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Abstract

In this study, the nonautonomous variable coefficients Schrodinger equation describes
rogon waves in ocean dynamics and optics, is reduced to the nonlinear ordinary differ-
ential equation by using the direct similarity technique. The reduced equation is a Ric-
cati equation of Jacobi elliptic wave type solutions. Therefore, many new Jacobi elliptic
wave, periodic and hyperbolic wave solutions are obtained for the nonautonomous variable
coefficients Schrodinger equation with some constraints between the variable coefficients.
Moreover, a rational solution is given. Finally, many plots for the new rogon wave solutions
are investigated.

Keywords Nonautonomous variable coefficients Schr6 dinger equation - Direct similarity
reduction method - Solitary wave solutions - Periodic wave solutions - Rational wave
solutions

1 Introduction

Schrodinger equation is a famous equation in many fields of science, therefore, it attracts a
lot of mathematicians trying to solve it in all forms. Recently, more attention were focusing
on solving the variable coefficients nonlinear version of Schrodinger equation (vc-NLS) for
different reasons, the first one, is that solving the vc-NLS equation is covering its constant
coefficient version, the second reason, it is rely reflect the real physical situation more than
the constant version. Moreover, the vc-NLS equation can cover many physical situations in
different branches like optics, ocean dynamics and quantum mechanics ..etc.
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In this paper, we are interested in studying and finding new solitary wave solutions for non-
autonomous variable coefficients Schrodinger equation (Serkin et al. 2007)

()‘I’n+(¢(z, t)—z&)‘l’+y(z)l‘l‘|2‘l’=0, (1)

v, +
where a(z) is the group-velocity dispersion, ¢(z, t) is the linear potential, f(z) is the gain/
loss term and y(z) is the nonlinearity term. Equation (1) describes self-similar waves which
can be used for amplification and focusing of spatial solitons in nonlinear optics (Guo et al.
2011; Ponomarenko and Agrawal 2006; Tian et al. 2005; Yan 2010). Additionally, if ¢(z, ¢)
is a function on z only, then the vc-NLS Eq. (1) represents many physical backgrounds
in dusty plasma, nonlinear optics, ocean dynamics and arterial mechanics (El-Shiekh
2019; El-Shiekh and Al-Nowehy 2013; El-Shiekh and Gaballah 2020a, c; El-Shiekh 2019).

2 Direct similarity reduction

Recently, many new methods have been constructed to obtain new solutions for nonlinear
partial differential equations like symmetry groups, tanh method, trial equation method, sin-
Gordon equation method, etc. (Chen et al. 2019, 2020; Hua et al. 2019; Liu et al. 2019; Mao
et al. 2019; Xia et al. 2020; Xu et al. 2020) (El-Sayed et al. 2015, 2014; El-Shiekh 2018, 2021,
2018a; El-Shiekh and Rehab 2018b; El-Shiekh 2017, 2015, 2013; El-Shiekh and Gaballah
2020b; Moatimid et al. 2013; Moussa et al. 2012; Moussa and El-Shiekh 2010, 2011; Moa-
timid and El Shikh 2008; Moussa and El Shikh 2006; Chen et al. 2021; He et al. 2021; Lii and
Chen 2021; Lii et al. 2021; Lii and Ma 2016; Xia et al. 2020; Yin et al. 2020).

In the following we are going to apply one of the similarity techniques, the direct simi-
larity reduction method (El-Shiekh 2019, 2017, 2015, 2013, 2018, 2018a; El-Shiekh and
Gaballah 2020b; Moussa and EI-Shiekh 2008, 2011), it used to transform the nonlinear
partial differential equation into ordinary differential equation as follows:

Assume

W(t,2) = U(g(z, 1))e' &, 2

where ¢(z, ) and 7(z, t) are two arbitrary real functions and U(¢) is a new dependent real
variable.
Inserting (2) in (1), we get

ag 7 0;1 a(Z) 72 2717 a n ag 077
[<62U+0—U> 2<62U+( U i U+ 2i2 = (—)U)
B(z)

