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Abstract

The quest for exact solutions to nonlinear partial differential equations has become a
remarkable research subject in recent years. In this study, we employ the Kudryashov
method and sub-equation method to retrieve the bright and dark soliton solutions of the
generalized nonlinear Schrodinger-Korteweg-de Vries equations. Other soliton-type solu-
tions like the periodic, singular, and rational solutions are achieved as well. These coupled
equations occur in phenomena of interactions between short and long dispersive waves
which are significant in various fields of applied sciences and engineering. The solutions
obtained in this study have been verified with the help of the Mathematica package soft-
ware. Furthermore, we present graphical representations of the solutions of bright and dark
solitons for a useful understanding of the behavior and physical structures of the coupled
equations considered.
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1 Introduction

Nonlinear dispersive partial differential equations have a long and rich history of study,
which has continued to gain interest in recent years(Ablowitz et al. 2004, Ablowitz
2011; Akinyemi et al. 2021d, Akinyemi et al. 2021e; Biswas and Milovic 2010, Bis-
was et al. 2018; Biswas 2019; Dia Dai 1998; Hong 2001; Inc et al. 2020a; Karpman
1975; Mirzazadeh et al. 2021; Rezazadeh et al. 2020; Sulem and Sulem 1999; Triki and
Biswas 2011; Vahidi et al. 2021; Wazwaz 2006, Wazwaz 2019, Wazwaz 2021; Zhou
et al. 2016). One of the most important and fundamental tasks in applied sciences and
engineering is the development of exact and analytical traveling wave solutions for non-
linear partial differential equations (NPDEs). There are several well-established tech-
niques that have been used to study NPDEs, such as perturbation-iteration algorithm (
Senol and Dolapci 2016; Senol et al. 2019a), tanh method ( Wazwaz 2006), sine-Gordon
method ( Ali Akbar et al. 2021), iterative shehu transform method (Akinyemi and Iyiola
2020a), residual power series method (Alquran et al. 2015; Senol et al. 2019b; Senol
2020b), variational iteration method ( He 1998), fractional reduced differential trans-
form method ( Akinyemi 2020), 6-homotopy perturbation transform method (Akinyemi
et al. 2021a), g-homotopy analysis method ( Akinyemi 2019; Akinyemi et al. 2020a; El-
Tawil and Huseen 2012), homogeneous balance method ( Jafari et al. 2014), F-expan-
sion method ( Lu and Zhang 2017), G’ /G-expansion method ( Akinyemi et al. 2021c;
Bekir and Guner 2013), g-homotopy analysis transform method (Akinyemi and Huseen
2020; Akinyemi and Iyiola 2020b), new extended direct algebraic method (Rezazadeh
2018; Senol 2020a), simple equation method ( Az-Zo’bi et al. 2021a), Jacobi elliptic
function method (Az-Zo’bi et al. 2021b), functional variable method ( Inc et al. 2020b),
and much more.

A fully integrated nonlinear dispersive partial differential equation, the nonlinear
Schrodinger (NLS) equation proved instrumental in obtaining a deeper understanding
of a wide variety of processes, from nonlinear optics and atomic physics to deep water
waves, rogue waves, plasmas, and so on. The Korteweg-de Vries (KdV) equation is one
of the most important nonlinear PDEs. In various fields of applied sciences and engi-
neering, such as hydrodynamics, plasma physics, water waves, and quantum field theory,
KdV equations play a prominent role. They define the interactions with distinct disper-
sion relations between two long waves. In mathematical physics, chemistry, and biol-
ogy, several types of coupled nonlinear problems have emerged as models to describe
the interacting wave phenomena. As a model to explain the interacting wave dynam-
ics in the electromagnetic waves in plasma physics, dust-acoustic wave, and Langmuir
wave, the coupled Schrodinger-KdV equations emerged as a model to describe different
forms of wave phenomena in mathematical physics, etc. This study considers a general-
ized coupled NLS-KdV equations of the form:

iP, + A Py, + 0, |P*P + 13PQ = 0,

1
O, + B 00, + B0, + B5(IPI?) =0, M

where A, My, A3, By, By, B3 are real constants, P = P(x,t) is a complex function while
0 = Q(x,1) is a real-valued function. Indeed, P simply represents the short wave, while
Q represents the long wave. In fluid mechanics, like capillary gravity water wave interac-
tions, these coupled equations occur in phenomena of interactions between short and long
dispersive waves (Albert and Angulo Pava 2003; Corcho and Linares 2007; Funakoshi and
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Oikawa 1983). We also refer the readers to ( Deconinck et al. 2016; Nguyen and Liu 2020)
for more detailed discussion. We observe that setting Q and f; to zero in Eq. (1) yields the
NLS equation:

iP, + M Py + M |PI*P = 0. )

