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Abstract
The main concentration of this article is to extract pure-cubic optical solitons in nonlinear 
optical fiber modeled by nonlinear Schrödinger equation (NLSE). The governing model is 
discussed the with the effect of third-order dispersion, Kerr law of nonlinearity and with-
out chromatic dispersion. We extract the solutions in different forms like, Jacobi’s elliptic, 
hyperbolic, periodic, exponential function solutions including a class of solitary wave solu-
tions such that bright, dark, singular, kink-shape, multiple-optical soliton, and mixed com-
plex soliton solutions. Recently developed integration tools known as �6-model expan-
sion method, generalized exponential rational function method (GERFM) and generalized 
Kudryashov method are applied to analyze the governing model. The studied model is also 
discussed by the concept of modulation instability (MI) analysis. The constraints condi-
tions are explicitly presented for the resulting solutions and singular periodic wave solu-
tions are recovered. Furthermore, for explaining the solutions in physical phenomena, the 
three dimensional, two dimensional, and their related contours graphs are plotted under 
the selection of appropriate parameters. The accomplished results show that the applied 
computational system is direct, productive, reliable and can be carried out in more compli-
cated phenomena. The results show that the studied equation theoretically has extremely 
rich pure-cubic optical structures of nonlinear fiber relevance.

Keywords Pure-cubic solitons · �6-model expansion · Refractive index · Integrability · 
GERFM

1 Introduction

In the science and technology fields like engineering, circuit analysis, chemical physics, 
plasma physics, geochemistry, optical fiber, fluid mechanics, and many others, NLPDEs are 
utilized as a governing equation to discuss the complications of the physical phenomena. 
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To know the behavior of intricate physical occurrence, to calculate the solutions of the gov-
erning NLPDEs is necessary. Generally, the solutions of the NLPDEs are categorized into 
three types as exact solutions, analytic solutions and numerical solutions. Exact solutions 
to NLPDEs play a significant part in nonlinear science, since they can give a lot of physical 
data and more knowledge of the actual parts of the issue and accordingly lead to additional 
applications. Wave phenomena in dissipation , dispersion, reaction, diffusion and convec-
tion are very much important (Younas and Ren  2021; Bilal et al. 2021; Inc et al. 2016; Inc 
and Kilic  2017; Osman et al. 2020; Tchier et al. 2016; Jhangeer et al. 2021; Kilic and Inc  
2017; Tchier et al. 2016a; Bilal et al. 2021a; Tchier et al. 2017; Bilal et al. 2021b).

Moreover, over the past few years, it has been observed the extraordinary progress in the 
theory of soliton. The fundamental perception about a soliton was shaped by Russell in 1844, 
attributable to a serendipitous idea in 1834 on the Edinburgh–Glasgow Canal. He named it 
the “great wave of translation”. In acknowledgment of its single pulse form, this phenomenon 
was later named as a solitary wave. In this way, Boussinesq and Rayleigh, were between the 
preeminent specialists who executed hypothetical contemplations of a solitary wave. From 
that point forward, the Solitary wave’s examination has mounted to a prime field of exami-
nations of solitary waves. The stable, powerful, self-restricted and enduring solitary waves 
which do not scatter and maintain their uniqueness as they travel in a medium- are ubiquitous 
in nature are refereed to solitons and nonlinear wave excitations. Solitons in fact the result 
between non-linearity (trend to increase the wave slope) and dispersion (the wave attentive 
tendency). They emerge in numerous crucial areas of technology and physics from high-piece 
rate media communications and controllable soliton supercontinuum generation in ultrafast 
photonics, condensed matter, and plasma physical science to elementary particle physics, cos-
mology, and oceanic monster (rogue) waves as well as Bose–Einstein condensates. Due to its 
Galilean symmetry the soliton is characterized by its own de Broglie wavelength analogue 
as the self-localized wave entity. On the other hand, the soliton as an extended particle-like 
entity, due to nonlinear self-interaction, becomes a bound state in its own self-induced trap-
ping potential and as a result, possesses negative self-interaction (binding) energy. Ones may 
obtain the information about the form and the shape of the solitons. The structural stability of 
the solitons and in the same way as nuclear binding energy, the degree to which the quasipar-
ticles that make up the soliton are tightly bound together can be considered (Russell  1844; 
Nguepjouo et al. 2014). The telecommunications engineering splits into wired communica-
tions that make use of underground communications cables and wireless communications that 
involve the transmission of information over a distance without help of wires. Fiber optics 
clarifies nonlinear reaction of properties like recurrence, polarization, phase of incident light. 
These nonlinear cooperations bring about a large group of optical phenomenas. Recently, 
numerous new ways have been proposed for improved nonlinearity and light control, includ-
ing contorted chromospheres, joining rich thickness of states with bond shift, minute falling of 
second-request nonlinearity, etc. Therefore, sub-atomic nonlinear optics has been broadly uti-
lized in the biophotonics field, containing bioimaging, phototherapy, biosensing, and so forth. 
The theory of optical solitons has made remarkable and far-reaching advances during the past 
few decades (Biswas et al. 2020; Wang et al. 2021; Triki et al. 2021; Daoui et al. 2021; Biswas 
et al. 2020a; Tchier et al. 2021a; Biswas et al. 2020b; Aslan and Inc  2017; Wang et al. 2021a; 
Ates and Inc  2017; Aslan et al. 2017; Inc  2017; Tchier et al. 2017a; Shehata et al. 2019; 
Talarposhti et al. 2020; Sabiu et al. 2020; Tchier et al. 2017b; Alquran et al. 2021; Bilal et al. 
2021c; Younis et al. 2017). There are a wide variety of new concepts that have been intro-
duced to bring about performance enhancement in this field with regards to telecommunica-
tions industry. There are two key ingredients that constitute the soliton propagation dynamics. 
These are chromatic dispersion (CD) and nonlinear refractive index of the optical fiber. The 
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arising problem for pure-quartic soliton related to the governing nonlinear Schrödinger equa-
tion can be nonintegrable one, for this reason we will propose the concept of cubic-quartic 
solitons in which the chromatic dispersion is replaced by the third order dispersion and fourth 
order dispersion together (Yıldırım et al. 2020; Blanco-Redondo et al. 2016; Zayed et al. 2020; 
Al-Kalbani et al. 2020; Zayed et al. 2021; Bansal et al. 2018; Biswas et al. 2017; Das et al. 
2019; Gaxiola et al. 2020; Biswas et al. 2017a; Kohl et al. 2019; Yıldırım et al. 2020a; Biswas 
and Arshed  2018; Yıldırım et al. 2020b; Hosseini et al. 2020; Kodama and Hasegawa  1995).