+(p(z, 1) — l—)U + ¥( )U3] i) = ().
3)

where / denotes the derivative with respect to ¢. Collect the U coefficient and its deriva-
tives, also, the real and imaginary parts together, assuming that ¢’ = 0, we have
a(z) d¢g a(2) 9% on  a() d

2// U L _ 2 3
2(at)U 2()2U+(¢>( z,1) oz 2(a))U+}'()U

“4)
+l<(ag d¢ In a2) *n ﬁ(z))U>

U
3. T 95,57V T o

@ Springer



New rogon waves for the nonautonomous variable coefficients... Page3of12 431

Assume that the imaginary part is finished, then we get

_ BQ@) ,

n(z, 1) = _2a(z)t + hy (2t + hy(2), ®)
a¢ agon
0 T 9% % = ©)

where h,(z) and h,(z) are two arbitrary functions in z. According to the direct similarity
reduction method (EI-Shiekh 2018a; He et al. 2021; Hua et al. 2019; Liu et al. 2019; Lii
et al.2021; Moatimid et al. 2013; Moussa and EI-Shiekh 2011, Moussa and El Shikh 2008,
Moussa et al. 2012), the main target is to transform Eq. (2) into real nonlinear ordinary dif-
ferential equation with constants coefficients in ¢, therefore, by taking the dispersive term
U" as a normalized coefficient . We get the following nonlinear system of partial differen-
tial equations

a@) ¢ _ @) ¢,
= o =hEO= (G ©)
_on_a@ dn, @@ 96,
(@@ = =2 = =G =R (5% (8)
(%) 96
7(2) =F3(5) > ((3t) , )

where £,(¢), F,(¢) and f5(¢) are three arbitrary real functions in ¢ . By solving Eqgs. (6)—(9)
together using the direct reduction assumptions, we obtain

¢ =k<e_/wzt - / @y (e ”“)"Zdz>* (10)

2
bz 1) =<i <&> + m)tz + <dizh1(z) + ﬂ(z)hl(z)>t

dz \ 2a(z) 2a(z) (11
+ L+ @hz( )+ —Czkza(z)e‘zfﬂ@dz
dz 2T TR 2 .
2
y(z) =63kza(Z) e_z/ﬂ(z)dz, (12)

where £ is an integration constant and £,(¢) = 0, F,(¢) = ¢, and £5(¢) = ¢3 with ¢, and ¢; as
two arbitrary non-zero constants. Moreover, Eq. (4) transforms into the following nonlinear
ordinary differential equation

U’ +c,U+c;U° =0, (13)
To solve Eq. (13) , integrate it firstly with respected to ¢

7] C
U +02U2+?3U4=C4 14
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where ¢, is an integration constant. Now, two cases arises for solutions of Eq. (14)

Case 1: If c¢,, c; and ¢4 are nonzero constants, then Eq. (14) has many Jacobi elliptic wave
solutions (El-Shiekh 2019), by using those solutions, many new Jacobi periodic wave solu-
tions are obtained for the inhomogeneous nonlinear Schrodinger equation with variable coef-
ficients as follows:

¥, =JacobiSN (k<e—/ P@dzy / a(@)h (e~ ﬂ@dZdz),
15)

iy .o pQ@)
_ %3 )ez(wtz+hl(z)t+hz(z))’

¥, =JacobiCD <k<e‘fﬁ(z>dzt - / a(Z)h1(Z)e_/ﬁ(Z)dde>,

C o BQ) -
,—53)el(Zu(z)12+hl(<)t+h2(Z))’ (16)

where ¢, =<1 - %3) for both ¥, and ¥,.

b4

w

:JacobiCN(k(e_/ﬁ(")dzt - / a(Z)h1(Z)e_/ﬂ(z)dzdz),

/ ‘72_3 > A 2’1‘()) 24hy (D)t+hs(2) , a7

where ¢, :(1 - c3).

bd

I

=JacobiDN<k<e—f ﬁ(Z)dZt _ / a(Z)hl(Z)g_fﬁ(Z)dZdZ> ’
o+ 2)ei(%zz+hl(z)t+hz(1)) (18)

where ¢; =2.

