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Abstract
The novel Φ6-model expansion method is employed to the Kundu–Mukherjee–Naskar 
model of the nonlinear partial differential equation that plays a significant role in optical 
fiber. A variety of nonlinear dynamical exact and optical solitons are extracted in several 
forms like rational, hyperbolic, trigonometric function solutions by the utilization of a 
sound computational integration tool. Besides, we also secure mixed combined solitons 
and singular periodic wave solutions with unknown parameters. For the validation of the 
solutions constraint conditions are also emerged. The outcomes elucidate that the govern-
ing model theoretically possesses significantly rich structures of optical solutions. We also 
present the modulation instability analysis of the governing model. Moreover, under the 
suitable choice of involved parameters 3-D, 2-D, and their corresponding contour plots are 
also sketched.

Keywords  Optical solitons · Kundu–Mukherjee–Naskar equation · The novel Φ6-model 
expansion method · Modulation instability analysis

1  Introduction

The Kundu–Mukherjee–Naskar equation (KMNE) (Ekici et  al. 2019; Wen 2017; Kundu 
et al. 2014; He and Yusry 2020; Yildirim 2019) is described by

the first term represents the temporal evolution of pulses while the �(x, t, y) indicates the 
wave profile of the optical solitons. Besides, the dispersion term and the nonlinearity term 
are ensured by the coefficient of � , � respectively.

Nonlinear partial differential equations (NLPDEs) have great dominance because they 
play an indispensable role in the dynamics of many physical problems which are described 
in nonlinear sciences. Nonlinear science is one of the most fascinating and charming 
field for the research community in this cutting edge time of science. To seek the exact 

(1)i�t + ��xy + i��(��∗

x
− �∗�x) = 0,

 *	 Jamshad Ahmad 
	 jamshadahmadm@gmail.com

1	 Department of Mathematics, Faculty of Science, University of Gujrat, Gujrat 50700, Pakistan

http://crossmark.crossref.org/dialog/?doi=10.1007/s11082-021-02939-3&domain=pdf


	 M. Bilal et al.

1 3

283  Page 2 of 22

or analytical solutions has been the priority of researchers due to its elementary impact 
in the analysis of the actual feature of the systems (Gao et al. 2020; Seadawy et al. 2021a; 
Guo et  al. 2018; Biswas et  al. 2016; Bilal et  al. 2021a; Guirao et  al. 2020; Yokus et  al. 
2018; Sulaiman et al. 2019; Ali et al. 2019; Baskonus 2016) have been executed to explore 
the search for the new solutions to a different type of NLPDEs. This paper addresses the 
dynamics of optical soliton propagation through an optical fiber with the Kundu–Mukher-
jee–Naskar (KMN) model. The main feature of this governing model is that it has been 
given as a further extension of the nonlinear Schrödinger equation with the inclusion of 
different forms of nonlinearity for Kerr and nonlinearities of Kerr’s law to study soliton 
pulses in (2 + 1)-dimensions. Another important aspect of this model is that this model 
is used to deal with the propagation of optical waves through coherently excited resonant 
waveguides, especially in the phenomenon of diffraction of light rays (Ekici et al. 2019).

Moreover, solitons are also designated as special type of solitary waves, that are also 
solutions of various kinds of NLPDEs. Such particular kinds of solitary waves have vari-
ous substantial usage in different zones as a result of its marvelous characteristic of stabil-
ity. Precisely, mostly dispersive waves inelastically dissipated these waves and lose energy 
due to radiation phenomena, consequently these solitary waves fade, retaining their shape 
and speed after full nonlinear connection. Soliton theory has a significant contribution to 
narrate and express physical behavior and meaning of NLPDEs. Soliton hypothesis has 
pulled in extraordinary consideration in exploratory investigations for researchers since it 
is a functioning examination region in fields of media transmission, designing, numerical 
material science, mathematical physics, and diverse different parts of nonlinear sciences. 
In literature, a wide variety of exact solvers have been established to explore the nature of 
soliton solutions such that, new extended direct algebraic method (Mirhosseni-Alizamini 
et al. 2020; Nestor et al. 2020), unified method (Osman 2019), first integral method (Zhang 
et  al. 2019), tan(�

2
) approach (Ilhan et  al. 2020), the extended Fan sub-equation method 

(Younis et al. 2020a, b), anstaz approach (Younis et al. 2017), the generalized exponential 
rational function scheme and modified Khater method (Ghanbari et  al. 2020; Yue et  al. 
2020), Kudryashov method and its extended form (Ebaida et al. 2019; Ali et al. 2020), the 
exp-function method (Zulfiqar and Ahmad 2020), the novel Φ6-model expansion method 
(Zayed et  al. 2018), the extended sinh-Gordon equation expansion method (Baskonus 
et al. 2019b), improved Bernoulli sub-equation function approach (Baskonus et al. 2019a), 
extended auxiliary equation mapping method (Seadawy et al. 2021b) and several other effi-
cient methods (Rehman and Ahmad 2020; Aslan et al. 2017; Inc et al. 2017a, 2018a, c, d; 
Baleanu et al. 2017a, b; Miah et al. 2019; Seadawy et al. 2020a, b; Alam et al. 2020; Farah 
et al. 2020; Baskonus et al. 2018). On exploring the available literature it is observed that 
solutions of KMNE have not been recovered yet by a novel Φ6-model expansion method 
(Rehman et  al. 2021). Therefore, we successfully implement the proposed method and 
extract optical soliton solutions to the nonlinear model in this manuscript. The proposed 
method is powerful, efficient, skilled to examine NLPDEs, consistent with computer alge-
bra, and presents more general solutions.

The paper has the following sequence: an overview of the proposed method is summa-
rized in Sect 2. The application of new Φ6-model expansion method is executed in Sect. 3. 
Modulation instability is analyzed is given in Sect. 4. Results and discussion are discussed 
in Sect. 5. The paper is summarized with conclusions in Sect. 6. In the following section, 
the novel Φ6-model expansion method is discussed.
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2 � Overview of a novel Φ6‑model expansion method

Here, we discuss a brief detail of the proposed method. Consider a NLPDE

where �  is a polynomial in its arguments.
The essence of proposed method is summarized in the following steps.
Step 1 We introduce traveling wave transformation as

where c is the velocity . After substituting this transformation into Eq. (2), we get nonlinear 
ODE in the following form.

where �  is in general a polynomial function of its arguments and ′ denotes the derivative 
w.r.t �.