However, in this study, we successfully apply the proposed methods (Zayed et al. 2018; 
Ghanbari et al. 2019; Mahmuda et al. 2017) to find the different forms of pur-cubic optical 
solitons such as bright, dark, singular, kink and combined forms of the soltions.

This article is arranged as: In Sect. 2, governing model and the summary of the methods 
in Sect. 3. Section 4 consists of extraction of solutions with graphical representation, and MI 
analysis is presented in Sect. 5. Finally paper comes to concluding remarks in Sect. 6.

2  The model

The studied equation for cubic optical solitons is written as (Yıldırım et al. 2020)

where �(x, t) is a complex-valued function that represents the wave profile. The independ-
ent variables x and t are spatial and temporal Co-ordinates respectively and i =

√
−1 . � 

represents the coefficient of third-order dispersion (3OD) while � is the coefficient of selfs-
teepening nonlinearity. Next, � and � account for the higher-order dispersion effects. Also, 
m is the full nonlinearity parameter. Finally, the functional F accounts for the nonlinear 
form of refractive index where

3  Overview of the methods

We present brief description of the proposed methods in this section,.
Suppose a NLPDE,

where � is a polynomial in its arguments. We start with hypothesis as:

Here B is amplitude component and c denotes the velocity. On solving the Eqs. (2) and (3), 
yields NODE as:

where ′ represents the derivative w.r.t �.

(1)i�t + i��xxx + F(|�|2)� = i[�(|�|2m�)x + �|�|2m�x + �(|�|2m)x� ,

F(|�|2)� ∈ ∪∞

m,n=1
C
k((−n, n) × (−m,m);R2)

(2)�(�,�t,�x,�tt,�xt,�xx,⋯) = 0,

(3)�(x, t) = �(�) and � = B(x − ct).

(4)�(� ,� �,� ��,� ���,⋯) = 0,
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3.1  ̊ 6‑model expansion method (Zayed et al. 2018)

This technique incorporates the following steps.
Step 1 The solution of (4) is written as

where constants �j (j = 0,⋯ , 2n) are determined later, while �(�) satisfies the following 
NODE

Step 2 On the utilization of the homogeneous balance principle, the n in Eq. (4) is calcu-
lated. For detail, if deg

[
�(�)

]
= n then the degree of the other terms will be expressed as 

follows

Step 3 The solution of Eq. (6) is expressed as

where (𝜍1𝜏2(𝜉) + 𝜍2) > 0 and �(�) is the solution of the Jacobian elliptic equation

and lk(k = 0, 2, 4) are real constant, while �1 and �2 are given by

under the constraints condition

Step 4 Eq. (9) has solutions in the form of JEFs as in Zayed et al. (2018). On solving Eqs. 
(9), (8) and (4) together. A set of algebraic system is extracted on the comparison of spe-
cific terms. On solving the obtained algebraic equations, we get the solutions of Eq. (2).

3.2  GERFM (Ghanbari et al. 2019)

Step 1 Consider the solution of Eq. (4) is represented as:

(5)�(�) =

2n∑
j=0

�j�
j(�),

(6)
�
�2 (�) = h0 + h2�

2(�) + h4�
4(�) + h6�

6(�),

�
��(�) = h2�(�) + 2h4�

3(�) + 3h6�
5(�).

(7)
deg

[
dk�

d�k

]
= n + k,

deg

[
(�(�))p

(
dk�

d�k

)s]
= np + s(n + k).

(8)�(�) =
�(�)√

�1�
2(�) + �2

,

(9)�
�2 (�) = l0 + l2�

2(�) + l4�
4(�),

�1 =
h4(l2 − h2)

(l2 − h2)
2 + 3l0l4 − 2l2(l2 − h2)

,

�2 =
3l0h4

(l2 − h2)
2 + 3l0l4 − 2l2(l2 − h2)

,

(10)h2
4
(l2 − h2)[9l0l4 − (l2 − h2)(2l2 + h2)] + 3h6[3l0l4 − (l2

2
− h2

2
)]2 = 0.
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where

The unknown coefficients d0 , dk , fk (1 ≤ k ≤ n) and constants ri , si (1 ≤ i ≤ 4) are deter-
mined and homogeneous balance principle is used to find n.

Step 2 We get a cluster of algebraic equations on putting Eq. (11) in Eq. (4).
Step 3 On solving the cluster of equations, we get the unknown terms and consequently, 

the required solutions are achieved.

3.3  The generalized Kudryashov method (Mahmuda et al. 2017)

Step 1 Suppose that Eq. (4) has the solution in the following form.

where, ai(i = 1, 2, 3,⋯ , T) and bJ(j = 1, 2, 3,⋯ ,H) are constants to be determined after 
ward such that aT ≠ 0 and bH ≠ 0.