Wy =JacobiNS <k<e‘/ PRdzy / a(@h, e~/ ﬂ(Z)dzdz),

(LS 2y @+ (2)) (1)
cz—l)e 2a TR
Y =JacobiDC (k(e_/ pdzy _ / a(z)hl(z)e_/ ﬂ(Z)dzdz),
o 1) S P @ (@) (20)

where c; = — 2 for both W5 and ¥g.
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v

]

=JacobiNC<k<e‘fﬁ(z)d‘7t - / a(Z)h1(Z)e_/ﬂ(z)dzdz>,

1(1 _ 62))ei(£3z2+h,(z)z+hz(z))
\/ 2 )

where c; =1 +¢,.

5

=JacobiND (k(e‘fﬂ(z)dzt - / a(Z)h1(Z)e_/ﬂ(z)dzdz>,
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where ¢; = — 2(1 + ¢,).

&
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VIT G, ) o
2 ” p

where c; =2(1 + ¢,).

W, =JacobiSD (k(e_/ﬁ@dzt - / a(z)hl(z)e_/”(*’)dzdz>,

l(1 +c )>ei(f.,(2)’2+hl(z)t+h2(z))
2 2 ,

where c3 =%(1 - cg).

¥,

=JacobiCS <k <e_/ﬁ(z)dzt - / a(Z)hl(Z)e_/ﬂ(")dzdz>,

. BQ) 2 J
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where ¢c; =—2,¢, > -2,

¥, =JacobiDS<k (e‘/”@dzt - / a(Z)h1(Z)e_/ﬁ(Z)dZdz>,

1(1 e ))ei(f;(zz))t2+h|(2)t+h2(z))
V2 : ’

where ¢; = - 2.
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Y, = l]acobiNS(g, \/ %(1 + 2c2)> + JacobiCS(g, \/ %(1 + 202)>] LN,

1
herec; = — =,
wherec, 3
(27
Y= [JacobiNC(g, 1+ c3> + ]acobiSC(g, 1+ c3>]ei<’7(z”)>,
1 (28)
where ¢, =§(2 +c3),
v :[JacobiNS(g, V2 + c2)> + JacobiDS(g, 21+ cz))]ei("(z”)),
(29)

1

h =—_,
where ¢ 5
where the variables # and ¢ given by Egs. (5) and (10) respectively. The Jacobi elliptic

wave solutions transformed to hyperbolic if the modulus of it becomes 1 and the following
new solutions are given

¥, =tanh <k<e—fﬂ(z)dzt _ / a(z)hl(z)e_/ﬂ(Z)dzdz)>ei(zﬂv:fz))’2+h‘(z>’+h2(1)),

(30)
where ¢, =2,¢3 = =2.
W, =sech <k<e—/ﬂ(1)dzt _ / a(Z)hl(Z)e_/ﬂ(Z)dzdz> ) o 2 t2+h1(z)t+h2(z))’
€2))
where c, =—1,¢5 =2.
¥, =coth (k(e—fﬂ(z)dzt _ / a(z)hl(z)e—/ﬂ(z)dzdz> ) o€ 2/2(()) t2+h1(2)t+h2(2))’
(32)
where ¢, =2,¢; = 2.
Y,y =csch (k (e—f Bydzy _ / a(Z)hl(Z)e_f ﬂ(z)dzdz> > ei(fﬂ‘—ij)x2+h|(z)t+hz(z))’
(33)
where ¢, = —1,¢3 = 2.
Wap =leoth (€) £ esch(@Ne ™), where ¢y = 2.6, = =2, (34)

where the variables # and ¢ given by Egs. (5) and (10) respectively. If the modulus of the
Jacobi functions on solutions (15-29) approch zero, the following new periodic wave solu-
tions obtained

i( 09 2 .
¥, =csc <k <e—/ﬂ(z)dzt _ / a(Z)hl(Z)e_/ﬂ(Z)dde>>e’(2ﬂ(z)t +h1(z)t+hz(«,))’

where c; =—2,¢c, = 1.