Step 2 Suppose that Eq. (3) has the solution as follows

where constants �j (j = 0,… , 2n) are determined later, while �(�) satisfies the following 
NODE

Step 3 The value of n in Eq. (4) will be evaluated by using homogeneous balance principle 
(Sirisubtawee and Koonprasert 2018). More precisely, if deg

[
� (�)

]
= n then the degree of 

the other terms will be expressed as follows

Step 4 It is well known that Eq. (5) has the solution

where (f𝛩2(𝜂) + g) > 0 and �(�) is the solution of the Jacobian elliptic equation

and lk(k = 0, 2, 4) are real constant, while f and g are given by

(2)� (� ,�t,�x,�tt,�xt,�xx,…) = 0,

�(x, t) = � (�) and � = �(x − ct),

(3)� (� ,� �,� ��,� ���,…) = 0,

(4)� (�) =

2n∑
j=0

�j�
j(�),

(5)
��2 (�) = h0 + h2�

2(�) + h4�
4(�) + h6�

6(�),

���(�) = h2�(�) + 2h4�
3(�) + 3h6�

5(�).

(6)
deg

[
dk�

d�k

]
= n + k,

deg

[
(� (�))p

(
dk�

d�k

)s]
= np + s(n + k).

(7)�(�) =
�(�)√

f�2(�) + g
,

(8)��2 (�) = l0 + l2�
2(�) + l4�

4(�),
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under the constraints condition

Step 5 The solutions of Eq. (8) are expressed in the shape of Jacobi elliptic functions 
(JEFs) as in Rehman et al. (2021). Substituting (8) along with (7) into Eq. (4). A bunch of 
equations is retrieved through the comparison of specific terms which is further solved for 
required set of parameters which earns the solutions of Eq. (2).

3 � Mathematical preliminaries

The complex wave transformation �(x, y, t) = �(�)ei�(x,y,t), � = x + y − �t and 
� = −�1x − �2y + �t + �0 . Here, �, �1 and �2 are the velocity of solitons, frequencies 
along the x and y plane directions respectively, � is the wave number and �0 is the phase 
constant, while �(x, y, t) denotes the phase component. Putting above solitary wave trans-
formation into Eq. (1) and separating the imaginary and real parts, one can get

real part gives

by making balance between �3(�) and ���(�) in Eq. (11) via using formula (6) as follows

which leads to n = 1 . Thus, the solution of Eq. (11) takes the following form

where �0, �1, �2 are constants to be determined later. Placing Eq. (13) and its derivatives 
in Eq. (11) and collecting same power coefficients of �j(�) [��

(�)]k , (j = 0,… , 8) and 
(k = 0, 1) to zero, the strategic equations are easily obtained. After solving the strategic 
equations by the assistance of Mathematica, we get the solutions sets as follows

Family-1

The following solutions can be constructed for the given family and the JEFs are selected 
from Rehman et al. (2021). The resulting solutions of Eq. (1) are summarized as under.

1. If l0 = 1 , l2 = −(1 + m2) , l4 = m2 , 0 < m < 1 , then �(�) = sn(�,m) or �(�) = cd(�,m) , 
retrieve JEFs

f =
h4(l2 − h2)

(l2 − h2)
2 + 3l0l4 − 2l2(l2 − h2)

,

g =
3l0h4

(l2 − h2)
2 + 3l0l4 − 2l2(l2 − h2)

,

(9)h2
4
(l2 − h2)[9l0l4 − (l2 − h2)(2l2 + h2)] + 3h6

[
3l0l4 −

(
l2
2
− h2

2

)]2
= 0.

(10)� = −�(�1 + �2),

(11)
(
��1�2 + �2

)
� + 2�1��

3 − ���� = 0,

(12)deg
[
���

]
= n + 2 = deg

[
�3

]
= 3n, ⟹ n + 2 = 3n,

(13)�(�) = �0 + �1� + �2�
2,

�
�0 = 0, �1 =

√
�
√
h4√

�1
√
�
, �2 = 0, h6 = 0, � =

√
�
√
h2 − �1�2, h4 = h4, h2 = h2.



Investigation of optical solitons and modulation instability…

1 3

Page 5 of 22  283

or

where

under the constraints condition

Remark For m → 1 in Eq. (14), the dark soliton solution is formulated

provided that

Remark For m → 0 in Eq. (14), the periodic wave solutions is attained

provided that

2. If l0 = 1 − m2 , l2 = 2m2 − 1 , l4 = −m2 , 0 < m < 1 , then �(�) = cn(�,m) , gives JEFs

(14)�1(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4sn(�,m)

√
�1
√
�

�
h4((h2+m2+1)sn(�,m)2−3)

−h2
2
+m4−m2+1

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

(15)�2(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4cd(�,m)

√
�1
√
�

�
h4((h2+m2+1)cd(�,m)2−3)

−h2
2
+m4−m2+1

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

f =
h4
(
h2 + m2 + 1

)

−h2
2
+ m4 − m2 + 1

,

g = −
3h4

−h2
2
+ m4 − m2 + 1

,

h2
4

(
−h2 + 2m2 − 1

)(
h2 + m2 − 2

)(
h2 + m2 + 1

)
= 0.

(16)�1,1(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4 tanh(�)

√
�1
√
�

�
h4(3−(h2+2) tanh

2(�))
h2
2
−1

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

(
h2 − 1

)
2
(
h2 + 2

)
h2
4
= 0.

(17)�1,2(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4 sin(�)

√
�1
√
�

�
h4(h2 sin

2(�)+sin2(�)−3)
1−h2

2

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

(
h2 − 2

)(
h2 + 1

)
2h2

4
= 0.
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where

under the constraints condition

Remark For m → 1 in Eq. (18), the bright soliton solution is calculated

provided that

Remark For m → 0 in Eq. (18), the periodic wave solution is achieved

provided that

3. If l0 = m2 − 1 , l2 = 2 − m2 , l4 = −1 , 0 < m < 1 , then �(�) = dn(�,m) , gives JEFs

where

(18)

�3(x, y, t) =

� √
�
√
h4cn(�,m)

√
�1
√
�

�
h4((h2−2m2+1)cn(�,m)2+3(m2−1))

−h2
2
+m4−m2+1

�
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

f =
h4
(
h2 − 2m2 + 1

)

− h2
2
+ m4 − m2 + 1

,

g =
3h4

(
m2 − 1

)

− h2
2
+ m4 − m2 + 1

,

h2
4

(
−h2 + 2m2 − 1

)(
h2 + m2 − 2

)(
h2 + m2 + 1

)
= 0.