Now, next consider NODE in the following shape

Moreover,the solution of Eq. (14) has the structure like

Here, S is constant of integration.
Step 2 The values of T and H are evaluated by using homogeneous balance principle in Eq. 

(4).
Step 3 We obtain a polynomial in G(�) , after putting Eqs. (13) and (14) into Eq. (4). We get 

a cluster of an algebraic equations on equating the same powers of G(�) to zero, and we secure 
the values of ai(i = 1, 2, 3,⋯ , T) and bJ(j = 1, 2, 3,⋯ ,H) . On the utilization of the obtained 
values in Eq. (13) with the usage of Eq. (15), we finally find the exact solution of Eq. (2).

4  Extraction of soliton solutions

This section deals the application of the applied method and we secure the different forms of 
the solutions to the under consideration model with Kerr law of nonlinearity.

For Kerr law the governing model is described as:

Now, we have to discuss the Eq. (16). For proceeding, we use the transformation as follows:

(11)�(�) = d0 +

n∑
k=1

dk�(�)k +

n∑
k=1

fk�(�)−k,

(12)�(�) =
r1e

s1� + r2e
s2�

r3e
s3� + r4e

s4�
.

(13)�(�) =

∑T

i=0
ai G

i(�)

∑H

j=0
bj G

j(�)
,

(14)G�(�) = G2(�) − G(�).

(15)G(�) =
1

1 + Se�
.

(16)i�t + i��xxx + b|�|2� = i[�(|�|2m�)x + �|�|2m�x + �(|�|2m)x� ,
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where �, �,� and �0 represent the speed, frequency, wave number and phase constant of the 
wave, respectively. Replacing Eq. (17) into Eq. (16). We get the real and imaginary parts, 
respectively

Real part

Imaginary part

For integrability of this model, by using of m = 1 , the Eqs. (18) and (19) are reduced to

and

As the amplitude component holds Eqs. (20) and (21), we have

which gives rise to

4.1  Solutions via ̊ 6‑model expansion method

By using balance principle in Eq. (20), we get n = 1 . Thus, the solution of Eq. (20) takes 
the following form

where �0,�1,�2 are constants to be determined later. Solving Eqs. (24) and (20) together 
and following the steps of method with the aid of Mathematica, we have solutions sets as

Family-1:

Family-2:

(17)�(x, t) = H(�)ei�(x,t), � = �(x − �t), �(x, t) = −�x + �t + �0

(18)3���2H
��

− (� + ��
3)H + bH3 − �(� + �)H2m+1 = 0

(19)���
2H

��

− (� + 3��2)H −
(� + � + 2�m + 2�m)H2m+1

2m + 1
= 0

(20)3a��2H
��

− (� + a�3)H + (b − �(� + �))H3 = 0

(21)���
2H

��

− (� + 3��2)H −
(� + 2� + 3�)H3

3
= 0

(22)3� =
� + a�3

� + 3a�2
= −

(3(b − �� − ��)

� + 2� + 3�

(23)� =
� + ��

3 − 9��2

3�
, � = −

2�� + b

2�

(24)H(�) = �0 + �1� + �2�
2,

⎧⎪⎨⎪⎩

�
0
→ 0,�

1
→ �

�
6�h

4
k

−b+�k+k�
,�

2
→ 0,

h
0
→ h

0
, h

2
→

�k3+�

3��2k
, h

4
→ h

4
, h

6
→ 0.
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The resulting solutions of Eq. (16) crosspounding to Family-1 are summarized as under
1. If l0 = 1 , l2 = −(1 + m2) , l4 = m2 , 0 < m < 1 , then �(�) = sn(�,m) or �(�) = cd(�,m) , 

then we retrieve Jacobi elliptic function solutions

or

where

under the constraint condition

provided that (𝛼h4k)(k(𝜃 + 𝜆) − b) > 0.
∙ On selecting m → 1 in Eq. (25), dark optical soliton solution falls out

under the constraint condition

⎧
⎪⎨⎪⎩

�0 → 0,�1 → −�

�
6�h4k

−b+�k+k�
,�2 → 0,� → 3��2h2k − �k3,

h0 → h0, h2 →
�k3+�

3��2k
, h4 → h4, h6 → 0.

(25)�1(x, t) =

⎧
⎪⎪⎨⎪⎪⎩

√
6�

�
�h4k

k(�+�)−b
sn
�
�

�
x −

t(�(k−9)k2+�)
3k

�
,m

�
�

�1sn
�
�

�
x −

t(�(k−9)k2+�)
3k

�
,m

�2

+ �2

⎫
⎪⎪⎬⎪⎪⎭

× ei(�0−kx+t�),

(26)�2(x, t) =

⎧
⎪⎪⎨⎪⎪⎩

√
6�

�
�h4k

k(�+�)−b
cd
�
�

�
x −

t(�(k−9)k2+�)
3k

�
,m

�
�

�1cd
�
�

�
x −

t(�(k−9)k2+�)
3k

�
,m

�2

+ �2

⎫
⎪⎪⎬⎪⎪⎭

× ei(�0−kx+t�),

�1 = −
3��2h4k

(
�k3 + 3��2k

(
m2 + 1

)
+ �

)

2�k3� + �2k2
(
k4 − 9�4

(
m4 − m2 + 1

))
+ �2

,

�2 =
27�2

�
4h4k

2

2�k3� + �2k2
(
k4 − 9�4

(
m4 − m2 + 1

))
+ �2

,

[
−
h2
4

(
�k3 + 3��2k

(
1 − 2m2

)
+ �

)(
�k3 + 3��2k

(
m2 − 2

)
+ �

)(
�k3 + 3��2k

(
m2 + 1

)
+ �

)
27�3�6k3

]

+ 30

[
−

(
�k3 + �

)2
9�2�4k2

− 3m2 +
(
m2 + 1

)2
]2

= 0,

(27)

