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Abstract
In this study, we extract the different kinds of exact wave solutions to the (1+1) dimen‑
sional Chiral nonlinear Schrödinger equation (CNLSE) that describes the edge states of the 
fractional quantum hall effect in quantum field theory. The extended rational sine–cosine/
sinh–cosh techniques are utilized for obtaining solutions. Parametric conditions on physi‑
cal parameters are also enumerated to ensure the existence criteria of soliton solutions. 
Moreover, the stability analysis is also discussed. By the suitable selection of parameters, 
three dimensional, two dimensional and contour plots are sketched. The obtained outcomes 
show that the applied computational strategies are direct, efficient, concise and can be 
implemented in more complex phenomena with the assistant of symbolic computations.

Keywords  Exact wave solutions · Extended rational sine–cosine/sinh–cosh approaches · 
(1+1)dimensional CNLSE · Stability analysis

1  Introduction

Diverse complicated nonlinear physical characteristics may be signified in shape of non‑
linear partial differential equations (NLPDEs). In recent years, NLPDEs have gained 
a remarkable attention in the realm of nonlinear sciences due to its wide range usage 
and applications. The NLPDEs perform a great role in plasma physics, ocean engineer‑
ing, optical fibers, physics, biology, quantum physics, fluid mechanics, geochemistry 
and many other scientific areas to explain the dynamical and physical processes (Sead‑
awy et  al. 2019; Seadawy and Cheemaa 2020; Zhou 2014; Younis et  al. 2018; Ozkan 
et  al. 2020; Ahmad et  al. 2020; Arshad et  al. 2017b, c). In this advanced era of sci‑
ence and technology, the study of nonlinear phenomena has become attractive field for 
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scientists and engineers. The NLPDEs explain the behaviour of waves in different fields. 
The exact solution of NPDEs plays major role to understand many physical phenom‑
ena in the various natural sciences. Due to this different kind of powerful and effective 
techniques are introduced to find exact and analytic solutions by using computational 
algebra as the discrete symmetry analysis of some classical and fractional differential 
equations; Lie symmetry analysis of conformable differential equations and Lie sym‑
metry analysis and conservation laws for the time fractional Black-Scholes equation 
(Chatibi et al. 2019a, b, 2020). It is not possible to apply each method to all governing 
models because every method has its own shortcomings and criteria for the application 
to the governing model for discussing the exact solutions (Darvishi et al. 2018; Younis 
et al. 2020; Sulaiman et al. 2019; Ali et al. 2018; Zhang et al. 2011; Seadawy 2017a, 
b; Arshad et  al. 2017a; Seadawy 2015, 2012). Particularly exact wave structures are 
presented in a quantum field and also in mathematical physics in the context of wave 
description of elementary systems. The study of quantum field theory is still booming, 
as the uses of its mechanism to many physical problems. In quantum field theory, the 
wave structures play an important role in the non-perturbative developments. It remains 
one of the most dynamic areas of theoretical physics today, providing a common lan‑
guage to several other branches of physics. Due to this different kind of powerful and 
effective techniques are introduced to find exact and analytic solutions by using compu‑
tational algebra (Seadawy and Jun 2017; Younas et al. 2021; Ozkan et al. 2021; Sead‑
awy et  al. 2021a, b; Bilal et  al. 2021a, b; Rizvi et  al. 2021a, b). It is not possible to 
apply each method to all governing model because every method has its own shortcom‑
ings and criteria for the application to the governing model for discussing the exact 
solutions. Recently, the CNLSE has been analyzed by a number of effective approaches 
(Bulut et al. 2017; Abdul Al Woadud et al. 2019; Eslami 2016; Raza and Javid 2018; 
Ali et al. 2018; Dianchen et al. 2017; Johnpillai et al. 2012; Ali et al. 2017; Gianzo et al. 
1999; Younis et al. 2016; Agrawal 2013; Seadawy 2017b) which yields fruitful results 
in diverse areas of nonlinear sciences.

The (1+1)-dimensional CNLSE is given by Nishino et al. (1998)

where Θ represents the complex function of x and t, while � indicates nonlinear coupling 
constant and the ∗ represents the complex conjugate.

However in this work, the key objective is to extract solitary wave solutions of 
(1+1)-dimensional CNLSE via extended rational sine–cosine/sinh–cosh techniques in 
quantum field theory. The (1+1)-dimensional CNLSE has been taken as model to dem‑
onstrate the efficiency of these proposed schemes.