Also, setting P = 0 in Eq. (1) leads to the KdV equation:
Qt + ﬁl QQX + ﬂZQxxx =0. (3)

In this study, our main aim is to analyze the solutions of the coupled NLS-KdV system
with the help of Kudryashov and sub-equation techniques. The advantage of these two
techniques over the other existing methods is that they provide the proposed system with
some simple form of soliton solutions. Through these methods, we achieve trigonometric,
hyperbolic, and rational type solutions containing the bright soliton, dark soliton, periodic,
singular, and other soliton-type solutions. Relevantly, these kinds of solutions can help to
understand some physical phenomena related to wave propagation. It is worth mentioning
that the existence of solutions for the coupled system of NLS-KdV equations have been
highlighted in (Colorado 2015, 2017). It should be noted that the retrieved findings are new
and have not been published previously.

As follows, we organized the layout of the rest of our work: The explanation of the pro-
posed methods are presented in Sect. 2. Finally, the discussion and conclusion of our work
is given in Sect. 3.

2 The model’s mathematical analysis

Consider the generalized coupled system of NLS-KdV equations
iP,+ &y Py + 1| PIPP + 33PQ = 0,

4
0, + 1 00, + f 0y + B (IPI?), = 0. @

Since P is a complex function while Q is a real-valued function, we propose the transfor-
mation as:

P(x, 1) = P(¢p)e" >,

0,0 =0(¢), ¢=wx+nt,
where w; and #;, i = 1,2 are the speed of wave, wave number and frequency of the soliton

respectively. Using the transformation defined in Eq. (5), we obtain the real and imaginary
parts of Eq. (4) as follows:

®)

= (1) + M@2)P(P) + M’ P () + MP(d)* + M P($)Q() =0, (6)
(1 + 2M@,0,)P'(¢) = 0, (7)

and
mQ' (@) + p10,0()Q (@) + f,0’ Q" (¢) + 230, P($)P' ($) = 0. ®)

Solving Eq. (7) yields
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m = —2Mw,m,. ©)]

Substituting Eq. (9) into Eq. (8), then integrate once with zero constant of integration, we
obtain

~20,0,0(6) + 3 /OGP + 070" () + PGP =0, 10)

Assume that the solutions of 6 and 10 are expressed respectively as

Ay
P(¢) = ) 2, 2"(@),
@) = Y h,0"(@), gy,. hy, #0.

m=0

where the constants g,, and &, are to be calculated respectively. With the use of the balance
procedure (Malfliet 1992), balancing P”(¢b) with P(¢b)® in Eq. (6) yields A, = 1 and Q"' (¢)
with Q(¢)? in Eq. (10) yields A, = 2.

2.1 The Kudryashov method

According to Kudryashov method (Kudryashov 2012, 2020a, b; Kudryashov and
Antonova 2020; Rezazadeh et al. 2021), the solutions take the form

P(¢) = gy + 81 P(P),

OP) = hy + by O() + (). (12
The function ®(¢) satisfies the ODE:
(@' (¢))* = P*(¢)(1 — QD*(¢)). (13)
The solution to the above ODE is given as
D(¢) = d Q =48, (14)

(4€2 - Q) sinh (¢) + (467 + Q) cosh (¢)
Here, &£, and &, are arbitrary constants. Inserting Eqs. (12) and (13) into Egs. (6) and (10)

respectively, collecting all the coefficient of ®"(¢), m =0,1,2,3,4 and setting them to
zero, we have
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D) : =gy + Zohohs — 807\160% + 8(3)7\2 =0,
D Bags + %ﬁlhg — 2hgh @,y = 0,
D' (p) : =g, + gohihs + g hghs + 817\10)% - 817\10)5 + 381857\2 =0,
D 283808, + Byl + Brhohy — 2h Mw, =0,
D) : g1hids + gohods +38081A, = 0, (15)
D Bsgt + 4Pyt + %ﬂlhf + Byhghy — 2hy\ @, = 0,
() 1 —2Qg MwT + g s + g3k, =0,
: Bihyhy — 2QBh w0t =0,
() : %ﬁlhg — 6Qp,h,w7 = 0.

The solutions of the above obtained algebraic equations with Eq. (9) results in the follow-
ing cases:

n = —2Mw w1, = (=5768; 30} + 14452 32 22c0% — 48, B2 f3 Ay Ay

1
144p22, 23
+28803 B3 Ay A300% — 2B A3 — 36p2P2 0% + 12, B, B2 41 A3).

= 0.¢ = 40 2Q(B, A, — 61 43)
0 251 =1 ﬁ]ﬂz ’

12Q8,w?
hy=0,h =0, hy=—2>1
by
24[3%’1250% + p1B34 — 68,0545
wH = .
2 12654, 4, (16)
Case 1

By incorporating these parameters into Eq. (14), in addition to Eq. (12), we have the
solutions

(451601 2Q(fy A — 6ﬂ27\3))ei(w2x+’121)
V ﬂ17»2((45? — Q) sinh(¢p) + (45% +Q) Cosh(¢)) )
19267Qp,w?
B, ((4&7 — Q) sinh(h) + (4&7 + Q) cosh(qb))2 .