�1,1(x, t) =

⎧
⎪⎪⎨⎪⎪⎩

√
2�

�
�h4k

k(�+�)−b
tanh

�
�

�
x −

t(�k3−9�k2+�)
3k

��
�

��2h4k

�
9��2k−(�k3+6��2k+�) tanh2

�
�

�
x−

t(�k3−9�k2+�)
3k

���

2�k3�+�2k2(k4−9�4)+�2

⎫
⎪⎪⎬⎪⎪⎭

× ei(�0−kx+t�),
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and if m → 0 in Eq. (26), the explicit periodic wave solution is extracted as

under the constraint condition

2. If l0 = 1 − m2 , l2 = 2m2 − 1 , l4 = −m2 , 0 < m < 1 , then �(�) = cn(�,m) , then Jacobi 
elliptic function solution emerges

The above solution is valid under the condition

∙ On selecting m → 1 in Eq. (29), bright optical soliton solution is extracted as

under the constraint condition

30

[
1 −

(
�k3 + �

)2
9�2�4k2

]2

−

[
h2
4

(
�k3 − 3��2k + �

)2(
�k3 + 6��2k + �

)
27�3�6k3

]
= 0.

(28)

�2,1(x, t) =

⎧
⎪⎪⎨⎪⎪⎩

√
2�

�
�h4k

k(�+�)−b
cos

�
�

�
x −

t(�k3−9�k2+�)
3k

��
�

−
��2h4k

�
(�k3+3��2k+�) cos2

�
�

�
x−

t(�k3−9�k2+�)
3k

��
−9��2k

�

2�k3�+�2k2(k4−9�4)+�2

⎫
⎪⎪⎬⎪⎪⎭

× ei(�0−kx+t�),

30

[
1 −

(
�k3 + �

)2
9�2�4k2

]2

−

[
h2
4

(
�k3 − 6��2k + �

)(
�k3 + 3��2k + �

)2
27�3�6k3

]
= 0.

(29)

�3(x, t) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

√
2�
�

�h4k

k(�+�)−b
cn
�
�

�
x −

t(�k3−9�k2+�)
3k

�
,m

�
����

−

��2h4k

�
(�k3+3��2k(1−2m2)+�)cn

�
�

�
x−

t(�k3−9�k2+�)
3k

�
,m

�2

+9��2k(m2−1)

�

2�k3�+�2k2(k4−9�4(m4−m2+1))+�2

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

× ei(�0−kx+t�),

[
−
h2
4

(
�k3 + 3��2k

(
1 − 2m2

)
+ �

)(
�k3 + 3��2k

(
m2 − 2

)
+ �

)(
�k3 + 3��2k

(
m2 + 1

)
+ �

)
27�3�6k3

]

+ 30

[
−

(
�k3 + �

)2
9�2�4k2

+ m4 − m2 + 1

]2

= 0.

(30)�3,1(x, t) =

⎧
⎪⎪⎨⎪⎪⎩

√
2�

�
�h4k

k(�+�)−b
sech

�
�

�
x −

t(�k3−9�k2+�)
3k

��
�

−
��2h4k(�k3−3��2k+�)sech

2

�
�

�
x−

t(�k3−9�k2+�)
3k

��

2�k3�+�2k2(k4−9�4)+�2

⎫
⎪⎪⎬⎪⎪⎭

× ei(�0−kx+t�),
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while on choosing m → 0 in Eq. (29), the following solution is expressed

under the constraint condition

3. If l0 = m2 , l2 = −(1 + m2) , l4 = 1 , 0 < m < 1 , then �(�) = ns(�,m) or �(�) = dc(�,m) , 
then Jacobi elliptic function solution is written as

or

The validity condition for solution (32) and (33) is definedas

∙ On taking m → 1 in Eq. (32), we get explicitly hyperbolic solitary wave solution as

30

[
1 −

(
�k3 + �

)2
9�2�4k2

]2

−

[
h2
4

(
�k3 − 3��2k + �

)2(
�k3 + 6��2k + �

)
27�3�6k3

]
= 0.

(31)

�3,2(x, t) =

⎧
⎪⎪⎨⎪⎪⎩

√
2�

�
�h4k

k(�+�)−b
cos

�
�

�
x −

t(�k3−9�k2+�)
3k

��
�

−
��2h4k

�
(�k3+3��2k+�) cos2

�
�

�
x−

t(�k3−9�k2+�)
3k

��
−9��2k

�

2�k3�+�2k2(k4−9�4)+�2

⎫
⎪⎪⎬⎪⎪⎭

× ei(�0−kx+t�),

30

[
1 −

(
�k3 + �

)2
9�2�4k2

]2

−

[
h2
4

(
�k3 − 6��2k + �

)(
�k3 + 3��2k + �

)2
27�3�6k3

]
= 0.

(32)

�4(x, t) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

√
2�

�
�h4k

k(�+�)−b
ns
�
�

�
x −

t(�k3−9�k2+�)
3k

�
,m

�
����

−

��2h4k

�
(�k3+3��2k(m2+1)+�)ns

�
�

�
x−

t(�k3−9�k2+�)
3k

�
,m

�2

−9��2km2

�

2�k3�+�2k2(k4−9�4(m4−m2+1))+�2

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

× ei(�0−kx+t�),

(33)

�5(x, t) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

√
2�

�
�h4k

k(�+�)−b
dc
�
�

�
x −

t(�k3−9�k2+�)
3k

�
,m

�
����

−

��2h4k

�
(�k3+3��2k(m2+1)+�)dc

�
�

�
x−

t(�k3−9�k2+�)
3k

�
,m

�2

−9��2km2

�

2�k3�+�2k2(k4−9�4(m4−m2+1))+�2

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

× ei(�0−kx+t�),

[
−
h2
4

(
�k3 + 3��2k

(
1 − 2m2

)
+ �

)(
�k3 + 3��2k

(
m2 − 2

)
+ �

)(
�k3 + 3��2k

(
m2 + 1

)
+ �

)
27�3�6k3

]