This piece of article is discussed as sequence: in Sect. 2, overview of the methods. In 
Sect. 3, applications. In Sect. 4, modulation instability analysis. In Sect. 5, results and 
discussion and finally paper come to end with conclusions in Sect. 6.

2 � Overview of the methods

We describe the first step of the extended rational methods for seeking the solutions of 
NLPDEs in this section.

Suppose that a NLPDE in its general form

(1)iΘ
t
+ Θ

xx
− i�(Θ∗Θ

x
− ΘΘ∗

x
)Θ = 0,
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where F is a polynomial in u and its partial derivatives and u = u(x, t) is an unknown func‑
tion. Suppose that

Then, by using (3), Eq. (2) can be turned into following ODE with respect to �

In next we discuss the exact solutions of Eq. (4) by using the extended rational techniques.

2.1 � Extended rational sine–cosine method

We assume that Eq. (4) has following forms of solutions

where a0 , a1 and a2 are parameters to be found in terms of the other parameters. The non-
zero constant � is the wave number. The derivatives of the predicted solutions are

in the first form and

in the second form. We substitute Eqs.(7) or (9) into the reduced form of the govern‑
ing equation obtained above in Eq. (4). On collecting the same power coefficients of the 
cosm(��) or sinm(��) and equating to zero, we get a cluster of algebraic expression. The 
obtained algebraic polynomial produce the values of the coefficients involved. After deter‑
mine a0 , a1 , a2 , c and � in terms of other parameters and substitute into Eqs. (5) and (6), 
one gets solutions for Eq. (4) in rational sin-cos forms.

(2)F

(

u,
�u

�t
,
�u

�x
,
�u2

�x
,
�2u

�x2
,⋯

)

= 0,

(3)u(x, t) = u(�), � = x + ct,

(4)G
(

u, u�, u��,⋯
)

= 0.

(5)u(�) =
a0 sin(��)

a2 + a1 cos(��)
, cos(��) ≠ −

a2

a1

,

(6)u(�) =
a0 cos(��)

a2 + a1 sin(��)
, sin(��) ≠ −

a2

a1

,

(7)u
�(�) =

a0�
[

cos(��)a2 + a1

]

[

a2 + a1 sin(��)
]2

,

(8)u
��(�) =

a0�
2 sin(��)

[

2a2
1
+ a1 cos(��)a2 − a

2

2

]

[

a2 + a1 cos(��)
]3

,

(9)u
�(�) = −

a0�
[

sin(��)a2 + a1

]

[

a2 + a1 sin(��)
]2

,

(10)u
��(�) =

a0�
2 cos(��)

[

2a2
1
+ a1 sin(��)a2 − a

2

2

]

[

a2 + a1 sin(��)
]3

.



	 S. U. Rehman et al.

1 3

411  Page 4 of 17

2.2 � Extended rational sinh–cosh method

According to this method, which was introduced by Darvishi et al. (2018), we suppose that 
solutions of Eq. (4) can be written in the following forms

Where a0 , a1 and a2 are parameters to be found in terms of the other parameters. The non-
zero constant � is the wave number. The derivatives of the predicted solutions are

in the first form and

in the second form. We substitute Eq. (13) or (15) into the reduced form of the govern‑
ing equation obtained above in Eq. (4). On collecting the same power coefficients of the 
cosh

m(��) or sinhm(��) and equating to zero, we achieve a cluster of algebraic expression. 
The obtained algebraic polynomial produce the values of the coefficients involved. After 
determine a0 , a1 , a2 , c and � in terms of other parameters and substitute into Eqs. (11) and 
(12), one gets solutions for Eq. (4) in rational sinh–cosh forms.