(19)�3,1(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4sech(�)

√
�1
√
�

�
−

h4sech
2(�)

h2+1

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

(
h2 − 1

)
2
(
h2 + 2

)
h2
4
= 0.

(20)�3,2(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4 cos(�)

√
�1
√
�

�
h4(h2 cos2(�)+cos2(�)−3)

1−h2
2

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

(
h2 − 2

)(
h2 + 1

)
2h2

4
= 0.

(21)�4(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4dn(�,m)

√
�1
√
�

�
h4((h2+m2−2)dn(�,m)2−3m2+3)

−h2
2
+m4−m2+1

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),
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under the constraints condition

Remark For m → 1 in Eq. (21), the solitary wave solution is achieved

provided that

Remark For m → 0 in Eq. (21), the rational function solution is achieved

provided that

4. If l0 = m2 , l2 = −(1 + m2) , l4 = 1 , 0 < m < 1 , then �(�) = ns(�,m) or �(�) = dc(�,m) , 
retrieve JEFs

or

where

f =
h4
(
h2 + m2 − 2

)

−h2
2
+ m4 − m2 + 1

,

g = −
3h4

(
m2 − 1

)

−h2
2
+ m4 − m2 + 1

,

h2
4

(
−h2 + 2m2 − 1

)(
h2 + m2 − 2

)(
h2 + m2 + 1

)
= 0.

(22)�4,1(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4sech(�)

√
�1
√
�

�
−

h4sech
2(�)

h2+1

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

(
h2 − 1

)
2
(
h2 + 2

)
h2
4
= 0.

(23)�4,2(x, y, t) =

�
−

√
�
�
h2 − 1

�
√
h4
√
�1
√
�

�
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

(
h2 − 2

)(
h2 + 1

)
2h2

4
= 0.

(24)�5(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4ns(�,m)

√
�1
√
�

�
h4((h2+m2+1)ns(�,m)2−3m2)

−h2
2
+m4−m2+1

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

(25)�6(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4dc(�,m)

√
�1
√
�

�
h4((h2+m2+1)dc(�,m)2−3m2)

−h2
2
+m4−m2+1

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),
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under the constraints condition

Remark For m → 1 in Eq. (24), the singular soliton solution is calculated

provided that

Remark For m → 0 in Eq. (24), the trigonometric solution is formulated

provided that

5. If l0 = −m2 , l2 = −1 + 2m2 , l4 = 1 − m2 , 0 < m < 1 , then �(�) = nc(�,m) , gives JEFs

where

under the constraints condition

f =
h4
(
h2 + m2 + 1

)

−h2
2
+ m4 − m2 + 1

,

g = −
3h4m

2

−h2
2
+ m4 − m2 + 1

,

h2
4

(
−h2 + 2m2 − 1

)(
h2 + m2 − 2

)(
h2 + m2 + 1

)
= 0.

(26)�5,1(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4 coth(�)

√
�1
√
�

�
h4((h2+2)csch

2(�)+h2−1)
1−h2

2

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

(
h2 − 1

)
2
(
h2 + 2

)
h2
4
= 0.

(27)�5,2(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4 csc(�)

√
�1
√
�

�
h4 csc

2(�)

1−h2

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

(
h2 − 2

)(
h2 + 1

)
2h2

4
= 0.

(28)�7(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4nc(�,m)

√
�1
√
�

�
h4((h2−2m2+1)nc(�,m)2+3m2)

−h2
2
+m4−m2+1

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

f =
h4
(
h2 − 2m2 + 1

)

−h2
2
+ m4 − m2 + 1

,

g =
3h4m

2

−h2
2
+ m4 − m2 + 1

,
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Remark For m → 1 in Eq. (28), the soliton solution is attained

provided that

Remark For m → 0 in Eq. (28), the periodic wave solution is achieved.

provided that

6. If l0 = −1 , l2 = 2 − m2 , l4 = −(1 − m2) , 0 < m < 1 , then �(�) = nd(�,m) , retrieve JEFs

where

under the constraints condition

Remark For m → 1 in Eq. (31), the soliton solution is retrieved

h2
4

(
−h2 + 2m2 − 1

)(
h2 + m2 − 2

)(
h2 + m2 + 1

)
= 0.

(29)�7,1(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4 cosh(�)

√
�1
√
�

�
h4(−h2 cosh

2(�)+cosh2(�)−3)
h2
2
−1

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

(
h2 − 1

)
2
(
h2 + 2

)
h2
4
= 0.

(30)�7,2(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4 sec(�)

√
�1
√
�

�
h4 sec

2(�)

1−h2

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

(
h2 − 2

)(
h2 + 1

)
2h2

4
= 0.

(31)�8(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4nd(�,m)

√
�1
√
�

�
h4((h2+m2−2)nd(�,m)2+3)

−h2
2
+m4−m2+1

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

f =
h4
(
h2 + m2 − 2

)

−h2
2
+ m4 − m2 + 1

,

g =
3h4

−h2
2
+ m4 − m2 + 1

,

h2
4

(
−h2 + 2m2 − 1

)(
h2 + m2 − 2

)(
h2 + m2 + 1

)
= 0.

(32)�8,1(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4 cosh(�)

√
�1
√
�

�
h4(−h2 cosh

2(�)+cosh2(�)−3)
h2
2
−1

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),
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provided that

Remark For m → 0 in Eq. (31), the similar plane wave solution is retrieved as in Eq. (23).
7. If l0 = 1 , l2 = 2 − m2 , l4 = 1 − m2 , 0 < m < 1 , then �(�) = sc(�,m) , retrieve JEFs

where

under the constraints condition

Remark For m → 1 in Eq. (33), the hyperbolic solution is achieved

provided that

Remark For m → 0 in Eq. (33), the periodic wave solution is attained

provided that

8. If l0 = 1 , l2 = 2m2 − 1 , l4 = −m2(1 − m2) , 0 < m < 1 , then �(�) = sd(�,m),gives JEFs

(
h2 − 1

)
2
(
h2 + 2

)
h2
4
= 0.

(33)�9(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4sc(�,m)

√
�1
√
�

�
h4((h2+m2−2)sc(�,m)2−3)

−h2
2
+m4−m2+1

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

f =
h4
(
h2 + m2 − 2

)

−h2
2
+ m4 − m2 + 1

,

g = −
3h4

−h2
2
+ m4 − m2 + 1

,

h2
4

(
−h2 + 2m2 − 1

)(
h2 + m2 − 2

)(
h2 + m2 + 1

)
= 0.