+30

[
−

(
�k3 + �

)2
9�2�4k2

− 3m2 +
(
m2 + 1

)2
]2

= 0.
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and on considering m → 0 in Eq. (33), the following combined trigonometric solution is 
expressed

The solutions (34) and (35) hold under the constraint conditions, respectively

4. If l0 = −m2 , l2 = −1 + 2m2 , l4 = 1 − m2 , 0 < m < 1 , then �(�) = nc(�,m) , reveals Jacobi 
elliptic function solution

where

under the constraint condition

(34)

�4,1(x, t) =

⎧
⎪⎪⎨⎪⎪⎩

√
2�

�
�h4k

k(�+�)−b
coth

�
�

�
x −

t(�k3−9�k2+�)
3k

��
�

−
��2h4k

�
(�k3+6��2k+�) coth2

�
�

�
x−

t(�k3−9�k2+�)
3k

��
−9��2k

�

2�k3�+�2k2(k4−9�4)+�2

⎫
⎪⎪⎬⎪⎪⎭

× ei(�0−kx+t�),

(35)�5,1(x, t) =

⎧
⎪⎪⎨⎪⎪⎩

√
2�

�
�h4k

k(�+�)−b
csc

�
�

�
x −

t(�k3−9�k2+�)
3k

��
�

−
��2h4k(�k3+3��2k+�) csc2

�
�

�
x−

t(�k3−9�k2+�)
3k

��

2�k3�+�2k2(k4−9�4)+�2

⎫
⎪⎪⎬⎪⎪⎭

× ei(�0−kx+t�),

30

[
1 −

(
�k3 + �

)2
9�2�4k2

]2

−

[
h2
4

(
�k3 − 3��2k + �

)2(
�k3 + 6��2k + �

)
27�3�6k3

]
= 0.

30

[
1 −

(
�k3 + �

)2
9�2�4k2

]2

−

[
h2
4

(
�k3 − 6��2k + �

)(
�k3 + 3��2k + �

)2
27�3�6k3

]
= 0.

(36)�6(x, t) =

⎧
⎪⎪⎨⎪⎪⎩

√
6�

�
�h4k

k(�+�)−b
nc
�
�

�
x −

t(�k3−9�k2+�)
3k

�
,m

�
�

�1nc
�
�

�
x −

t(�k3−9�k2+�)
3k

�
,m

�2

+ �2

⎫
⎪⎪⎬⎪⎪⎭

× ei(�0−kx+t�),

�1 = −
3��2h4k

(
�k3 + 3��2k

(
1 − 2m2

)
+ �

)

2�k3� + �2k2
(
k4 − 9�4

(
m4 − m2 + 1

))
+ �2

,

�2 = −
27�2

�
4h4k

2m2

2�k3� + �2k2
(
k4 − 9�4

(
m4 − m2 + 1

))
+ �2

,

[
−
h2
4

(
�k3 + 3��2k

(
1 − 2m2

)
+ �

)(
�k3 + 3��2k

(
m2 − 2

)
+ �

)(
�k3 + 3��2k

(
m2 + 1

)
+ �

)
27�3�6k3

]

+ 30

[
−

(
�k3 + �

)2
9�2�4k2

+ m4 − m2 + 1

]2

= 0.
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provided that (𝛼h4k)(k(𝜃 + 𝜆) − b) > 0.
∙ In particular, on considering m → 1 in Eq. (36), we get explicit solitary wave 

solution

under the constraint condition

while on taking m → 0 in Eq. (36), the singular periodic wave solution is mentioned as

The solution (38) holds with the condition

5. If l0 =
1

4
 , l2 =

1−2m2

2
 , l4 =

1

4
 , 0 < m < 1 , then �(�) = sn(�,m)

1±cn(�,m)
 , gives JEFs

Solution (39) holds under the condition

∙ On selecting m → 1 in Eq. (39), we get explicit solitary wave solution in combined form 
as

(37)

�6,1(x, t) =

⎧
⎪⎪⎨⎪⎪⎩

√
2�

�
�h4k

k(�+�)−b
cosh

�
�

�
x −

t(�k3−9�k2+�)
3k

��
�

−
��2h4k

�
(�k3−3��2k+�) cosh2

�
�

�
x−

t(�k3−9�k2+�)
3k

��
+9��2k

�

2�k3�+�2k2(k4−9�4)+�2

⎫
⎪⎪⎬⎪⎪⎭

× ei(�0−kx+t�),

30

[
1 −

(
�k3 + �

)2
9�2�4k2

]2

−

[
h2
4

(
�k3 − 3��2k + �

)2(
�k3 + 6��2k + �

)
27�3�6k3

]
= 0.

(38)�6,2(x, t) =

⎧
⎪⎪⎨⎪⎪⎩

√
2�

�
�h4k

−b+�k+k�
sec

�
�

�
x −

t(�k3−9�k2+�)
3k

��
�

−
��2h4k(�k3+3��2k+�) sec2

�
�

�
x−

t(�k3−9�k2+�)
3k

��

2�k3�+�2k2(k4−9�4)+�2

⎫
⎪⎪⎬⎪⎪⎭

× ei(�0−kx+t�),

30

[
1 −

(
�k3 + �

)2
9�2�4k2

]2

−

[
h2
4

(
�k3 − 6��2k + �

)(
�k3 + 3��2k + �

)2
27�3�6k3

]
= 0.

