag=x,V2l—-PVa-c-B, aj=ay, a, =0.
2L

1/ — 2
Set — 4 : P=W,(lo=ia1v21—P\/a—c—lz,alza],azzial,

Singular periodic solutions for Eq. (1) corresponding to set 3 can be derived as :

V- P(=2it+P ;
Y,y ) =V20—-PVa—c—1I cot( arer \(/_ * y+x)) x eltpy+en),
2

(40)

2
A 1 2(—
d53,1(x,y,t)=ﬁ<V21—P\/a—c—lzcot( a+c+l\(/521t+Py+x))> +a.

(41)

vVe_atc+P(— ,
Vs, y,1) = Va2l - P<—\/a —c- lz) cot < aret l\(/_21t s x)> x elrpyten),
2

(42)
2
1 V—a+c+P(=2lt+Py+
(Ds,z(x,y,z)=(21_P)<\/21—P<—\/a—c—lz>cot< are \(/5 J x)>> +a.
(43)

Similarly, combo singular periodic solutions for Eq. (1) corresponding to set 4 are :
V2l -PVa—c—[cos (\/5\/ —a+c+P(-2lt+Py+ x))
sin (\/E\/ —a+c+ 2(=2it+ Py +x)) +1

X ei(lx+py+ct)

g/4,l(x’y! t) =

(44)

2
1 \/ZZ—P\/a—c—lzcos(\/5\/—(1+c+l2(—21t+Py+x))
¢4,1(X’y, t) = +a.

@2-P sin<\/§\/—a+c+lz(—21z+Py+x))+1

(45)

V2= P\Va—c—Pcos (\/E\/—a ¥ o+ B(=2lt+ Py + x))
sin (\/5\/ —a+c+ (=2t + Py +x)) -1

X ei(lx+py+ct)

T4,2('x’ Ys t) =

(46)
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2
| \/ZZ—P\/a—c—lzcos(\/5\/—51+c+12(—21t+Py+x)>
454,2()(7 Yy, t) = + a.

@-P) sin(\/E\/—a+c+12(—2lz+Py+x)) -1

(47)
\/21—P\/a—c—l%os(\/5\/—61+c+12(—2h+Py+x)> ‘
1[/4’3(]{’ ¥, t) — X et(1x+py+ct)'
sin <\/§\/ —a+c+P(=2lt+Py+ x)) +1
(48)
2
| \/21—P\/a—c—lzcos<\/§\/—a+c+12(—211+Py+x)>
D, 5(x,y,1) = - +a.
@I-P) sin (V2V=a+ e+ B2l + Py+)) + 1
(49)
\/21—P\/a—c—l2cos(\/5\/—41+c+l2(—2h+Py+x)> ‘
1[/4’4(){’ ¥, t) - _ % et(lx+py+ct)'
sin <\/§\/—a +c+ B(=2lt+Py+ x)) -1
(50)
2
| \/ZZ—P\/a—c—lzcos<\/§\/—a+c+lz(—2h+Py+x)>
‘D4,4(x’ y,0 = - + a.
@-P) sin (V2vV=a+ e+ B2+ Py+)) - 1
(6D
2.3 Solutions via extended rational sinh-cosh method (Rehman et al. 2020)
Suppose that the Eq. (6) has the following.
a, sinh(pf)
HE) = —2 (52)

a, + a; cosh(pl)”

Switching Eq. (52) along with its derivative into Eq. (6) and by equating the coefficients of
each powers of cosh(p{)™ to 0, we get collect the following algebraic equation. On solving
these equations with assistance of Mathematica, we gain the following solution sets:

Va—c-P

Set-5: p=—v-o—— a0=ia1\/21—P\/—a+c+lz, a, =ay, a, =0.

V2L
)= \/5\/[1—6‘—[2
=

Set — 6 : ,ao=ia1\/21—P\/—a+c+lz, a =ay, @ =+a.

Dark optical soliton solutions for Eq. (1) corresponding to set 5 can be written as:

Va—-c—B(-2lt+Py+ x)) 5 iletpy+en)
V2

Py, 1) = \/21—P\/—a+ c+ P2 tanh(

(33)
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2
Va—c— B(=2it + P
Ds(x,y,1) = ! <\/2I—Pv—a+c+lztanh< azc- P2y y+x)>) +a.