(34)�9,1(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4 sinh(�)

√
�1
√
�

�
h4(−h2 sinh

2(�)+sinh2(�)+3)
h2
2
−1

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

(
h2 − 1

)
2
(
h2 + 2

)
h2
4
= 0.

(35)�9,2(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4 tan(�)

√
�1
√
�

�
h4(3−(h2−2) tan2(�))

h2
2
−1

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

(
h2 − 2

)(
h2 + 1

)
2h2

4
= 0.
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where

under the constraints condition

Remark For m → 1 in Eq. (36), the soliton solution is achieved

provided that

Remark For m → 0 in Eq. (36), the periodic wave solution is attained

provided that

9. If l0 = 1 − m2 , l2 = 2 − m2 , l4 = 1 , 0 < m < 1 , then �(�) = cs(�,m) , gives JEFs

where

(36)�10(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4sd(�,m)

√
�1
√
�

�
h4((h2−2m2+1)sd(�,m)2−3)

−h2
2
+m4−m2+1

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

f =
h4
(
h2 − 2m2 + 1

)

−h2
2
+ m4 − m2 + 1

,

g = −
3h4

−h2
2
+ m4 − m2 + 1

,

h2
4

(
−h2 + 2m2 − 1

)(
h2 + m2 − 2

)(
h2 + m2 + 1

)
= 0.

(37)�10,1(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4 sinh(�)

√
�1
√
�

�
h4(−h2 sinh

2(�)+sinh2(�)+3)
h2
2
−1

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

(
h2 − 1

)
2
(
h2 + 2

)
h2
4
= 0.

(38)�10,2(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4 sin(�)

√
�1
√
�

�
h4((h2+1) sin(�)2−3)

1−h2
2

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

(
h2 − 2

)(
h2 + 1

)
2h2

4
= 0.

(39)

�11(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4cs(�,m)

√
�1
√
�

�
h4((h2+m2−2)cs(�,m)2+3(m2−1))

−h2
2
+m4−m2+1

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),
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under the constraints condition

Remark For m → 1 in Eq. (39), the singular soliton solution is achieved

provided that

Remark For m → 0 in Eq. (39), the periodic wave solution is attained

provided that

10. If l0 = −m2(1 − m2) , l2 = 2m2 − 1 , l4 = 1 , 0 < m < 1 , then �(�) = ds(�,m) , gives JEFs

where

under the constraints condition

f =
h4
(
h2 + m2 − 2

)

−h2
2
+ m4 − m2 + 1

,

g =
3h4

(
m2 − 1

)

−h2
2
+ m4 − m2 + 1

,

h2
4

(
−h2 + 2m2 − 1

)(
h2 + m2 − 2

)(
h2 + m2 + 1

)
= 0.

(40)�11,1(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4csch(�)

√
�1
√
�

�
−

h4csch
2(�)

h2+1

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

(
h2 − 1

)
2
(
h2 + 2

)
h2
4
= 0.

(41)�11,2(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4 cot(�)

√
�1
√
�

�
h4(−h2 cot2(�)+2 cot2(�)+3)

h2
2
−1

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

(
h2 − 2

)(
h2 + 1

)
2h2

4
= 0.

(42)

�12(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4ds(�,m)

√
�1
√
�

�
h4((h2−2m2+1)ds(�,m)2−3m4+3m2)

−h2
2
+m4−m2+1

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

f =
h4
(
h2 − 2m2 + 1

)

−h2
2
+ m4 − m2 + 1

,

g = −
3h4m

2
(
m2 − 1

)

−h2
2
+ m4 − m2 + 1

,
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Remark For m → 1 in Eq. (42), the hyperbolic solution is achieved as

provided that

Remark For m → 0 in Eq. (42), the periodic wave solution is attained

provided that

11. If l0 =
1−m2

4
 , l2 =

1+m2

2
 , l4 =

1−m2

4
 , 0 < m < 1 , then �(�) = nc,m(�,m) ± sc(�,m) or 

�(�) =
cn(�,m)

1± sn(�,m)
 , gives JEFs

or

where

h2
4

(
−h2 + 2m2 − 1

)(
h2 + m2 − 2

)(
h2 + m2 + 1

)
= 0.

(43)�12,1(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4csch(�)

√
�1
√
�

�
−

h4csch
2(�)

h2+1

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

(
h2 − 1

)
2
(
h2 + 2

)
h2
4
= 0.

(44)�12,2(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4 csc(�)

√
�1
√
�

�
h4 csc

2(�)

1−h2

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

(
h2 − 2

)(
h2 + 1

)
2h2

4
= 0.

(45)

�13(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4(nc(�,m) ± sc(�,m))

2
√
�1
√
�

�
−

h4(2(−2h2+m2+1)(nc(�,m) ± sc(�,m))2−3m2+3)
−16h2

2
+m4+14m2+1

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

(46)

�14(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4cn(�,m)

2
√
�1
√
�(1 ± sn(�,m))

�
h4(3(m2−1)(1± sn(�,m))2−2(−2h2+m2+1)cn(�,m)2)

(−16h22+m
4+14m2+1)(1± sn(�,m))2

⎤⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

f = −
8h4

(
−2h2 + m2 + 1

)

−16h2
2
+ m4 + 14m2 + 1

,

g =
12h4

(
m2 − 1

)

−16h2
2
+ m4 + 14m2 + 1

,
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under the constraints condition

Remark For m → 1 in Eq. (45), the combo soliton solution is achieved as

provided that

Remark For m → 0 in Eq. (45), the mixed periodic wave solution is attained

provided that

12. If l0 =
−(1−m2)2

4
 , l2 =

1+m2

2
 , l4 = −

1

4
 , 0 < m < 1 , then �(�) = m cn(�,m) ± dn(�,m) , 

achieves JEFs

where

under the constraints condition

Remark For m → 1 in Eq. (49), the solitary wave solution is achieved as

1

32
h2
4

(
−2h2 + m2 + 1

)(
4h2 + (m − 6)m + 1

)(
4h2 + m(m + 6) + 1

)
= 0.

(47)�13,1(x, y, t) =

⎡
⎢⎢⎢⎣

√
�
√
h4(sinh(�) + cosh(�))

√
�1
√
�

�
−

h4(sinh(2�)+cosh(2�))

h2+1

⎤
⎥⎥⎥⎦
× ei(�0−�1x−�2y+ (

√
�
√
h2−�1�2)t),

(
h2 − 1

)
2
(
h2 + 2

)
h2
4
= 0.

