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Abstract
Tin (IV) oxide, SnO2 films have been successfully synthesized in argon gas using a mag-
netron sputtering device. The morphology, structure, optical, photoluminescence, and pho-
toresponse features of the samples have been analyzed via field electron scanning electron 
microscope, X-ray diffractograms, UV–Vis spectrometer, and spectro fluorophotometer. 
Compact nano grained morphologies with tetragonal structure and high absorbance were 
obtained. Increasing the annealing temperature led to a slight rise in the bandgap ener-
gies of the deposited samples. SnO2 films exhibited good photoluminescence features with 
increasing photoresponse with time as the annealing temperature reduced. The films can be 
potentially applied to optical and solar cell devices.
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1  Introduction

Transparent conducting oxides (TCOs) have been researched because they exhibit com-
bined optical and electrical features that grant them useful access in batteries, sensing 
devices, optoelectronics, solar cells, and photocatalyst devices (Batzill and Diebold 2005). 
Tin (IV) oxide is an important TCO that undergoes phase transition during the synthesis 
process, has a transparent conducting surface, great sensitivity, and a useful catalyst during 
oxidation processes (Batzill and Diebold 2005). The different forms of fabricating SnO2 
sensors could be as whiskers, pallets, thick or thin films (Mitra and Mondal 2008). Tin (IV) 
oxide is an n-type semiconducting material with good stability, oxidation state of + 4, has 
a wide and direct bandgap (Eifert et al. 2017), high conductivity (Kılıç and Zunger 2002), 
great optical features (Kang 2010), and can exist in the tetragonal or orthorhombic phase. 
It finds useful application in optical devices, solar cells, gas sensors, perovskite cells, and 
dye-sensitized solar cells (Kumara et al. 2001).

Several methods of synthesizing tin (IV) oxide films include chemical bath deposition 
(Amma et al. 2005), spray deposition (Baranauskas et al. 2005; Kasar et al. 2008; Chacko 
2006; Thangaraju 2002), successive ionic layer adsorption and reaction (Mitra and Mon-
dal 2008; Deshpande et  al. 2008; Pusawale et  al. 2011), evaporation technique (Geurts 
et al. 1984; Jaiswal et al. 2013), sequential infiltration synthesis (Barick et al. 2019), ion 
beam irradiation (Kang 2010), chemical vapor deposition (Nagirnyak et al. 2016; Naeem 
et al. 2015), magnetron sputtering (Adamchuk et al. 2019; Chub et al. 2020), atomic layer 
deposition (Mai 2019; Maximov 2017). The diverse synthesis methods influence the qual-
ity and properties exhibited by the films. Sputter deposition allows film materials to be 
ejected from a target to a substrate with minimal heating effects. Sputtered films adhere 
more on substrate surfaces, sputter materials of high melting point, and produce films with 
similar compositions as the source material. Annealing films improve the crystal struc-
ture, enhances surface features, reduces strain, and improves optical features (Nkele 2019). 
Tin (IV) oxide films are usefully applied in optoelectronic, catalytic devices (Barick et al. 
2019), and sensors (Chub et al. 2020).

Several works have been carried out on the synthesis of SnO2 by the sputtering tech-
nique. Sangaletti et  al. (1997) thermally treated tin films in the air via RF sputtering to 
obtain a mixed orthorhombic and tetragonal phase. Camacho-Lopéz (2013) characterized 
reactive DC-sputtered SnO2 film and obtained tetragonal-phased and high transmittance 
films. The purpose of this research is to synthesize and characterize the obtained morphol-
ogies, structure, optical, and photoluminescence characteristics of the sputtered tin (IV) 
oxide films.

2 � Experimental details

2.1 � Materials and methods

The SnO2 material was synthesized on the glass substrate via an RF magnetron sputter-
ing device. SnO2 ceramic target (Kurt. J. Lesker, 99.99% pure) and 2 mm diameter with 
6  mm thickness was deposited by RF power supply. First, the substrates were cleaned 
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intensively before coating. The layering stage was performed in the argon (99.99% pure) 
atmosphere. The chamber was first vacuumed by a turbo molecular pump to an initial pres-
sure of 5 × 10–5 torr while the working pressure was kept constant at 4.5 × 10–3 torr. Before 
starting the coating process, the chamber was flashed thrice with argon (Ar) gas to elimi-
nate oxygen and other contaminants from the chamber. A thin film of SnO2 with a power 
of 80 watts was layered to a thickness of 100 nm. After coating, the samples were heated at 
300 °C (S3), 400 °C (S2) and 500 °C (S1) for 2 h in the air atmosphere. One sample (S4) 
was left without heating treatment.

The Au metal interdigital electrodes (IDEs) were deposited on the prepared SnO2 sam-
ples by the sputtering technique as schematically illustrated in Fig. 1. The thickness and 
active area of the patterned IDEs were kept constant at 100 nm and 3.5 mm2, respectively.