3 � Applications

For solving Eq.  (1), we start with complex wave transformation 
Θ(x, t) = Ψ(�)eiΦ, where � = c(x + �t),Φ = kx + �t + �. Here c, �,�,� and k are param‑
eters, which represent the amplitude component of the soliton, velocity of soliton, phase 
constant, frequency and wave number respectively. Substitute transformation into Eq. (1), 
from the imaginary part we get the relation

(11)u(�) =
a0 sinh(��)

a2 + a1 cosh(��)
, cosh(��) ≠ −

a2

a1

,

(12)u(�) =
a0 cosh(��)

a2 + a1 sinh(��)
, sinh(��) ≠ −

a2

a1

,

(13)u
�(�) =

a0�
[

cosh(��)a2 + a1

]

[

a2 + a1 sinh(��)
]2

,

(14)u
��(�) = −

a0�
2 sinh(��)

[

2a2
1
+ a1 cosh(��)a2 − a

2

2

]

[

a2 + a1 cosh(��)
]3

,

(15)u
�(�) =

a0�
[

sinh(��)a2 − a1

]

[

a2 + a1 sinh(��)
]2

,

(16)u
��(�) =

a0�
2 cosh(��)

[

2a2
1
− a1 sinh(��)a2 + a

2

2

]

[

a2 + a1 sinh(��)
]3

.

(17)� = −2k,
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and we obtain

from the real part. Using homogeneous balance principle, we yields, n = 1.

3.1 � Solutions via extended rational sine–cosine method

Assume that Eq. (18) possesses the solutions of the form

Inserting Eq. (19) and its derivative into Eq. (18) and the coefficients having same power 
of cos(��)m equal to zero and resultantly, a bunch of equations is retrieved by using 
Mathematica:

On solving above equations, we attain the following sets of solutions as:
Set-1

Set-2

For set 1, we express the solutions of Eq. (1) as:

Similarly, for set 2 we have the following solutions:

(18)c
2Ψ�� + 2k�Ψ3 − (� + k

2)Ψ = 0,

(19)Ψ(�) =
a0 sin(��)

a2 + a1 cos(��)

cos(��)2 ∶ a
2

1
k
2 + 2a2

0
k� + a

2

1
� = 0,

cos(��)1 ∶ a1a2c
2�2 − 2a1a2k

2 − 2a1a2� = 0,

cos(��)0 ∶ 2a2
1
c
2�2 − a

2

2
c
2�2 − a

2

2
k
2 + 2a2

0
k� − a

2

2
� = 0.

� = ±

√

k2 + �
√

2c

, a0 = ±a1

�

−
k2 + �

2 k �
, a1 = a1 , a2 = 0.

� = ±

√

2
(

k2 + �
)

c
, a0 = ±a1

√

−
k2 + �

2k�
, a1 = a1 , a2 = ±a1.

(20)Θ1,1(x, t) =

�

−
k2 + �

2k�
tan

�

√

k2 + �
√

2

(x − 2kt)

�

ei(kx+�t+�).

(21)Θ1,2(x, t) = −

�

−
k2 + �

2k�
tan

�

√

k2 + �
√

2

(x − 2kt)

�

ei(kx+�t+�).

(22)Θ2,1(x, t) =

�

−
k2 + �

2k�

sin

�

√

2(k2 + �)(x − 2kt)

�

1 + cos

�

√

2(k2 + �)(x − 2kt)

�e
i(kx+�t+�).
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OR
Consider the Eq.(18) has solutions in the form as

Inserting Eq. (26) and its derivative into Eq. (18) and the coefficients having same power 
of sin(��)m equal to zero and resultantly, a bunch of equations is retrieved by using 
Mathematica:

On solving above equations, we attain the following sets of solutions as:
Set-3

Set-4

For set 3, we get the solutions of Eq. (1) in following form:

(23)Θ2,2(x, t) = −

�

−
k2 + �

2k�

sin

�

√

2(k2 + �)(x − 2kt)

�

1 − cos

�

√

2(k2 + �)(x − 2kt)

�e
i(kx+�t+�).

(24)Θ2,3(x, t) = −

�

−
k2 + �

2k�

sin

�

√

2(k2 + �)(x − 2kt)

�

1 + cos

�

√

2(k2 + �)(x − 2kt)

�e
i(kx+�t+�).

(25)Θ2,4(x, t) =

�

−
k2 + �

2k�

sin

�

√

2(k2 + �)(x − 2kt)

�

1 − cos

�

√

2(k2 + �)(x − 2kt)

�e
i(kx+�t+�).

(26)Ψ(�) =
a0 cos(��)

a2 + a1 sin(��)

sin(��)2 ∶ −a2
1
k
2 − 2a2

0
k� − a

2

1
� = 0,

sin(��)1 ∶ a1a2c
2�2 − 2a1a2k

2 − 2a1a2 � = 0,

sin(��)0 ∶ 2a2
1
c
2�2 − a

2

2
c
2�2 − a

2

2
k
2 + 2a2

0
k� − a

2

2
� = 0.