(48)�13,2(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4(tan(�) + sec(�))

2
√
�1
√
�

�
h4(4h2(sin(�)+1)+sin(�)−5)

(16h22−1)(sin(�)−1)

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

1

32

(
−32h3

2
+ 6h2 + 1

)
h2
4
= 0.

(49)

�15(x, y, t) =

⎡
⎢⎢⎢⎢⎢⎣

√
�
√
h4(mcn(�,m) ± dn(�,m))

2
√
�1
√
�

�
h4

�
3(m2−1)

2
−2(−2h2+m2+1)(mcn(�,m) ± dn(�,m))2

�

−16h2
2
+m4+14m2+1

⎤
⎥⎥⎥⎥⎥⎦

× ei(�0−�1x−�2y+(
√
�
√
h2−�1�2)t),

f = −
8h4

(
−2h2 + m2 + 1

)

−16h2
2
+ m4 + 14m2 + 1

,

g =
12h4

(
m2 − 1

)2
−16h2

2
+ m4 + 14m2 + 1

,

1

32
h2
4

(
−2h2 + m2 + 1

)(
4h2 + (m − 6)m + 1

)(
4h2 + m(m + 6) + 1

)
= 0.
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provided that

Remark For m → 0 in Eq. (49), the plane wave solution is attained

provided that

13. If l0 =
1

4
 , l2 =

1−2m2

2
 , l4 =

1

4
 , 0 < m < 1 , then �(�) =

sn(�,m)

1± cn(�,m)
 , gives JEFs

where

under the constraints condition

Remark For m → 1 in Eq. (52), the combine soliton solution is retrieved

provided that

(50)�15,1(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4sech(�)

√
�1
√
�

�
−

h4sech
2(�)

h2+1

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

(
h2 − 1

)
2
(
h2 + 2

)
h2
4
= 0.

(51)�15,2(x, y, t) =

� √
�
�
1 − 4h2

�

4
√
h4
√
�1
√
�

�
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

1

32

(
−32h3

2
+ 6h2 + 1

)
h2
4
= 0.

(52)

�16(x, y, t) =

⎡⎢⎢⎢⎢⎣

√
�
√
h4sn(�,m)

2
√
�1
√
�(1 ± cn(�,m))

�
h4(2(2h2+2m2−1)sn(�,m)2−3(1±cn(�,m))2)

(−16h22+16m
4−16m2+1)(1±cn(�,m))2

⎤⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

f =
8h4

(
2h2 + 2m2 − 1

)

−16h2
2
+ 16m4 − 16m2 + 1

,

g = −
12h4

−16h2
2
+ 16m4 − 16m2 + 1

,

1

32
h2
4

(
2h2 + 2m2 − 1

)(
8h2

(
−2h2 + 2m2 − 1

)
+ 32m4 − 32m2 − 1

)
= 0.

(53)

�16,1(x, y, t) =

⎡
⎢⎢⎢⎢⎢⎣

√
�
√
h4 tanh

�
�

2

�

√
2
√
�1
√
�

�
h4sech

2
�

�

2

�
(−4h2(cosh(�)−1)+cosh(�)+5)

16h2
2
−1

⎤
⎥⎥⎥⎥⎥⎦

× ei(�0−�1x−�2y+(
√
�
√
h2−�1�2)t),

1

32

(
32h3

2
− 6h2 + 1

)
h2
4
= 0.
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Remark For m → 0 in Eq. (52), the periodic wave solution is achieved

provided that

14. If l0 =
1

4
 , l2 =

1+m2

2
 , l4 =

(1−m2)2

4
 , 0 < m < 1 , then �(�) =

sn(�,m)

cn(�,m)±dn(�,m)
 , gives JEFs

where

under the constraints condition

Remark For m → 1 in Eq. (55), bright-dark soliton solution is retrieved

provided that

Remark For m → 0 in Eq. (55), the periodic wave solution is achieved

(54)

�16,2(x, y, t) =

⎡
⎢⎢⎢⎢⎢⎣

√
�
√
h4 tan

�
�

2

�

2
√
�1
√
�

�
h4 sec

2

�
�

2

�
(4h2(cos(�)−1)+cos(�)+5)

32h2
2
−2

⎤
⎥⎥⎥⎥⎥⎦

× ei(�0−�1x−�2y+(
√
�
√
h2−�1�2)t),

1

32

(
−32h3

2
+ 6h2 + 1

)
h2
4
= 0.

(55)

�17(x, y, t) =

⎡
⎢⎢⎢⎢⎣

√
�
√
h4sn(�,m)

2
√
�1
√
�(cn(�,m) ± dn(�,m))

�
−

h4(3(cn(�,m)±dn(�,m))2+2(−2h2+m2+1)sn(�,m)2)

(−16h22+m
4+14m2+1)(cn(�,m)±dn(�,m))2

⎤⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

f = −
8h4

(
−2h2 + m2 + 1

)

−16h2
2
+ m4 + 14m2 + 1

,

g = −
12h4

−16h2
2
+ m4 + 14m2 + 1

,

1

32
h2
4

(
−2h2 + m2 + 1

)(
4h2 + (m − 6)m + 1

)(
4h2 + m(m + 6) + 1

)
= 0.

(56)

�17,1(x, y, t) =

⎡
⎢⎢⎢⎢⎣

2
√
�
√
h4 tanh

�
�

2

�

√
�1
√
�

�
h4(−4h2 tanh

2(�)+tanh2(�)+6sech(�)+6)

(h22−1)(sech(�)+1)
2

⎤
⎥⎥⎥⎥⎦
× ei(�0−�1x−�2y+(

√
�
√
h2−�1�2)t),

(
h2 − 1

)
2
(
h2 + 2

)
h2
4
= 0.
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provided that

4 � Modulation instability analysis

Many nonlinear phenomena exhibit instability which results in the modulation of the sta-
tionary state due to the coaction between the nonlinear and dispersive effects. In this case, 
we analyze the modulation instability (MI) of KMNE using the concept of linear stability 
(Inc et al. 2017b, 2018b; Bilal et al. 2021b).

Consider the steady-state solutions of the KMNE to be of the form

where � represents the normalized optical power.
Placing Eq. (58) into Eqs. (1), after linearizing, we attain

where ∗ stands for the conjugate .
Suppose the solutions of Eq. (59) to be of the form

where l1 , l2 and � denote the normalized wave numbers and frequency of perturbation, 
respectively.