Pi(x,t) ==
a7

Ql (-x’ t) =
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N = —2Mw,m,,
1 ( 472 4 24272, 2 222 2
= — | =576 Mo + 144 MAsw, — 48 MAw
n 144ﬁ1/3227\17»§ By Py M0 b15 M0y P B Py by

115280 M ki + 2886, B fshy sy — B B3k — 36,55 B35
28865 B30 A3 + 1287 B Bih s — 48P ﬂ2ﬁ3>\fx2x3),

~ ~ 2Q(B, M, — 68,05)
8 =0, g =zw —ﬁ17\2 > (18)

+

o = 240500 — B B3, +6ﬂ2ﬁ37\3’ 0 b= 129/32503’
36150, b
—24ﬂ§}\2w% = BiBshy + 65,305
“2= 12,0, '

Case 2
By incorporating these parameters into Eq. (14), in addition to Eq. (12), we have the
solutions

(45](()] 2Q(B A, — 6ﬂ27\3))ei(”’2~"+'72!)

Py(x,t) =+ s
VB ((AE) — Q)sinh(¢) + (4€; + Q) cosh(¢h))
24820, 0% — By Bs); + 68,0505 1926,Q8,w?
O,(x, 1) = + 7>
36160, B ((4€ — Q) sinh(¢) + (4E; + Q) cosh(¢))
(19)
where ¢ = w,;x + 1t and Q = 4&,E,.
Remark 1 Tt should be emphasized that the constraint for Eqs. (17) and (19) is that
QB A — 65,13)
Bih — 68,0 50 20)

Pty

Remark 2 For £, = &, =1, Eqgs. (17) and (19) reduce to the bright soliton solutions of Eq.
(4) as follows:

2(p1h — 66,03)

P(x, 1) = +w, 5 sech (w,x + n,1)e’@*+m),
1
(21)
12p07
oW, 1) = sech “(cw;x + n,1),
1
and
2(B A — 6B, A )
P(x,1) = 2w, M sech (w,x + n,1)e @¥+mD,
Py 22)
—24P20,@% — B + 60,030 128,07
ox, 1) = 272 13ﬂ [I)i ! 25 + ﬂz L sechz(w1x+nlt),
1P21\ 1
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provided that
A — 66,
Pih — 6y >0
Bk,

Remark 3 For £, = 1 and &, = —1, Egs. (17) and (19) reduce to the singular soliton solu-
tions of Eq. (4) as follows:

(23)

2(B M — 6f,M .
P(x,t) = xiw, W esch (o, x + 771t)el(w2x+mt)’
12
24
12,320)% ) @9
Ox, 1) =— 5 csch“(wx + n,1),
1
and
2(f M — 66,M ;
P(x,t) = +im, 2bih = 6Phs) lﬁ }\ Phs) csch (@ x + i, 1)e’ @ mh,
12
(25)
—24B20,07 — BBk + 6B Bshs  12B0°
,t = - h2 + t N
O(x, 1) 35 5 csch (@, x + ;1)
provided that
Bih — 68,14 <0 26)

Pid

2.2 The sub-equation method

Based on the sub-equation method (Akinyemi et al. 2021b; Senol et al. 2021), the solutions
still take the form

P(¢) = gy + &1P(¢),
Q(P) = hy + by () + hyD($)*.
Here, the function ®(¢) satisfies the Riccati equation defined by
D' () = 0+ D), (28)

for constant ¢. The category of solutions that certifies Eq. (28) are as follows:

—+/—otanh(y/=0 ¢), 0<0,
—y/~ecoth(y/=0 ¢), 0<0,

@n

D(¢) =4 Votan(y/o ), 0>0, (29)
—y/ocot(y/o $), 0>0,
—4]%%, ¢, 1s a constant, 0=0.

Putting Eqgs. (27) and (28) into Egs. (6) and (10) leads to the polynomial in ®"(¢). Gather-
ing all of the ®"'(¢h), m = 0, 1,2, 3,4 coefficient and setting it to zero, one get
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D) 1 —go(m, + M @3) + gohohs + gohy =0,
1
: ﬁ3gg + 2ﬂ2h202w% + Eﬂlh(z) - 2hohw, =0,
D (P) 1 =g (1, + M @3) + 8ol s + g1hohs + 28, 007 + 38,850, = 0,
t 2P38081 + 2Boh 0wt + Bihghy — 2k Mw, =0,
() 1 gy + gohads +38081h = 0, (30)
1
: B3g; + 8Py hyowt + zﬂlhf + Byhghy — 2hyh @, = 0,
() 1 g1y +2g 0w’ + g1k, =0,
: 2Bh @} + Byhyhy =0,
1
D (¢) : 6p,h07 + Eﬁlhg =0.