� = 2c2�2 − k
2, a0 = ±a1c�

√

−
1

k �
, a1 = a1 , a2 = 0.

� =
1

2

(

c
2�2 − 2k2

)

, a0 = ±a1c�

√

−
1

4 k �
, a1 = a1 , a2 = ±a1.

(27)Θ3,1(x, t) = c�

√

−
1

k�
cot

[

�c(x − 2kt)

]

ei(kx+(2c
2�2−k2)t+�).



On study of modulation instability and optical soliton solutions:…

1 3

Page 7 of 17  411

Similarly, for set 4, we have the following form of solutions:

3.2 � Solutions via extended rational sinh–cosh approach

Assume that the Eq.(18) has solutions of the form

Inserting Eq. (33) and its derivative into Eq. (18) and the coefficients having same power 
of cosh(��)m equal to zero and resultantly, a bunch of equations is retrieved by using 
Mathematica:

On solving above equations, we attain the following sets of solutions as:

(28)Θ3,2(x, t) = −c�

√

−
1

k�
cot

[

�c(x − 2kt)

]

ei(kx+(2c
2�2−k2)t+�t).

(29)Θ4,1(x, t) = c�

√

−
1

4k�

cos

[

�c(x − 2kt)

]

1 + sin

[

�c(x − 2kt)

]e
i(kx+

1

2
(c2�2−2k2)t+�).

(30)Θ4,2(x, t) = −c�

√

−
1

4k�

cos

[

�c(x − 2kt)

]

1 − sin

[

�c(x − 2kt)

]e
i(kx+

1

2
(c2�2−2k2)t+�).

(31)Θ4,3(x, t) = −c�

√

−
1

4k�

cos

[

�c(x − 2kt)

]

1 + sin

[

�c(x − 2kt)

]e
i(kx+

1

2
(c2�2−2k2)t+�).

(32)Θ4,4(x, t) = c�

√

−
1

4k�

cos

[

�c(x − 2kt)

]

1 − sin

[

�c(x − 2kt)

]e
i(kx+

1

2
(c2�2−2k2)t+�).

(33)Ψ(�) =
a0 sinh(��)

a2 + a1 cosh(��)

cosh(��)2 ∶ −a2
1
k
2 + 2a2

0
k� − a

2

1
� = 0,

cosh(��)1 ∶ −a1a2c
2�2 − 2a1a2k

2 − 2a1a2� = 0,

cosh(��)0 ∶ −2a2
1
c
2�2 + a

2

2
c
2�2 − a

2

2
k
2 − 2a2

0
k� − a

2

2
� = 0.
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Set-5

Set-6

For set 5 the solutions of Eq. (1) can be written as:

Similarly, for set 6 the solutions of Eq. (1) can be written as:

k = −
√

−2c2�2 − �, a0 = ±a1c�
4
√

−2c2�2 − �

�

−
1

�
�

2c2�2 + �
� , a1 = a1 , a2 = 0.

k =

�

−
1

2

�

c2�2 + 2�
�

, a0 = ±a1
c�

4
√

−c2�2 − 2�

23∕4
�

�
�

c2�2 + 2�
�

, a1 = a1 , a2 = ±a1.

(34)

Θ5,1(x, t) = c�
4
√

−2c2�2 − �

�

−
1

�
�

2c2�2 + �
� tanh

�

�c

�

x + 2

�
√

−2c2�2 − �

�

t

�

�

× e
i

��

−
√

−2c2�2−�
�

x+�t+�
�

.

(35)

Θ5,2(x, t) = −c�
4
√

−2c2�2 − �

�

−
1

�
�

2c2�2 + �
� tanh

�

�c

�

x + 2

�
√

−2c2�2 − �

�

t

�

�

× e
i

��

−
√

−2c2�2−�
�

x+�t+�
�

.

(36)
Θ6,1(x, t) =

c�
4
√

−c2�2 − 2�

23∕4
�

�
�

c2�2 + 2�
�

sinh

�

�c

�

x −

�

−2
�

c2�2 + 2�
�

t

��

1 + cosh

�

�c(x −

�

−2
�

c2�2 + 2�
�

t)

�

× e
i

�

√

−
1

2
(c2�2+2�) x+�t+�

�

.