2.2 � Characterizations

The synthesized tin (IV) oxide films were respectively analyzed to understand the mor-
phology, structure, optical, photoluminescence, and photoresponse features using field 
electric scanning electron microscope (FESEM) (Sigma 300-HV Zeiss), X-ray diffraction 
(XRD) (ADVANCE-D8 Bruker) equipped with Cukα radiation source with λ = 1.5406 Å, 
UV–Vis spectrometer (1800 UV/Vis SHIMADZU), Spectro fluorophotometer (RF-6000 
SHIMADZU). I–V features of the films were obtained at room temperature and atmos-
pheric pressure. The LED was blue with 0.11 W/m2 intensity with 2 min OFF/ON switch-
ing cycles under 5 V bias voltage.

3 � Results and discussion

3.1 � Morphological studies

FESEM images revealed tiny clusters of nanoparticles distributed over the substrate sur-
face, as seen in Fig.  2. Similar tiny morphology has also been reported by Barick et  al. 
(2019). Synthesizing the SnO2 film produced clustered nano grains evenly distributed with 
surface cracks. The surface cracks are usually attributed to SnO2 films because develop-
ing oxide films leads to stress development in the films. The cracks could also be due to 

Fig. 1    Schematic of the inter-
digitated electrode and SnO2 thin 
film device
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deposition conditions, low surface porosity, and diffusion of oxygen into the pores of the 
oxide layer (Camacho-López et al. 2013).

A cross-section of the FESEM images for the synthesized films has been shown in 
Fig. 3a–d. Uniform film distribution can be observed throughout the substrate surface 

Fig. 2   FESEM images of the films synthesized at a 500 b 400 c 300 d 0 °C

Fig. 3   Cross-sectional FESEM images of the films synthesized at a 500 b 400 c 300 d 0 °C
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with efficient material build-up. The most annealed film recorded the highest optical 
transparency due to the applied post-heating effect. This property makes the films useful 
in optical devices and light-emitting diodes (Kang 2010).

Atomic force microscope images of the films obtained at several temperatures in tap-
ping modes are shown in Fig. 4a–d. Round homogenous bulges were seen as agglomera-
tions on the substrate surface. Spikes of different densities emanating from the substrate 
surface can be observed at varying temperatures. Varying the annealing temperature 
significantly affected the density of the tin (IV) oxide nanostructures. Thickness values 
of 240 nm, 219 nm, 210 nm, and 200 nm were obtained for the SnO2 films annealed 
respectively at 0 °C, 300 °C, 400 °C, and 500 °C with the help of Digimizer software 
program. The film’s thickness decreased with increasing annealing temperature because 
the thermal energy overcomes the adhesion and bonding energies of loosely bound 
atoms, thereby reducing the number of atoms that are adsorbed on the surface.

The roughness values for the samples were obtained using Eqs.  (1) and (2) and are 
displayed in Table 1.

Fig. 4   AFM images of the samples synthesized at a 500 b 400 c 300 d 0 °C

Table 1   Roughness values for 
the deposited films

Samples (°C) Ra (nm) Rq (nm)

500 1.09 1.40
400 1.66 2.16
300 1.19 1.53
0 1.72 2.20
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It can be observed that the unannealed film recorded the maximum roughness value 
while the film annealed at 500  °C had the least roughness value. Increasing the anneal-
ing temperature led to more growth of the nanoclusters, and accounts for the thickness 
variations.

3.2 � Structural analysis

Figure 5 displays a tetragonal crystalline structure of the SnO2 films at 2theta degrees rang-
ing from 10° to 80°. The lattice planes of the X-ray diffractograms and their corresponding 
2theta angles are 26.57° (1 1 0), 33.86° (1 0 1), 37.94° (2 0 0), 51.76° (2 1 1), 54.74° (2 2 
0), 57.81° (0 0 2), 61.86° (3 1 0), 64.72° (1 1 2), 71.26° (2 0 2), 78.68° (3 2 1). Tamilala-
gan et al. (2020) obtained similar lattice planes. The non-distinct peaks were indicative of 
sputtered tin (IV) oxide films (Popovich et al. 2016). Applying low and high temperatures 
to tin oxide produced poorly crystalline films (Singh 2019). Annealing the films led to a 

(1)Ra =
1

n

∑

yi

(2)Rq =

√

1

n

∑

y2
i

Fig. 5   Structural patterns of the SnO2 films synthesized at varying temperatures



Synthesis and characterization of tin (IV) oxide thin films﻿	

1 3

Page 7 of 12  222

transformation to the polycrystalline tin (IV) oxide phase, reduction of water content, and 
stabilization the TiO2 structure (Adamchuk et al. 2019). The structural parameters obtained 
from the most prominent peaks have been outlined in Table 2.

Table 2 showed that increasing the annealing temperature reduced the crystallite size, 
D and interplanar distance, d. The decreasing crystallite size could be attributed to the 
high density of the localized state. The lattice constants, a and c have also been outlined in 
Table 2, where the lattice constant a equals that of b.