The solutions of the algebraic equations obtained above with Eq. (9) yields the following:

N = —2M o w,,

1 246, M My 05 \/(48ﬁ22ﬁ|7xzpcuf + B3 BNy — 66,838, 03)> — 17282 piN2 0’}

" = (-s76830%0} =

144520, 22 B
1152830, 20, 00%
+ 2888202020007 — 968, 2 By )y My 0w’ + ST6R3 ik ks 007 — % — B3 = 36525202
1
14452 B0 M)
+ # + 126,y 20 Ay — 24/}2/13#&&)
1
0 . 268,007 = fiM @) b <0 & 12,07
g =0, ¢ =\ ——™@@, =0, = ——
0 1 ﬂl}\2 1 2 ﬂ]
\/(48ﬁ2ﬂ]7»20w + B3 BN — 68,838 3)7 — 17282 302 0%} — 482 hy00? + 60,8381 )y — BEB3M
h .
o 68161,
\/(48/32 B0’ + BN, — 6,85, 0)* — 172862 422 020r*
: .
2 126, 02

(3D
By incorporating these parameters into Eq. (14), in addition to Eq. (12), we have the fol-

lowing solutions:
For ¢ < 0, we have

20(6f,A; — B\ )
Py(x,1) = +w, \/_M tanh(y/—og)e @m0,

Piry )
12 2
Qs0x.1) = Iy + % tanh?(/=o),
1
Pyt = o \/M cothy o,
By (33)

12
Q4(x, 1) = hy + ﬁﬂ L coth?(y/=0@).
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For o > 0, we have

Py(x, 1) = Fo, W tan( \/5¢)ei(w2x+”2’),
(34)

124, 00>
&mn=%——€—imﬂ¢wx
1

20(6p,05 — pi)M)

Pe(x, 1) = +w, COt(\/E(b)ei(wZ“"ht),
B\, 35)
124, 00>
Qs (x, 1) = hy — % co’ (/o).
|
For ¢ = 0, we have
Pyt 1) = L V266,03 — ﬂl}\l)ei(wzx+”2t),
VBiM(d + ) 36)
V= h 12[3260%
)=hy— ———
Gt =t = G gor

Remark 4 Tt should be noted that the additional constraint for Egs. (32), (33), (34), (35) and
(36) is that

6223 — PiM

0.
b, &7

3 Conclusion and discussion

In conclusion, two novel methods, namely; the Kudryashov method and the sub-equation
method have been successfully employed to obtain bright soliton, dark soliton, and other
soliton-type solutions of the generalized nonlinear coupled Schrodinger-Korteweg-de Vries
equations. The advantage of these two approaches over the other existing methods is that
they present simple form soliton solutions to the proposed coupled system. The graphical
representations in Figs. 1, 2, 3 and 4 of these solutions will undoubtedly play a promi-
nent role in understanding the behavior and capture some of the physical characteristics of
the coupled model. From these investigations, it can be projected that the results obtained
may be useful for a better understanding of the interactive wave phenomena in any varied
instance where the coupled model considered is applicable. Our results reinforced the fact
that the methods suggested are an efficient, effective, and simple mathematical tool to han-
dle various nonlinear problems in the fields of applied sciences and engineering. Further-
more, we have verified all the obtained solutions with the help of the Mathematica package
software.
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V(x.n_o_cﬁ&

S

-0.10

Fig.1 3D plots of the bright solitons (Eq. (21)) with A, =, =-1, A, =M =1,6,=p;=1, and
w, =0.1.

Refu(xt)] Im{u(et]

Jutc!

20 —mmmm (22 —--m- t=d =0 —mmmm {22 —-mm- t=d {20 mmmmm 22 —mmmm ted

—ee- 126 - =8 t=10 —ees 126 - t=8 t=10 cees 126 -oo- 18 =10
(a) (b) (c)

vixt)

=0 —mmm- t=2 -oo- =4
————— t=6 -~ t=8 t=10

(d)

Fig.2 2D  plots of the  bright solitons (Eq. 21)  with  different t  when
M=pf=-L=Mm=1p4=p=1andw =0.1.
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02}
Refu(xtlg o}

-02

Fig.3 3D plots of the complex mixed dark-bright solitons (Eq. 32) and with
0 =01, M =Mm=p0=-1,=pF=>,h=1ando=—1.

Refu(x.)] Imfu(x) el

Fig.4 2D plots of the complex mixed dark-bright solitons (Eq. (32)) with different t when
0, =01, 1=M=4=-1,4=pF=2=1ando=-1.
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