(37)
Θ6,2(x, t) = −

c�
4
√

−c2�2 − 2�

23∕4
�

�
�

c2�2 + 2�
�

sinh

�

�c

�

x −

�

−2
�

c2�2 + 2�
�

t

��

1 − cosh

�

�c(x −

�

−2
�

c2�2 + 2�
�

t)

�

× e
i

�

√

−
1

2
(c2�2+2�) x+�t+�

�

.

(38)
Θ6,3(x, t) = −

c�
4
√

−c2�2 − 2�

23∕4
�

�
�

c2�2 + 2�
�

sinh

�

�c

�

x −

�

−2
�

c2�2 + 2�
�

t

��

1 + cosh

�

�c

�

x −

�

−2
�

c2�2 + 2�
�

t

��

× e
i

�

√

−
1

2
(c2�2+2�) x+�t+�

�

.
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OR
Consider the Eq.(18) has solutions in the form as

Inserting Eq. (40) and its derivative into Eq. (18) and the coefficients having same power 
of sinh(��)m equal to zero and resultantly, a bunch of equations is retrieved by using 
Mathematica:

On solving above equations, we attain the following sets of solutions as:
Set-7

Set-8

For set 7, we get the solutions of Eq. (1) in the following form:

Similarly, for set 8, we get the solutions as:

(39)
Θ6,4(x, t) =

c�
4
√

−c2�2 − 2�

23∕4
�

�
�

c2�2 + 2�
�

sinh

�

�c

�

x −

�

−2
�

c2�2 + 2�
�

t

��

1 − cosh

�

�c

�

x −

�

−2
�

c2�2 + 2�
�

t

��

× e
i

�

√

−
1

2
(c2�2+2�) x+�t+�

�

.

(40)Ψ(�) =
a0 cosh(��)

a2 + a1 sinh(��)

sinh(��)2 ∶ −a2
1
k
2 + 2a2

0
k� − a

2

1
� = 0,

sinh(��)1 ∶ −a1a2c
2�2 − 2a1a2k

2 − 2a1a2� = 0,

sinh(��)0 ∶ 2a2
1
c
2�2 + a

2

2
c
2�2 − a

2

2
k
2 + 2a2

0
k� − a

2

2
� = 0.

c = ±

√

−k2 − �
√

2�

, a0 = ±a1

�

k2 + �

2k �
, a1 = a1 , a2 = 0.

c = ±

√

−2
(

k2 + �
)

�
, a0 = ±a1

√

k2 + �

2 k �
, a1 = a1 , a2 = ±ia1.

(41)Θ7,1(x, t) =

√

k2 + �

2k�
coth

[

√

−k2 − �

2
(x − 2kt)

]

ei(kx+�t+�).

(42)Θ7,2(x, t) = −

√

k2 + �

2k�
coth

[

√

−k2 − �

2
(x − 2kt)

]

ei(kx+�t+�).

(43)Θ8,1(x, t) =

√

k2 + �

2k�

cosh

[

√

−2
(

k2 + �
)

(x − 2kt)

]

i + sinh

[

√

−2
(

k2 + �
)

(x − 2kt)

]e
i(kx+�t+�).
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4 � Modulation instability analysis

In this section, we analyze the modulation instability(MI) of the (1+1) dimensional CNLSE 
with the aid of the general concept of linear stability (Agrawal 2013; Seadawy 2017b; Ahmed 
et al. 2019).

Consider the steady-state solutions of the CNLSE to be of the form

where k0 represents the normalized power.
Putting Eq. (47) into Eq. (1) and linearizing, provides

where H(x, t) is unknown complex function and * stands for the conjugate of H(x, t).
We assume that the solution of Eq. (48) to be in the following form

where l and � denote the normalized wave number, and frequency of perturbation, 
respectively.

Putting Eq. (49) into Eq. (48), separate the coefficients of ei(lx−�t) and e−i(lx−�t) , we attain 
the dispersion relation after solving the determinant of the coefficient matrix.

Calculating the dispersion relation (50) for � , grants

(44)Θ8,2(x, t) = −

√

k2 + �

2k�

cosh

[

√

−2
(

k2 + �
)

(x − 2kt)

]

i − sinh

[

√

−2
(

k2 + �
)

(x − 2kt)

]e
i(kx+�t+�).

(45)Θ8,3(x, t) = −

√

k2 + �

2k�

cosh

[

√

−2
(

k2 + �
)

(x − 2kt)

]

i + sinh

[

√

−2
(

k2 + �
)

(x − 2kt)

]e
i(kx+�t+�).