Placing Eq. (60) into Eq. (59), splitting the coefficients of ei(l1x+l2y−�t) and e−i(l1x+l2y−�t) , 
we attain the dispersion relation after solving the determinant of the coefficient matrix.

Calculating the dispersion relation (61) for � , grants

The obtained dispersion relation reveals the steady-state stability. If the wave number � 
is an imaginary one then the steady-state solution turns to unstable since the perturbation 
grows exponentially. Besides, if the wavenumber � has real part then steady-state turns to 
stable against small perturbation. Therefore, the steady-state solution is unstable if:

Finally, the MI gain spectrum G(�) is achieved as

(57)

�17,2(x, y, t) =

⎡
⎢⎢⎢⎢⎢⎣

√
�
√
h4 tan

�
�

2

�

2
√
�1
√
�

�
h4 sec

2

�
�

2

�
(4h2(cos(�)−1)+cos(�)+5)

32h2
2
−2

⎤
⎥⎥⎥⎥⎥⎦

× ei(�0−�1x−�2y+(
√
�
√
h2−�1�2)t),

1

32

(
−32h3

2
+ 6h2 + 1

)
h2
4
= 0.

(58)�(x, y, t) = (
√
� + P(x, y, t))ei�t,

(59)�(P + P∗) − iPt − aPxy = 0,

(60)P(x, y, t) = f1e
i(l1x+l2y−�t) + f2e

−i(l1x+l2y−�t)

(61)a2l2
1
l2
2
+ 2a�l1l2 −�2 = 0.

(62)� =
√
a
√
l1

√
l2

√
al1l2 + 2�.

al1l2 + 2𝜇 < 0.
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5 � Result and discussion

We have depicted the graphical view of some wave structures of the studied model in this 
manuscript. By implementing the proposed method, the wave structures (multiple-soliton 
solutions, trigonometric, rational function, periodic, and singular wave structures) are 
extracted and graphically depicted in 3-D, 2-D, and their contours with different param-
eters. The graphs show that these wave structures have different physical meanings. For 
example, hyperbolic functions such as the hyperbolic tangent appear in the calculation and 
rapidity of special relativity while the hyperbolic cotangent arises in the Langevin func-
tion for magnetic polarization. The modulation instability of the governing model is also 
examined. We observe that the retrieved solutions are new and to the best of our knowledge 
the applications of this technique to the ( 2 + 1)-dimensional KMNE have not been reported 
in the literature beforehand and could be beneficial to understand the different physical 
behaviors.

6 � Conclusion

In this research, a novel Φ6-model expansion method has been effectively applied to a 
KMN model which is one of the most fascinating problems of modern optics. A series of 
optical soliton solutions such as single (dark, bright and singular), combo solitons, as well 
as a hyperbolic, plane wave, trigonometric and the families of Jacobi elliptic function solu-
tions, have been successfully retrieved. For the limiting case, when m → 1 and m → 0 , the 
hyperbolic functions and the periodic, as well as rational solutions, are observed respec-
tively. The stability of the given model is studied by exercising the modulation instability 
analysis which confirms that the model is stable and guarantees that all extracted solutions 
are stable and exact. The main accomplishment of this strategy lies in the way that, we 

(63)G(�) = 2Im(�) = 2Im

�√
a
√
l1

√
l2

√
al1l2 + 2�

�
.

Fig. 1   Gain spectrum of MI 
of Eq. (63), for distinct values 
a = {1, 1.4} , l2 = {1.6, 1} and 
� = {1.5, 1.48}
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have succeeded in a single move to extract maximum solutions which can differ it from 
other techniques. The constraint conditions for valid exact solutions are also reported. The 
graphical depiction of the derived solutions are presented in Figs. 1, 2, 3, 4, 5 and 6. The 
results are new, interesting and have a great impact on the field of magneto-optic wave-
guides, optical fiber and useful in the telecommunication industry to enhance the perfor-
mance capacity of transmission systems. Consequently, we have shown that the propaga-
tion dynamics of these solitons having more number of arbitrary parameters can find an 
added advantage over the solutions reported earlier in oceanic waves, nonlinear optical 

Fig. 2   The letters a–c sequentially draw the physical 3-, 2-dimensional and their corresponding contour 
behavior of a dark soliton solution (16), for the values � = 1.3 , h2 = 0.5 , h4 = 0.4 , �0 = 0.03 , �1 = 1.6 , 
�2 = 0.8 , � = 1.4 , � = 1.2 , � = 1.1 and y = 1.7

Fig. 3   The letters a–c sequentially draw the physical 3-, 2-dimensional and their corresponding contour 
behavior of a singular wave solution (26), for the values � = 1.5 , h2 = 0.6 , h4 = 0.7 , �0 = 0.02 , �1 = 1.4 , 
�2 = 0.9 , � = 1.3 , � = 1.1 , � = 1.2 and y = 1.6

Fig. 4   The letters a–c sequentially draw the physical 3-, 2-dimensional and their corresponding contour 
behavior of a periodic wave solution (35), for the values � = 0.5 , h2 = 0.7 , h4 = 0.6 , �0 = 0 , �1 = 1.4 , 
�2 = 0.8 , � = 1.5 , � = 0.9 , � = 0.4 and y = 1.3
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waves through coherently excited resonant waveguides, etc. As a further study, the present 
investigation can be extended to any other integrable systems.

Declarations 

 Conflict of interest  The authors have no conflict of interest.