Ql-p) V2
(54)
\Va—c—P(— i
s, (x,y, 1) = VoI - P(—\/—a +c+ lz) tanh( a-c— P2+ Py +x)> x elbvHpyTen
V2
(55)
2
o Va—c—R(=2lt+ Py +x)
<1>5’2(x,y,t)—(21_P)<\/21—P(—\/—a+c+lz>tanh< \/E >> +a.
(56)

Similarly, mixed optical soliton for Eq. (1) corresponding to set 6 can be acquired as:
V2= PV=a+c+Esinh <\/§\/a e~ (=2l + Py +x)>
cosh <\/§\/a e~ (=2l + Py +x)) +1

lp6,l(x’ Y, [) — X ei(lx+py+ct)'

(57)
2
| \/21—P\/—a+c+lzsinh(\/E\/a—c—lz(—2lt+Py+x)>

D ((x,y,1) = +a.

@l-p) cosh(\/E\/a—c—IZ(—zzz+Py+x)) +1

(38)

V2l = P\/—a + ¢ + P sinh <\/§\/a —c— l2(—2lt+Py+x)>
cosh (ﬁ\/a e — (=2l + Py +x)) —1

X ei(lx+py+ct)

‘Pé’z(x, y, 1) =
(59)
2
| VA= PV=a e Bsinh (\/Ex/a e (=2l + Py + x))

(D6’2(x, y, 1) = + a.

@I=p) cosh (\/E\/a—c—IZ(—zzr+Py+x)) -1

(60)
V2I—P\V—a+c+ Esinh (x/E\/a e P(=2lt+Py+ x))
T6,3 (X, ¥, t) I X ei(lx+/7y+ct).
cosh <\/§\/a —c¢—[2(-2lt+ Py +x)> +1
61)
2
X \/21—P\/—a+c+lzsinh(ﬁ\/a—c—JZ(—zlz+Py+x)>
Q, (x»)’:t): - +a.
o @l-P) c0sh<\/§\/a—c—lz(—21t+Py+x))+1
(62)
V2l = P\/—=a+c+ Esinh (ﬁ\/a — e~ P(=2lt+ Py +x))
1[/6’4()6’ y[) - _ X ei(lx+py+ct)'
cosh (ﬁ\/a —c—DB(=2lt+ Py +x)> -1
(63)
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2
1 \/21—P\/—a+c+1zsinh(\/E\/a—c—ﬂ(—zlt+Py+x))

(1)6’4()6, y, 1) = - + a.
@i-P) cosh(ﬁ\/ﬁ(—ﬂt+l’y+x)> -1
(64)
OR
Suppose the Eq. (6) has the following solutions
a, cosh(pd)
HE) = ———— (65)

a, + a; sinh(p{)

Imposing Eq. (65) along with its derivative into Eq. (6) and by equating the coefficients of
each powers of sinh(p¢)™ to 0, we achieve the following strategic equations. On simplify-
ing above equations through Mathematica, we obtain the following solution sets:

Va—c—-1I
V2L
)= \/z\/a—c—l2
=t

Set—7: p= ,a0=ia1\/21—P\/—a+c+lz, a =ap, a, =0.

Set — 8 : ,aozial\/Zl—P\/—a+c+lz, a =ap, @ ==xa.

Singular optical soliton for Eq. (1) corresponding to set 7 can be compiled as:

Va—-c— 12(—\/_211 +Py+ x)) 5 gilletpyen
2

¥, (,y,1) = V2l = P\/—a+ ¢ + P coth (

(66)

2
Va-— —2(—
¢”@JU)=E£3§<Vﬂ_Pv—a+c+Pcmh< a-¢ l:;h+Py+n>> +a.
(67)

Va—c- l%—\/_zlt +Py+ x)) o Hlctpyien
2

W06,y 1) = V20— P(—\/—a Yot 12> coth(

(68)
2
cb7,2(x,y,t)=ﬁ(VZl—P(—\/—a+c+l2)coth< ~a—c—lz(—\/§21t+Py+x)>> +a.
(69)

Similarly,complex soliton solutions for Eq.(1) corresponding to set 8 can be extracted as:

V2l = P\V/=a + ¢ + cosh (ﬁ\/a—c—lz(—21t+Py+x)>

V130 = x el
sinh <\/5\/a e (=2l + Py +x)) +i
(70)
2
|| VA= PY=axcHPeosh (\/5\/64 e P(=2lt+Py+ x)>
Dy (x,y,1) = +a.
@l-P) sinh<\/§\/a—c—12(—21z+Py+x))+i