(46)Θ8,4(x, t) =

√

k2 + �

2k�

cosh

[

√

−2
(

k2 + �
)

(x − 2kt)

]

i − sinh

[

√

−2
(

k2 + �
)

(x − 2kt)

]e
i(kx+�t+�).

(47)Θ(x, t) =
�

√

k0 + H(x, t)
�

e
ik0t,

(48)−k0(H + H
∗) + iH

t
+ H

xx
= 0,

(49)H(x, t) = b1e
i(lx−�t) + b2e

−i(lx−�t),

(50)l
4 + 2k0l

2 −�2 = 0.

(51)� =

√

l4 + 2k0l
2.
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The obtained dispersion relation reveals the steady-state stability. If the wave number � 
is imaginary one then steady-state solution turn to unstable since the perturbation grows 
exponentially. Moreover if the wave number � has real part then steady state turns to sta‑
ble against small perturbations. Therefore, the steady-state solution is unstable if:

Finally, the MI gain spectrum G(l) is achieved as

5 � Results and discussion

The graphical view of some reported result deals in this section. By applying proposed 
methods the exact wave solutions are extracted and graphically depicted into distinct physi‑
cal structures in the form of multiple soliton solutions like, trigonometric, hyperbolic, peri‑
odic and singular wave functions. By the appropriate values of involved parameters, the 
real and absolute behaviors of some solutions are reported. Figure 2 for Eq. (20) and Fig. 3 
for Eq.  (28) represent wave solutions repeated periodically, while Figs  4 and 5 for the 
Eqs. (34) and (37) describe the dark soliton and exact wave solutions respectively. Moreo‑
ver, Figes.  7 and 6 represent the singular soliton and exact wave solution for the equa‑
tions Eqs.  (43) and (41) respectively. These exact wave solutions have different physical 
behavior. For example, hyperbolic functions such as, the hyperbolic tangent appears in the 
calculation and rapidity of special relativity while, the hyperbolic cotangent arises in the 
Langevin function for magnetic polarization Weisstein (2002). Therefore, the result sake in 
this paper may be used to explain such relationship to the governing model.

6 � Conclusions

In this research work, we have investigated diverse exact wave solutions are constructed in 
the form of trigonometric and hyperbolic solutions including dark soliton, kink type, sin‑
gular soliton as well as periodic wave solutions to (1+1)-dimensional CNLSE via extended 
rational sine–cosine/sinh–cosh schemes. These various kinds of wave solutions are favour‑
able for explaining diverse nonlinear physical phenomena. The MI analysis to the proposed 
model is also observed. Our acquired solutions exhibited that the proposed methods are 
powerful and can be used to extract exact wave solutions for various kinds of NLPDEs. 
Furthermore, we plot 3D, 2D and contour graphs of the some obtained solutions by setting 
appropriate values of involved parameters. It may be observed that wave behavior have 

l
4 + 2k0l

2 < 0.

(52)G(l) = 2Im(�) = 2Im

(

√

l4 + 2k0l
2

)

.
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reported their estimated wave propagation and distributions, physically, in Figs.  1, 2, 3, 
4, 5 and 6. The results are new, interesting and have a great impact in the quantum field 
theory where the (1+1)-dimensional CNLSE will be used for the dynamics of exact wave 
solutions.

Fig. 1   The dispersion relation 
between frequency � and wave 
number l for distinct values of 
k0 = .6, .8, 1

Fig. 2   The a, b and c show the 3D, 2D and contour physical behaviour of solution (20), respectively with 
the values k = −1 , � = 3 , � = 2 , � = 0
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Fig. 3   The a, b and c show the 3D, 2D and contour physical behaviour of solution (28), respectively with 
the values k = 2 , � = 2 , � = −3 , � = .3 , c = 1

Fig. 4   The a, b and c show the 3D, 2D and contour physical behaviour of solution (34), respectively with 
the values � = −4 , � = −1 , � = 2 , � = .3 , c = −1
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Fig. 5   The a, b and c show the 3D, 2D and contour physical behaviour of solution (37), respectively under 
the parametric values of � = −3 , � = −2 , � = 1 , � = . − 1 , c = −1

Fig. 6   The a, b and c show the 3D, 2D and contour physical behaviour of solution (41), respectively under 
the parametric values of k = −2 � = −3 , � = −1 , � = −2 , � = 0
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