(39)

�7(x, t) =

⎧
⎪⎪⎨⎪⎪⎩

�sn(�,m)
�

�h4k

k(�+�)−b

√
2(cn(�,m) ± 1)

�
��2h4k(9��2k(cn(�,m)±1)2−2sn(�,m)2(2�k3+3��2k(2m2−1)+2�))
(cn(�,m)±1)2(32�k3�+�2k2(16k4−9�4(16m4−16m2+1))+16�2)

⎫
⎪⎪⎬⎪⎪⎭

× ei(�0−kx+t�),

h2
4

[
−
�k3 + �

3��2k
− m2 +

1

2

][(
�k3 + 3��2k

(
1 − 2m2

)
+ �

)(
2�k3 + 3��2k

(
2m2 − 1

)
+ 2�

)
18�2�4k2

+
9

16

]

+ 30

[
−

(
�k3 + �

)2
9�2�4k2

+ m4 − m2 +
1

16

]2

= 0.



 U. Younas et al.

1 3

490 Page 12 of 25

under the constraint condition

and on choosingm → 0 in Eq. (39), we extract the following solution

The solution (41) holds with the condition

where � = �(x − �t) and � =
�k3−9�k2+�

3k
 . For details see reference (Zayed et al. 2018). The 

physical appearance of the gained results are depicted below under the suitable selection of 
variables.

4.2  Solutions via GERFM

The solution of Eq. (20) based on n = 1 is expressed as

Family-1: For r = [1, 1, 1, 1] and s = [0, 0, 1,−1] , Eq. (12) gives

Inserting Eq. (42) and Eq. (43) in Eq. (20), we secure solution set as follows:
Set-1:

(40)�7,1(x, t) =

⎧
⎪⎪⎨⎪⎪⎩

� tanh
�

�

2

��
�h4k

k(�+�)−b

√
2

�
��2h4k(9��2k(sech(�)+1)2−2 tanh

2(�)(2�k3+3��2k+2�))
(sech(�)+1)2(32�k3�+�2k2(16k4−9�4)+16�2)

⎫
⎪⎪⎬⎪⎪⎭

× ei(�0−kx+t�),

h2
4

[
−
�k3 + �

3��2k
−

1

2

][(
�k3 − 3��2k + �

)(
2�k3 + 3��2k + 2�

)
18�2�4k2

+
9

16

]

+ 30

[
1

16
−

(
�k3 + �

)2
9�2�4k2

]2

= 0.

(41)

�7,2(x, t) =

⎧
⎪⎪⎨⎪⎪⎩

� sin(�)
�

�h4k

k(�+�)−b

(cos(�) + 1)

�
��2h4k sec

2

�
�

2

�
(cos(�)(4�k3+3��2k+4�)−4�k3+15��2k−4�)

32�k3�+�2k2(16k4−9�4)+16�2

⎫
⎪⎪⎬⎪⎪⎭

× ei(�0−kx+t�),

h2
4

[
1

2
−

�k3 + �

3��2k

][(
�k3 + 3��2k + �

)(
2�k3 − 3��2k + 2�

)
18�2�4k2

+
9

16

]

+ 30

[
1

16
−

(
�k3 + �

)2
9�2�4k2

]2

= 0.

(42)H(�) = d0 + d1�(�) + f1�(�)−1.

(43)�(�) =
2

e� + e−�
.
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For set-1, the bright optical soliton emerges as

Here, (𝛼k3 + 𝜔)(b − k(𝜃 + 𝜆)) > 0 and (𝛼k3 + 𝜔)𝛼k > 0 are considered as the validity con-
ditions for the above solution.

Family-2: For r = [−1,−1, 1,−1] and s = [1,−1, 1,−1] , then Eq. (12) gives

Putting Eq. (42) and Eq. (45) in Eq. (20), the solution sets and their crossponding solutions 
are extracted as follows:

Set-1:

Inserting set-1 and Eq. (45) in Eq. (42), one may get
Dark soliton solution

Set-2:

Substituting set-2 and Eq. (45) in Eq. (42), we get
Singular soliton solution

d0 = 0, d1 =

√
2
√
�k3 + �√

b − k(� + �)
, f1 = 0, � =

√
�k3 + �√
3�k

.

(44)�1(x, t) =

⎧
⎪⎪⎨⎪⎪⎩

√
2
√
�k3 + �sech

�√
�k3+�(�k3t−9�k2t−3kx+t�)

3k
√
3
√
�k

�

√
b − k(� + �)

⎫
⎪⎪⎬⎪⎪⎭

× ei(−kx+�t+�0).

(45)�(�) = −
cosh(�)

sinh(�)
.

d0 = 0, d1 = 0, f1 = −

√
�k3 + �√

b − k(� + �)
, � =

�
−�k3 − �

6�k
.

(46)�2(x, t) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

√
�k3 + � tanh

⎛⎜⎜⎝

√
−�k3−�

�
x−

t(�k3−9�k2+�)
3k

�

√
6
√
�

√
k

⎞⎟⎟⎠√
b − k(� + �)

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

× ei(−kx+�t+�0).

d0 = 0, d1 = −

√
�k3 + �√

b − k(� + �)
, f1 = 0, � =

�
−�k3 − �

6�k
.
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Set-3:

Substituting set-3 and Eq. (45) in Eq. (42), we get
Dark-singular soliton solution

The solutions (46), (47) and (48) are valid with the conditions (𝛼k3 + 𝜔)(b − k(𝜃 + 𝜆)) > 0 
and (−𝛼k3 − 𝜔)𝛼k > 0.