References

Alam, M.N., Seadawy, A.R., Baleanu, D.: Closed-form solutions to the solitary wave equation in an unmag-
netized dusty plasma. Alex. Eng. J. 59(3), 1505–1514 (2020)

Ali, K., Rizvi, S.T.R., Nawaz, B., Younis, M.: Optical solitons for paraxial wave equation in Kerr media. 
Mod. Phys. Lett. B 33(03), 1950020 (2019)

Ali, K.K., Rezazadeh, H., Talarposhti, R.A., Bekir, A.: New soliton solutions for resonant nonlinear 
Schrödinger’s equation having full nonlinearity. Int. J. Mod. Phys. B 34(06), 2050032 (2020)

Aslan, E.C., Inc, M., Baleanu, D.: Optical solitons and stability analysis of the NLSE with anti-cubic 
nonlinearity. Superlattices Microstruct. 109, 784–793 (2017)

Baleanu, D., Inc, M., Aliyu, I.A., Yusuf, A.: Optical solitons, nonlinear self-adjointness and conserva-
tion laws for the cubic nonlinear Shrödinger’s equation with repulsive delta potential. Superlattices 
Microstruct. 111, 546–555 (2017a)

Baleanu, D., Inc, M., Yusuf, A, Aliyu, I.A.: Optical solitons, nonlinear self-adjointness and conservation 
laws for Kundu–Eckhaus equation. Chin. J. Phys. 55(06), 2341–2355 (2017b)

Fig. 5   The letters a–c sequentially draw the physical 3-, 2-dimensional and their corresponding contour 
behavior of a combine soliton solution (53), for the values � = 1.2 , h2 = 0.7 , h4 = 1.6 , �0 = 0.05 , �1 = 0.5 , 
�2 = 0.8 , � = 0.6 , � = 1.1 , � = 0.35 and y = 1.3

Fig. 6   The letters a–c sequentially draw the physical 3-, 2-dimensional and their corresponding con-
tour behavior of a bright-dark soliton solution (56), for the values � = 0.4 , h2 = 1.7 , h4 = 1.6 , �0 = 0.04 , 
�1 = 1.5 , �2 = 1.8 , � = 1.2 , � = 1.9 , � = 3.8 and y = 1.3



Investigation of optical solitons and modulation instability…

1 3

Page 21 of 22  283

Baskonus, H.M.: New acoustic wave behaviors to the Davey–Stewartson equation with power-law non-
linearity arising in fluid dynamics. Nonlinear Dyn. 86(1), 177–183 (2016)

Baskonus, H.M., Sulaiman, T.A., Bulut, H.: Dark, bright and other optical solitons to the decoupled 
nonlinear Schrödinger equation arising in dual-core optical fibers. Opt. Quantum Electron. 50(4), 
1–12 (2018)

Baskonus, H.M., Gòmez-Aguilar, J.F.: New singular soliton solutions to the longitudinal wave equation in 
a magneto-electro-elastic circular rod with M-derivative. Mod. Phys. Lett. B 33(21), 1950251 (2019a)

Baskonus, H.M., Sulaiman, T.A., Bulut, H.: On the new wave behavior to the Klein–Gordon–Zakharov 
equations in plasma physics. Indian J. Phys. 93(3), 393–399 (2019b)

Bilal, M., Seadawy, A.R., Younis, M., Rizvi, S.T.R., El-Rashidy, K., Mahmoud, S.F.: Analytical wave struc-
tures in plasma physics modelled by Gilson–Pickering equation by two integration norms. Results 
Phys. 23, 103959 (2021a)

Bilal, M., Seadawy, A.R., Younis, M., Rizvi, S.T.R., Zahed, H.: Dispersive of propagation wave solutions to 
unidirectional shallow water wave Dullin–Gottwald–Holm system and modulation instability analysis. 
Math. Methods Appl. Sci. 44(05), 4094–4104 (2021b)

Biswas, A., Mirzazadeh, M., Eslami, M., Zhou, Q., Bhrawy, A., Belic, M.: Optical solitons in nano-fibers 
with spatio-temporal dispersion by trial solution method. Optik 127(18), 7250–7257 (2016)

Ebaida, A., El-Zahar, E.R., Aljohani, A.F., Salah, B., Krid, M., Machado, J.T.: Exact solutions of the gener-
alized nonlinear Fokas–Lennells equation. Results Phys. 14, 102472 (2019)

Ekici, M., Sonmezoglu, A., Biswas, A., Belic, M.R.: Optical solitons in (2+1)-dimensions with Kundu–
Mukherjee–Naskar equation by extended trial function scheme. Chin. J. Phys. 57, 72–77 (2019)

Farah, N., Seadawy, A.R., Ahmad, S., Rizvi, S.T.R., Younis, M.: Interaction properties of soliton molecules 
and Painleve analysis for nano bioelectronics transmission model. Opt. Quantum Electron. 52(7), 1–15 
(2020)

Gao, W., Yel, G., Baskonus, H.M., Cattani, C.: Complex solitons in the conformable (2+1)-dimensional 
Ablowitz–Kaup–Newell–Segur equation. AIMS Math. 5(1), 507–521 (2020)

Ghanbari, B., Yusuf, A., Baleanu, D., Bayram, M.: Families of exact solutions of Biswas–Milovic equation 
by an exponential rational function method. Tbilisi Math. J. 13(2), 39–65 (2020)

Guirao, J.L.G., Baskonus, H.M., Kumar, A.: Regarding new wave patterns of the newly extended nonlinear 
(2+1)-dimensional Boussinesq equation with fourth order. Mathematics 8(3), 341 (2020)

Guo, D., Tian, S.F., Zhang, T.T., Li, J.: Modulation instability analysis and soliton solutions of an integrable 
coupled nonlinear Schrödinger system. Nonlinear Dyn. 94(4), 2749–2761 (2018)

He, J.H., Yusry, O.E.D.: Periodic property of the time-fractional Kundu–Mukherjee–Naskar equation. 
Results Phys. 19, 103345 (2020)

Ilhan, O.A., Manafian, J., Alizadeh, A., Baskonus, H.M.: New exact solutions for nematicons in liquid crys-
tals by the tan( �

2
)-expansion method arising in fluid mechanics. Eur. Phys. J. Plus 135(3), 1–19 (2020)

Inc, M., Aliyu, I.A., Yusuf, A.: Optical solitons to the nonlinear Shrödinger’s equation with spatio-temporal 
dispersion using complex amplitude ansatz. J. Mod. Opt. 64(21), 2273–2280 (2017a)

Inc, M., Aliyu, I.A., Yusuf, A., Baleanu, D.: Optical solitons and modulation instability analysis of an 
integrable model of (2+1)-dimensional Heisenberg ferromagnetic spin chain equation. Superlattices 
Microstruct. 112, 628–638 (2017b)

Inc, M., Aliyu, I.A., Yusuf, A., Baleanu, D., Nuray, E.: Complexiton and solitary wave solutions of the cou-
pled nonlinear Maccari’s system using two integration schemes. Mod. Phys. Lett. B 32(02), 1850014 
(2018a)

Inc, M., Aliyu, I.A., Yusuf, A., Baleanu, D.: Optical solitary waves, conservation laws and modulation insta-
bility analysis to the nonlinear Schrödinger’s equation in compressional dispersive Alvèn waves. Optik 
155, 319–327 (2018b)

