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Abstract
In the present work, bound states of the Schrödinger equation (SE) and the corresponding 
optical properties for Derjaguin-Landau-Verweij-Overbook (DLVO) potential are studied. 
For this goal, we first solved the SE using DLVO potential and obtained eigenfunctions 
and bound state energy eigenvalues for an arbitrary system. We used analytical expression 
for optical properties obtained by the compact-density matrix formalism. Here, we have 
investigated the intersubband optical absorption coefficients and refractive index changes.
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1 Introduction

In recent years, theoretical physics and chemistry have a wide application in explain-
ing the behavior of the systems in different potentials. This approach has been possi-
ble through exact or approximate solutions of the relativistic or non-relativistic equa-
tions in D-dimension for different physical systems of interest (Hitler et al. (2017)). In 
non-relativistic quantum mechanics, exact solution of the SE is one of the interesting 
problems between scientists. For this purpose, a real potential such as pseudo harmonic 
potential (Ikhdair 2011), the Hulthen potential (Edet et  al. 1909), the Morse potential 
(Khordad et  al. 2019a), the Woods-Saxon potential (Abadi et  al. 1910), the Kratzer-
type potential (Kandirmaz 2018), the Badawi-Bessis-Bessis and Tietz potential (Khor-
dad and Ghanbari 2019) and Maning-Rosen potential (Khordad et  al. 2019b) and etc. 
is chosen to obtain eigenfunctions and energy eigenvalues of the SE. Several authors 
have calculated the SE and studied eigenfunctions and eigenvalues. Ishkhanyan (Ishkh-
anyan 2018) has solved the SE for a short-range exponential potential with inverse 
square root singularity. He used irreducible linear combinations of the Gauss hypergeo-
metric functions. Sun et al. (Sun and Dong 2012) have obtained the bound state solu-
tions with Tietz-wei (TW) diatomic molecular potential. Ikot et  al. (Ikot et  al. 2016) 
have solved the SE with improved ring-shaped non-spherical harmonic oscillator and 
coulomb potential. Hassanabadi et  al. (Ikot et  al. 2013) solved equation for Deng-Fan 
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potential and obtained the spectra and eigenfunction for it. Le et  al. (Le et  al. 2018) 
solved equation using sextic double-well potential in two dimensions. Also, they give 
interesting rules to obtained exact analytical solutions. Dong et al. (Dong et al. 2016) 
express exact solution to solitonic profile mass Schrödinger problem. They used modi-
fied Pöscl-Teller potential. Hamzavi and Amirfakhrian (Hamzavi and Amirfakhrian 
2012) solved Klein–Gordon equation for Deng-Fan potential in arbitrary N-dimension. 
They have used an approximation to the centrifugal term. Ahmadov et  al. (Ahmadov 
et al. 2018) obtained bound-state solutions for the Manning-Rosen plus Hulthen poten-
tial. Rezaei Akbarieh and Mortazavi (Rezaei Akbarieh and Motavali 2008) have shown 
exact analytical solution for the Rosen-Morse type potential with equal scalar and vector 
potential. Ikhdair (Ikhdair 2009) has reported the approximate bound-state rotational-
vibrational energy levels.

In this work, we have solved the SE for DLVO potential semi-exact. The DLVO 
theory can be used to explain stability and aggregation of aqueous dispersions quan-
titatively and describes the force between charged surface interacting through a liq-
uid medium (B.v. Derjaguin, L. Landau 1993; Verwey 1947). Recently, researchers 
proposed that DLVO theory can also be employed to elucidate the interaction behav-
ior between colloidal particles (Behrens et al. 2000; Celik and Bulut 1996; Oats et al. 
2010; Elimelech et al. 2013; Yoon and Mao 1996). This paper is organized as follow: in 
Sect. 2, the SE with DLVO potential is solved. Section 3 contains theoretical method of 
optical properties and in Sect. 4, we show and discuss our results in detail. Finally, the 
corresponding calculation is given in Sect. 5.