Family-3: For r = [−2 − i,−2 + i, 1, 1] and s = [i,−i, i,−i] , then Eq. (12) gives

Replacing Eq. (42) and Eq. (49) in Eq. (20), we establish solution sets given below.
Set-1:

Using set-1 and Eq. (49) in Eq. (42), we get explicitly periodic wave solutions in combined 
form

Set-2:

(47)�3(x, t) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

√
�k3 + � coth

⎛
⎜⎜⎝

√
−�k3−�

�
x−

t(�k3−9�k2+�)
3k

�

√
6�k

⎞
⎟⎟⎠√

b − k(� + �)

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

× ei(−kx+�t+�0).

d0 = 0, d1 =

√
�k3 + �

2
√
b − k(� + �)

, f1 =

√
�k3 + �

2
√
b − k(� + �)

, � =
1

2

�
−�k3 − �

6�k
.

(48)

�4(x, t) = ei(−kx+�t+�0)

×

⎧⎪⎪⎨⎪⎪⎩

√
�k3 + � tanh

�√
−�k3−�(�k3t−9�k2t−3kx+t�)

6k
√
6�k

��
coth2

�√
−�k3−�(�k3t−9�k2t−3kx+t�)

6k
√
6k�

�
+ 1

�

2
√
b − k(� + �)

⎫⎪⎪⎬⎪⎪⎭

.

(49)�(�) =
sin(�) − 2 cos(�)

cos(�)
.

d0 = −
2
√
−�k3 − �√

b − k(� + �)
, d1 = 0, f1 = −

5
√
−�k3 − �√

b − k(� + �)
, � =

�
�k3 + �

6�k
.

(50)

�5(x, t) = ei(−kx+�t+�0)

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�
�
�
−k3

�
− �

√
b − k(� + �)

⎛⎜⎜⎜⎜⎜⎜⎜⎝

−

5 cos

⎛⎜⎜⎝

√
�k3+�

�
x−

t(�k3−9�k2+�)
3k

�

√
6
√
�

√
k

⎞⎟⎟⎠

sin

⎛⎜⎜⎝

√
�k3+�

�
x−

t(�k3−9�k2+�)
3k

�

√
6
√
�

√
k

⎞⎟⎟⎠
− 2 cos

⎛⎜⎜⎝

√
�k3+�

�
x−

t(�k3−9�k2+�)
3k

�

√
6
√
�

√
k

⎞⎟⎟⎠

− 2

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎬⎪⎪⎪⎭

.
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Using set-2 and Eq. (49) in Eq. (42), we get singular periodic wave solution

�5(x, t) and �6(x, t) hold under the constraint conditions (𝛼k3 + 𝜔)(b − k(𝜃 + 𝜆)) > 0 and 
−(𝛼k3𝜔)𝛼k < 0.

Family-4: For r = [−3,−1, 1, 1]] and s = [1,−1, 1,−1] , then Eq. (12) gives

Solving Eqs. (42), (52) and (20) together, we obtain the following solution sets..
Set-1:

For set-1, combo soliton solution is written as

Set-2:

For set-2, teh dark soliton solution falls out

d0 =
2

�
�
�
−k3

�
− �

√
b − k(� + �)

, d1 =

√
−�k3 − �√

b − k(� + �)
, f1 = 0, � =

√
�k3 + �√
6�k

.

(51)�6(x, t) =

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

√
−�k3 − � tan

⎛
⎜⎜⎝

√
�k3+�

�
x−

t(�k3−9�k2+�)
3k

�

√
6
√
�

√
k

⎞
⎟⎟⎠√

b − k(� + �)

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

× ei(−kx+�t+�0).

(52)�(�) =
− sinh(�) − 2 cosh(�)

cosh(�)
.

d0 =
2
√
�k3 + �√

b − k(� + �)
, d1 = 0, f1 =

3
√
�k3 + �√

b − k(� + �)
, � =

�
−(�k3 + �)

6�k
.

(53)

�7(x, t) =e
i(−kx+�t+�0)

×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
�k3 + �√

b − k(� + �)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −

3 cosh

⎛⎜⎜⎜⎜⎝

�
�

�
−k3

�
−�

⎛⎜⎜⎝
x−

t

�
�k

3−9�k2+�

�

3k

⎞⎟⎟⎠√
6
√
�

√
k

⎞⎟⎟⎟⎟⎠

sinh

⎛
⎜⎜⎜⎜⎝

�
�

�
−k3

�
−�

⎛
⎜⎜⎝
x−

t

�
�k3−9�k2+�

�

3k

⎞⎟⎟⎠√
6
√
�

√
k

⎞
⎟⎟⎟⎟⎠
+ 2 cosh

⎛⎜⎜⎜⎜⎝

�
�

�
−k3

�
−�

⎛
⎜⎜⎝
x−

t

�
�k3−9�k2+�

�

3k

⎞⎟⎟⎠√
6
√
�

√
k

⎞
⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

.

d0 = −
2
√
�k3 + �√

b − k(� + �)
, d1 = −

√
�k3 + �√

b − k(� + �)
, f1 = 0, � =

�
−(�k3 + �)

6�k
.
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The above solutions hold under (𝛼k3 + 𝜔)(b − k(𝜃 + 𝜆)) > 0 and (𝛼k3 + 𝜔)𝛼k < 0.
Family-5: For r = [−1, 0, 1, 1] and s = [0, 1, 0, 1] , then Eq. (12) gives

Set-1:

We get exponential solution on solving Eqs. (42), (55) and set 1 as

The above solutions hold under (𝛼k3 + 𝜔)(b − k(𝜃 + 𝜆)) > 0 and (𝛼k3 + 𝜔)𝛼k < 0.
The graphical view of the earned solutions are sketched below with the choice of appro-

priate parameters.