Inc, M., Aliyu, I.A., Yusuf, A., Baleanu, D.: Dispersive optical solitons and modulation instability analysis 
of Schrödinger-Hirota equation with spatio-temporal dispersion and Kerr law nonlinearity. Superlat-
tices Microstruct. 113, 319–327 (2018c)

Inc, M., Aliyu, I.A., Yusuf, A., Baleanu, D.: Optical solitons, conservation laws and modulation instabil-
ity analysis for the modified nonlinear Schrödinger’s equation for Davydov solitons. J. Electromagn. 
Waves Appl. 32(07), 858–873 (2018d)

Kundu, A., Mukherjee, A., Naskar, T.: Modelling rogue waves through exact dynamical lump soliton con-
trolled by ocean currents. Proc. R. Soc. A 470, 20130576 (2014)

Miah, M.M., Ali, H.M.S., Akbar, M.A., Seadawy, A.R.: New applications of the two variable (G
�

G
,
1

G
)

-expansion method for closed form traveling wave solutions of integro-differential equations. JOES 
4(2), 132–143 (2019)



	 M. Bilal et al.

1 3

283  Page 22 of 22

Mirhosseni-Alizamini, S.M., Rezazadeh, H., Srinivasa, K., Bekir, A.: New closed form solutions of the 
new coupled Konno–Oono equation using the new extended direct algebraic method. Pramana 94, 52 
(2020)

Nestor, S., Houwe, A., Betchewe, G., Inc, M., Doka, S.Y.: A series of abundant new optical solitons to 
the conformable space-time fractional perturbed nonlinear Schrödinger equation. Phys. Scr. 95(08), 
085108 (2020)

Osman, M.S.: New analytical study of water waves described by coupled fractional variant Boussinesq 
equation in fluid dynamics. Pramana 93, 1–10 (2019)

Rehman, S.U., Ahmad, J.: Modulation instability analysis and optical solitons in birefringent fibers to RKL 
equation without four wave mixing. Alex. Eng. J. 60, 1339–1354 (2020)

Rehman, S.U., Seadawy, A.R., Younis, M., Rizvi, S.T.R., Sulaiman, T.A., Yusuf, A.: Modulation instability 
analysis and optical solitons of the generalized model for description of propagation pulses in optical 
fiber with four non-linear terms. Mod. Phys. Lett. B 35(06), 2150112 (2021)

Seadawy, A.R., Lu, D., Nasreen, N.: Construction of solitary wave solutions of some nonlinear dynamical 
system arising in nonlinear water wave models. Indian J. Phys. 94, 1785–1794 (2020a)

Seadawy, A.R., Nasreen, N., Lu, D., Arshad, M.: Arising wave propagation in nonlinear media for the 
(2+ 1)-dimensional Heisenberg ferromagnetic spin chain dynamical model. Physica A 538, 122846 
(2020b)

Seadawy, A.R., Rehman, S.U., Younis, M., Rizvi, S.T.R., Althobaiti, S., Makhlouf, M.M.: Modulation 
instability analysis and longitudinal wave propagation in an elastic cylindrical rod modelled with Poch-
hammer–Chree equation. Physica scr. 96(4), 045202 (2021a)

Seadawy, A.R., Bilal, M., Younis, M., Rizvi, S.T.R., Althobaiti, S., Makhlouf, M.M.: Analytical mathemati-
cal approaches for the double-chain model of DNA by a novel computational technique. Chaos Soli-
tons Fractals 144, 110669 (2021b)

Sirisubtawee, S., Koonprasert, S.: Exact traveling wave solutions of certain nonlinear partial differential 
equations using the ( G

�

G2
)-expansion method. Adv. Math. Phys. 2018, 7628651 (2018)

Sulaiman, T.A., Bulut, H., Yokus, A., Baskonus, H.M.: On the exact and numerical solutions to the coupled 
Boussinesq equation arising in ocean engineering. Indian J. Phys. 93(5), 647–656 (2019)

Wen, X.: Higher-order rational solutions for the (2+1)-dimensional KMN equation. Proc. Rom. Acad. Ser. 
A 18(3), 191–198 (2017)

Yildirim, Y.: Optical solitons to Kundu–Mukherjee–Naskar model with trial equation approach. Optik 183, 
1061–1065 (2019)

Younis, M., Younas, U., Rehman, S.U., Bilal, M., Waheed, A.: Optical bright-dark and Gaussian soliton 
with third order dispersion. Optik 134, 233–238 (2017)

Yokus, A., Baskonus, H.M., Sulaiman, T.A., Bulut, H.: Numerical simulations and solutions of the two 
component second order KdV evolutionary system. Numer. Methods Partial Differ. Equ. 34(1), 211–
227 (2018)

Younis, M., Sulaiman, T.A., Bilal, M., Rehman, S.U., Younas, U.: Modulation instability analysis, optical 
and other solutions to the modified nonlinear Schrödinger equation. Commun. Theor. Phys. 72(06), 
065001 (2020a)

Younis, M., Bilal, M., Rehman, S.U., Younas, U., Rizvi, S.T.R.: Investigation of optical solitons in birefrin-
gent polarization preserving fibers with four-wave mixing effect. Int. J. Mod. Phys. B 34(11), 2050113 
(2020b)

Yue, C., Lu, D., Khater, M.M.A., Abdel-Aty, A.H., Alharbi, W., Attia, R.A.M.: On explicit wave solutions 
of the fractional nonlinear DSW system via the modified Khater method. Fractals 28(08), 2040034 
(2020)

Zayed, E.M.E., Nowehy, A.G.A., Elshater, M.E.M.: New Φ6-model expansion method and its applications 
to the resonant nonlinear Schrodinger equation with parabolic law nonlinearity. Eur. Phys. J. Plus 133, 
417 (2018)

Zhang, Q.M., Xiong, M., Chen, L.W.: The first integral method for solving exact solutions of two higher 
order nonlinear Schrödinger equations. Adv. Appl. Math. 4(1), 1–9 (2019)

Zulfiqar, A., Ahmad, J.: Soliton solutions of fractional modified unstable Schrödinger equation using exp-
function method. Results Phys. 19, 103476 (2020)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	Investigation of optical solitons and modulation instability analysis to the Kundu–Mukherjee–Naskar model
	Abstract
	1 Introduction
	2 Overview of a novel Φ6-model expansion method
	3 Mathematical preliminaries
	4 Modulation instability analysis
	5 Result and discussion
	6 Conclusion
	References