(35)
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pQ) 2
\1122 =sec <k <e—fﬂ(z)dzt _ / a(z)hl(z)e_/ﬂ@dzdz>>el(2ﬂ( )f +h|(z)t+hz(z))

(36)
where ¢c; =—2,¢, = 1.
‘{]23 =tan <k<e—/ﬂ(z)dzt _ / a(z)hl(z)e—/ﬂ(z)dzdz> >el(2ﬂ"(()” +/’l|(7)t+hz(2)),
(37)
where c; =—2,¢, = -2.
lP24 =cot <k<e—fﬁ(z)dzt _ / a(z)hl(z)e_/ﬂ(Z)dZdz> >€l<Zﬁu(())tz+hl(~)f+/’h(l))’
(38)
where c; = —2,¢, = 2.
i 1 1
¥,, =[cot (¢) + cse(¢)]e D) ¢, = =36 =75 (39)
i 1 1
¥, =[tan(¢) + sec(¢)]e @), Cy = 5 3 = 5 (40)

where the variables 7 and ¢ given by Egs. (5) and (10) respectively.
Case 2: If ¢, = 0 and ¢, = O but ¢3 # 0, then Eq. (14) has the following rational solution

-2

U(c) = yo (C3))
¢

By back substitution from (41) into (2) using Eqgs. (5) and (10-12) we get the rational

solution
=2
v, = c ei(z’in(—z)tvahl(z)tthz(z)). (42)
k(e POt — [ a@hy (e~ FOEdz)

3 Application in nonlinear optics

Yan (2010) defind “the Rogon waves” as Rough waves if they reappear virtually unaffected
in size or shape shortly after interactions therefore, we can say those waves appear in optics
as optical rogon waves. In the following we are going to show the dynamical behavior of
the intensity |¥|?, by fixing the parameters h, (z) = 5 a(x) =z, and k = 3.

We can see that in Figs. 1, 2 and 3, two fixed values for the gain/loss term f(z) are given
as tan(z) and _71 chosen as positive and negative functions for the gain (+) and the loss (—)
sign respectively. In Fig. 1, the rogon wave intensity propagation |‘P |Zeffected with peri-
odic jacobi sn wave and we could see it like a snake in figure (b). Moreover, in Fig. 2, the
propagation of |‘P 16| was like a dark rogon wave in both figures (c) and (d) especially, i in
figure (d) it was so sharp and high. Finally, in Fig. 3, intensity propagation behavior |‘P 17|
was as a bright rogon wave in both (e) and (f).
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Fig. 1 Gives the periodic rogon wave intensity |‘I’, |2for two different values of the gain term f(z) as, tan(z)
and _TIrespectively, where c;is fixed as c; = —0.5

Fig.2 Shows the kink type rogon wave solution |‘I’,6|2 for two different values of the gain term f(z) as,
tan(z) and %lrespectively

@ Springer
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Fig.3 Represents the rogon wave soliton solution |‘I’17|2 corresponding to the two different values of the
gain term f(z) as, tan(z) and %respectively

4 Conclusion

In this paper, the nonautonomous variable coefficients Schrodinger equation is reduced
to nonlinear Riccati equation by using direct similarity reduction method. The Riccati
equation has two cases for solution, the first case gives new Jacobi, hyperbolic, and peri-
odic wave solutions. In other case, only rational solutions is obtained. From the obtained
solutions we have the following concluding remarks:

1. The Direct similarity reduction method is an easy methodology for transforming non-
linear partial differential equations with variable coefficients to nonlinear ordinary dif-
ferential equation with constant coefficients.

2. The obtained solutions cover other solutions obtained before in litrature (Serkin et al.
2007) additionaly, other new solutions were obtained.

3. Abundant novel exact travelling wave solutions including periodic Jacobi elliptic waves,
solitons, kink, periodic and rational solutions have been found. These solutions might
play important role in engineering and physics fields.

4. The obtained first Jacobi elliptic wave solution |¥; |2 was plotted in Fig. 1 and its limit
solution when m — >1, corresponding to kink wave solution | ¥4 |2 in Fig. 2 so we have
shown that the Rogon wave shage was different in both figures. Moreover, for the soliton
type orgon waves we take |‘I‘17| and plot it in Fig. 3, finally we can see in all figures how
the type of solution could affect the shape of the rogon wave propagation.
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