4.3  Solutions via generalized Kudryashov method

The generalized Kudryashov method is utilized to analyze a variety of solution to the con-
sidered model. Take the homogeneous balance between H3 and H′′ provides the relation 
T = H + 1 . Particularly, for H = 1 , we have T = 2 . Therefore, the Eq. (20) takes the solu-
tion in following form
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where a0, a1, a2, b0 and b1 are to be determined. Now, solving Eqs. (20) and (57), and fol-
lowing the step 3 of the method, the following system of equations is obtained as:

The system (58) is manipulated with the aid of of computational packages like Mathemat-
ica, we get the solution sets as

Set-1:

On substituting the above values of parameters in Eq. (57) and with the assistance of Eq. 
(15), and on setting S = 1 , we secure the general soliton solution in terms of hyperbolic 
functions.

(𝛼k3 + 𝜔)(b − k(𝜃 + 𝜆)) > 0 and (𝛼k3 + 𝜔)𝛼k < 0 are the constraint conditions for the 
existence of the above secured solution.

Set-2:

By taking S = 1 and solving Eqs. (57) and (15) together, we get combine soliton solution 
as follows
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with the constraint conditions (𝛼k3 + 𝜔)(b − k(𝜃 + 𝜆)) > 0 and (𝛼k3 + 𝜔)𝛼k < 0.
Set-3:

By selecting S = 1 and solving Eqs. (57) and (15) together, we get bright-dark soliton solu-
tion as follows

under constraint condition (𝛼k3 + 𝜔)(b − k(𝜃 + 𝜆)) > 0.
Set-4:

For S = 1 , we get the kink-type soliton solution

Set-5:

In particular, on S = 1 , we get the following solitary wave solution
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5  MI Analysis

In this, we use the concept of standard linear stability analysis (Younas and Ren  2021; 
Bilal et al. 2021) to observed the MI analysis Eq. (16) on considering m = 1 . The starting 
hypothesis for finding the MI analysis for Eq. (16) is defined as:

where � is the steady state solution for Eq. (16). Putting Eq. (64) into Eq. (16) and lineariz-
ing, provides

where ∗ indicates the conjugate of complex function. For proceeding, we take the solution 
of Eq. (65) as:

where l and � are the normalized wave number and frequency of perturbation, respec-
tively. On solving the Eqs. (66) and (65) together, and splitting the coefficients of ei(xl−�t) 
and e−i(xl−�t) yields, the dispersion relation:

Solving the dispersion relation of Eq. (67) for � provides

We discuss the steady-state stability with the assistant of above dispersion relation. If the 
wave number � has a real part then the steady-state turn to stable against small perturba-
tions. Moreover, if the wave number � is imaginary then the steady-state solution turns 
unstable since the perturbation grows exponentially. Therefore, the steady-state solution is 
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< 0 . Finally, the MI gain 
spectrum G(�) is achieved as:

6  Concluding remarks

In this manuscript, we have discussed the pure-cubic optical solitons with Kerr law 
of nonlinearity. The nonlinear Schrödinger equation with effects of chromatic disper-
sion and third order dispersion is studied as a governing model. With the assistant of 
three sound integration computational tools, namely, �6-model expansion method and 
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GERFM and generalized Kudryashov method, the results are expressed in the forms 
of hyperbolic, periodic, exponential, Jacobi elliptic function, bright, dark, combo, sin-
gular, kink and multiple soliton solutions The accomplished outcomes are remarkable 
and new from the current results in available writing. The principle achievement of 
these procedures lie in the manner that, we have prevailing in a single move to extri-
cate most extreme results which can vary it from different methods. We encountered 
that the results presented in this article could be helpful in explaining the genuine 
meaning of various nonlinear advancement conditions arising in the different fields 
of nonlinear sciences. For example, hyperbolic functions shows up in various regions 
like, in the computation and speed of special relativity, in the Langevin function for 
attractive polarization, in the gravitational capability of a chamber and the estimation 
of as far as possible, in the profile of a laminar jet. Moreover, the bright soliton solu-
tions will be a big asset in controlling the soliton clutter as mentioned in the introduc-
tion section. This means that the solitons can be converted to a state of separation from 
a state of attraction which would mean clearing the clutter. The bright soliton solutions 
will be a major resource in controlling the soliton mess as referenced in the presenta-
tion area. This implies that the solitons can be changed over to a condition of partition 

Fig. 1  3D, 2D and contour graphical representations of solution (27)

Fig. 2  3D, 2D and contour graphical representations of solution (28)

Fig. 3  3D, 2D and contour graphical representations of solution (34)
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from a condition of fascination which would mean clearing the messiness. Thusly, this 
would bring a factor of "ease" to the Internet bottleneck that is a developing issue to 
the cutting edge media communications industry where the Internet is a day by day 
fundamental for endurance. During the current COVID-19 pandemic period, where all 

Fig. 4  3D, 2D and contour graphical representations of solution (35)

Fig. 5  3D, 2D and contour graphical representations of solution (40)

Fig. 6  3D, 2D and contour graphical representations of solution (41)

Fig. 7  3D, 2D and contour graphical representations of solution (44)
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Fig. 8  3D, 2D and contour graphical representations of solution (50)

Fig. 9  3D, 2D and contour graphical representations of solution (53)

Fig. 10  3D, 2D and contour graphical representations of solution (60)

Fig. 11  3D, 2D and contour graphical representations of solution (61)
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business activities are conducted online, it is critical to have a smooth and uninter-
rupted flow of pulses for uninterrupted Internet communications. Similarly, when a 
background wave is present, dark solitons can aid soliton transmission. Three dimen-
sional, two dimensional and contour graphs are sketched in Figs. (1, 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11, 12) for explaining the physical appearance to the earned solution for the 
suitable selection of parameters. The results are fascinating not just from a hypotheti-
cal perspective yet in addition from a practical perspective, especially regarding the 
conduct of optical gadgets.
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