3.3 � Optical studies

Figure 6 gives the optical transmittance, absorbance, and reflectance plots for the depos-
ited films. The deposited films recorded high transmittance and absorbance. The films were 
transparent to light in the visible electromagnetic spectrum. Reduced and fluctuating reflec-
tance values were observed at increasing wavelength regions. Annealing the films reduced 
the reflectance of the films in the visible spectrum. Similar transmittance and absorbance 
features have been reported in the literature (Singh 2019; Ivanova 2020). These optical fea-
tures make the SnO2 films potential materials for solar cells.

The absorption coefficient versus wavelength plot of the SnO2 films are exhibited in 
Fig. 7a. A similar absorption coefficient trend was obtained with the most annealed film 
recording the highest absorption. Figure 7b shows the bandgap energy plots of the syn-
thesized films. Tauc plot was employed in determining the bandgap energies of the films. 
The bandgap energy values of the films increased from 3.18 to 3.21 eV as the annealing 
temperature increased, due to confinement of the electrons and holes. Subjecting the films 
to annealing conditions did not significantly alter the band structure of the films (Bazargan 
et al. 2012). Similar results have also been obtained (Sangaletti 1997; Kong et al. 2010).

3.4 � Photoluminescence (PL) studies

Photoluminescence analysis is a non-destructive technique that gives information on the 
optical, point defects, and photochemical features of the films under study. Figure 8 pro-
vides the photoluminescence plot of the unannealed and annealed SnO2 films measured at 
a PL wavelength of 200 nm. The unannealed sample exhibited higher photoluminescence 
quenching than the annealed samples. Maximum PL emission occurred at 369 nm within 
the visible emission region. Strong emission bands were obtained at 369 nm and 766 nm, 
while weak emission bands were visible at 470 nm, 626 nm, and 739 nm. The unannealed 
sample exhibited lower luminous intensity than the annealed samples; thereby making the 
heat-treated SnO2 films suitable for optical materials. The role of oxygen vacancies in PL 
analysis is evident from the decrease in PL intensity (Nehru et al. 2012).

Table 2   Some structural 
parameters for the SnO2 films

Temp. (oC) 2θ (o) hkl D (Å) d (Å) a (Å) c (Å)

0 26.74 110
300 34.38 011 53.00 3.33 4.65 3.15
400 52.51 121 39.00 2.61 4.65 3.16
500 63.29 211 31.00 1.74 4.69 3.17
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3.5 � Photoresponse analysis

The photoresponse (current versus time) plots of the films are shown in Fig. 9. Figure 9 
depicts the time-dependent photoresponse behavior when the devices are under darkness 
and irradiation by blue lights with 2 min OFF/ON switching cycles under 5 V bias voltage. 

a b

c

Fig. 6   Optical a transmittance, b absorbance, and c reflectance plots of the synthesized samples

a b

Fig. 7   Plots showing the a absorption coefficient and b bandgap energies of the samples
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The more the annealing temperature, the better the photoresponse of the films (Breddels 
and Blasse 1984). The film annealed at 500 °C recorded the best photoresponse as outlined 
in Table 3.

The photocurrent Iph is defined in Eq. (3) (Tian and Fan 2018) as:

Two parameters of photodetector are calculate (Zhong 2017):

where Iph is the photocurrent, P is the light power intensity, and S is the effective exposure 
area of the photodetector, and Idark is the dark current. The results obtained are displayed in 
Table 1.

(3)Iph = Iilluminated−Idark

(4)Photo responsivity (R) = Iph∕PS

(5)Detectivity(D ∗) = [(RS)1∕2]∕[(2eIdark)1∕2]

Fig. 8   Photoluminescence spec-
tra of the deposited films

200 400 600 800

0

10

20

30

PL
 IN

TE
N

SI
TY

 (x
10

4 )

WAVELENGTH (nm)

500 oC
 400 oC
300 oC
     0 oC

Fig. 9   Plot showing the photore-
sponse spectra of the annealed 
SnO2 films
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Table 3   Photoresponse 
parameters of the samples

SnO2 (Temperature) R (AW−1) × 102 D* (jones) × 109

300 2.7 5.6
400 2.7 7.1
500 8.4 4.6
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Table 3 shows increased photoresponse of the tin (IV) oxide films at the higher anneal-
ing temperatures. The sample annealed at 400 °C recorded the highest photodetection abil-
ity because more photogenerated carriers were created at that temperature. This increased 
sensitivity makes SnO2 films useful as sensors (Bazargan et al. 2012; Savaniu 1999).

4 � Conclusion

This work successfully synthesized SnO2 films unannealed and annealed at 300 °C, 400 °C, 
and 500 °C via the RF magnetron sputtering technique. The films were characterized for 
their morphological, structural, optical, photoluminescence, and photoresponse features. 
The unannealed film had compact nanog rained morphology with surface cracks, while 
AFM images showed spikes emanating from the substrate surface. The films exhibited a 
tetragonal crystal structure with the high absorbance feature. The bandgap energy value 
of the SnO2 films increased with annealing temperature. The highest photoluminescence 
intensity was recorded at 369 nm within the visible electromagnetic region. The films also 
recorded good photoresponse to current. The synthesized SnO2 films could be potentially 
applied in optical and solar cell devices.
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