(71)
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V2= PV—=a+c+ Ecosh (\/5\/a e P(=2lt+ Py +x)>

g/&z(x,y’ t) — X ei(1x+py+ct).
sinh (\/5\/a (=2t + Py +x)) —i
(72)
2
1 \/2[—P\/—a+c+lzcosh(\/5\/51—0—12(—21t+Py+x)>
Dy H(x,y,1) = +a.
@l-P) sinh<\/§\/a—c—lz(—21t+Py+x)>—i
(73)
V2I—PV=a+c+Ecosh <\/§\/a ——P(=2lt+ Py +x)> ,
T&S(x7y, l) — X el(lx+py+m‘).
sinh <\/§\/a (=2t + Py + x)) n
(74)
2
| \/21—P\/—a+c+lzcosh(ﬁ\/a—c—lz(—21t+Py+x)>
Dy 5(x,y,1) = - +a.
@l-p sinh(\/E\/a—c—ZZ(—zlt+Py+x))+i
(75)
V2I—PV—a+c+ Ecosh (\/E\/a —— (=2l + Py + x)) A
T8,4(x’y’ l’) — X el(lx+p)7+cr)'
sinh (\/z\/a e~ P(=2lt+ Py + x)) _i
(76)
2
1 \/21—P\/—a+c+12cosh(ﬁ\/a—c—12(—2zt+Py+x))
Dy 4(x,y,1) = - +a.
@-p sinh(ﬁ\/a—c—IZ(—21t+Py+x)) —i
7
2.4 Solutions via MDAM (Bilal et al. 2021c¢)
The solution of Eq. (6) as follows
H)=ay+a,Z+b,Z7", (78)

where a,, a; and b, are parameters. Solving Eq. (78) along with (Z' = 9 + Z?) into Eq. (6),
and taking coefficients of Z to zero with similar powers and hence on proceeding with
Mathematica, we get solution sets as follows

Set—1: ay=0, a; =V202(P-2l), b; =0, c=a— > +29L*
Set—2: ay=0,a,=0, b = V2VRLAP—2]), c=a— P + 2912

692L2\/L2(P — 21
Set—3: a,=0, a, =-V2VIZP-2D), b, = V2P -2D9, c=a-I + SYLVLAP —2h +29L2.
VL2 (P -2D)

For Set-1

e 9 <0, we get the following form of solutions
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Dark wave structure

W (x,y.1) = — V2/=9V/I2(P = 2]) tanh (\/—_QL(—2lt +Py+ x)) X e HPyHen 79y

(pl (X, Y, t)

2
( \/_\/ 94/L2(P — 2I) tanh (\/ 9L(-2lt + Py + x))) + a(80)
Singular wave structure

W, (x,y.1) = — V2V/=9V/I2(P = 2I) coth (\/—_8L(—21t +Py+ x)) X el rHeyten gy

(21

®y(x,y,1) = ( Vo= P - 2)coth(\/_L( 211+Py+x))>2+a(82)

It is noted that above results converge to particular solutions for some constant val-
ues of coefficients of hyperbolic functions. For instance, if \/; — 2 then @, — sech?()
which is solitary wave type structure and also @, — csch?(.) which is singular wave
type-1I structure.

e 9> 0, the periodic solutions of following forms are obtained

Y, y,0) = V2V/9VI2(P — 20) tan <\/5L(—2lr +Py+ x)> x ellvmreed g3y

(153()6,)/, 1) =

(f\/'mtanwl( 21t+Py+X)>> (84)

(21
And

Y, (x,y,1) = — \/E\/g\/LZ(P — 2] cot <\/5L(—th + Py + x)) X eBPyren (g5

¢4(x,y, H=

5 (~V2VBVEP = 2D ot (VaL(- 2+ Py+0)) +a (56

(2l

For Set-2
e 9 <0, we get the singular and dark wave structures respectively

V2A/PI2(P = 21) coth (\/—_SL(—2lt +Py+ x))
VA

Po(x,y,1) = x e Prpy+en - (87)

2
|| V2VEEE =2 coth (\/—SL(—th +Py+ x))
Ds(x,y,1) = +a. (88)

@I-P) V-9

And
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V2\/PL2(P = 21) tanh (\/—_sL(—zlt +Py+ x))

t]/6(x’ v, l‘) = X ei(lx+py+ct). (89)
s
2
| V2veE@E = 2d tanh (\/—19L(—21t +Py+ x)>
B (x,y,1) = .
6(X, ¥, 1) =P N +a. (90)
e 39> 0, the periodic solutions are retrieved
V2P L2(P = 21) cot <\/§L(—2h +Py+ x)> _
‘}’7()5’ v, 1) = — \/_ % gixtpy+c). o1
9
2
] V2A/PL2(P = 21) cot (\/EL(—zzt +Py+ x))
@, (x,y,1) = - .
w30 = NG +a ©2)
And
V2A/9PI2(P = 21) tan <\/§L(—2h +Py+ x)> '
5”8()(;’ v, 1) = \/_ % gixtpy+e). (93)
9
2
|| v2veErE=anen (\/EL(—zzt +Py+ x)>
Dy(x,y, 1) = .
00 = G % +a ©%)
For Set-3

e 9 <0, we get the following mixed hyperbolic solution
W, (x, . 1) = V2V/—9VL2(P — 20) tanh (\/ —9L(=2lt + Py + x))
V2P (P = 20) coth <\/—19L(—2lt +Py+ x)) 95)
_ X ei(lx+py+ct).
V=9

By(x,y.1) = —— (sqrtZ\/—_8 VIA(P = 2I) tanh (\/—_8L(—th +Py+ x))

Q2i—P)
2
V2\/PL2(P = 21) coth (\/—19L(—21t +Py+ x)) (96)
- + a.
War

e 9> 0, the periodic solutions are expressed as
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2/ L2(P = 21) cot <\/5L(—21t +Py+ x))

P9iolx, y, 1) =
10 s ©7)
- \/5\/5\/L2(P — 2D tan (\/EL(—ZZI + Py + x)) x i bFpy+en,
| VavEEE Do <\/5L(—21z +Py+ x)>
¢]0(~x’ Y, t) =

21— P) Vo (98)

—V2V9VI2(P = 2] tan (\/5L(—2h +Py+ x)))2 +a.

3 Rseults and discussion

After the successful implementation of three proposed analytical methods to the given
model, we will compare our results with other results in the existing research litera-
ture. Chowdhury et al. (2021) examine the explicit and periodic solutions by utiliz-
ing the double (g, é)-expansion method. Besides, in these references (Ye and Zhang
2011; Maccari 1996; Porsezian 1997; Yan 2002; Darvishi et al. 2016), they (authors)
attained a few solutions to the (2+ 1)-dimensional soliton equation. However, in this
study, we extract a variety of soliton solutions in the form of bright, dark, singular, and
their combined forms by the proposed methods and also gain rational function and sin-
gular periodic solutions. We observe that the retrieved solutions are new and to the best
of our knowledge the applications of these techniques to the (2 + 1)-dimensional soliton
equation have not been reported in the literature beforehand. We analyzed that the out-
comes introduced in this article could be useful in clarifying the actual significance of
different nonlinear applications especially mathematical physics. By substituting the
diverse values to the parameters, variants wave results are discovered from the exact per-
egrinating wave solution. The bright, combo, periodic, singular and dark soliton solu-
tions, which are provided in Egs. (10), (22), (44), (81) and (89) as exhibited in Figs. 1,
2, 3, 4 and 5 respectively. The physically description of some solutions are given below.
Hence physically description of some solutions and discussion of the results segment,
we conclude that our present modifed mathematical methods are fruitful tools for inves-
tigate the further results for nonlinear wave problems in applied science.

4 Conclusion

The exploration of this novel effort is to investigate solitary wave structures in different
shapes like hyperbolic, trigonometric, and rational function solutions including some spe-
cial known solitary wave solutions such as bright dark, singular, and multiple solitons by
three analytical mathematical methods. The achieved results are extraordinary and new
from the existing outcomes in the already published literature. For example, hyperbolic
functions shows up in various regions like, in the computation and speed of special relativ-
ity, in the Langevin function for attractive polarization, in the gravitational capability of a
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chamber and the estimation of as far as possible, in the profile of a laminar jet. Moreover,
the bright soliton solutions will be a big asset in controlling the soliton clutter as men-
tioned in the introduction section. This means that the solitons can be converted to a state
of separation from a state of attraction which would mean clearing the clutter. The bright
soliton solutions will be a major resource in controlling the soliton mess as referenced in
the presentation area (Weisstein 2002). Furthermore, 3D, 2D, and contour profiles are
plotted under the choice of appropriate parameters for getting the physical behavior of
secured solutions. The reported outcomes will be valuable for a comprehensive insight of
the dynamics of the mentioned model, and more, the analysis can be enhanced to other
nonlinear models. The scrutinized wave’s results are loyal to the researchers and also have
imperious applications in mathematical physics. Finally, our solutions have been verified
using the Mathematica by substituting them back into the original equation. We will extend
the proposed methods for some fractional models in a future work.

[¥1(x,y,0)]
07 '

-4 ) 2

Fig.1 The 3D, 2D and their contour wave profiles are presented for Eq. (10)

04

s 1805301

Fig.2 The 3D, 2D and their contour wave profiles are presented for Eq. (22)

1¥4,1(%,y,0)]

1¥4,1(%,y,0)]

4 = 2 4 x

Fig.3 The 3D, 2D and their contour wave profiles are presented for Eq. (44)
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1¥2(x,y,0)]

12

1.0
1¥2(x,y,0)]
0.8

0.3

0.2 N
P, t
0.1 I G(X,y, )l

4 2 2 4

Fig.5 The 3D, 2D and their contour wave profiles are presented for Eq. (89)
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