2  Eigenfunctions and energy eigenvalues solution

Time-independent SE is written as

By defining the wave function as Ψ(r, �,�) = 1

r
R(r)y(�,�) , the radial SE obtain as 

(Flugge 1973)

where l is the angular momentum quantum number, m is the particle mass moving in the 
potential V(r) and Enl is the nonrelativistic energy. Here, V(r) is DLVO potential that is 
given by (Poon and Andelman 2006)

where r is the distance between the two charged colloids, Q is the charge of the colloid, R is 
hard-core radius, � is the dielectric constant of the solvent, k is the inverse screening length 
that appears in the Debye–Huckel theory of electrolytes and A is the so-called Hamaker 
constant. Inserting Eq. (3) into Eq. (2), we obtain

(1)
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where B =
(

Qexp(kR)

1+kR

)2

.
By defining the radial wave function as R(y) = y−

1∕2Φ(y) and changing variable = r2 , 
Eq. (4) turns into

We used the following abbreviations

and

In Eqs. (6) and (7), parameters C1 , C2 and C3 express as

According to these parameters, the solution of Eq. (5) is given by

Here, we take w1 = w2 = 1 and kummer function is defined by

In order to obtain finite wave function, it should be
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Which gives single-valued wave functions. Inserting Eqs. (6) and (7) and Eqs. (8)-
(10) into Eq. (13), the energy spectrum of the DLVO potential is obtained

where

Here, for simplicity in express energy spectrum, we rewrite Eqs. (6) and (7) as

and

3  Optical absorption coefficients and refractive index changes

In this section, we used density matrix formalism to obtain refractive index changes and 
optical absorption coefficients for GaAs corresponded to an optical intersubband transi-
tion. To this end, we discuss optical properties in theoretical framework. As we know, 
the corresponding system can be excited by an electromagnetic field of frequency ω, as

We can write the time evolution of the matrix elements of one-electron density oper-
ator, ρ, as follow (Ünlü et al. 2006; Khordad 2011)

where H0 is the Hamiltonian for this system without the electromagnetic field E(t) and q is 
the electric charge. We use the symbol [,] as the quantum mechanical commutator, �(0) is 
the unperturbed density matrix operator and Γ is an operator corresponding for the damp-
ing due to the electron–phonon interaction, collisions among electrons, etc. We supposed 
that the elements of diagonal matrix of Γ are equal to the inverse of relaxation time T  . As 
we know, the electronic polarization P(t) and susceptibility �(t) are expressed by dipole 
operator M and density matrix ρ from below
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where �0 the permittivity of free space, the symbol is Tr(trace) denotes the summation over 
the diagonal elements of the matrix and ρ and V  are the one-electron density matrix and the 
volume of the system, respectively.

By using Eq.  (19), the analytical forms of the linear � (1) and the third-order non-
linear � (3) susceptibility coefficients are obtained as

where �� is the carrier density. The refractive index changes are related to the susceptibility 
as (Kuhn et al. 1991)

where nr is the refractive index and Re denotes the real part of relation. By using Eqs. 
(20–23), the linear and the third-order nonlinear refractive index changes can be obtained 
as (Kuhn et al. 1991)

and

where � is the permeability, Mij =
|||Ψi|qr|Ψj

||| is the electric dipole moment matrix element 
and Eij = Ei − Ej . The parameter I is the optical intensity of the incident wave and define 
as (Khordad and Ghanbari 2017)

where c is the speed of light in free space. The total refractive index changes can be obtain 
from Eqs. (24–26)
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Accordingly, one can write the linear and third-order nonlinear absorption coeffi-
cients as follow (Ünlü et al. 2006; Aspnes 1976)

and

One can deduce the total absorption coefficient, �(�, I) from Eqs. (28) and (29) as 
(Ünlü et al. 2006)

4  Results and discussion

In this work, we have solved SE for DLVO potential. Figure 1 shows the DLVO potential 
qualitatively. As we see from Fig. 1, the DLVO potential has a deep minimum at short dis-
tances. At large distances, the coulomb repulsion dominates. This approach gives a local 
maximum in the curve. In Figs. 2 and 3, we have plotted several wave functions for differ-
ent quantum numbers ( n, l ). It is found that there is a symmetry at r = 0 in the wave func-
tion. For at l = 1 , there is a peak at r = 0 and as l increases, the peak gets smoother. Table 1 
indicates energy spectrum for quantum numbers ( n, l ). According to table, in constant l , 
eigenvalues increase but in constant n , eigenvalues decrease. To study the degeneracy and 
its relation to system symmetry, energy spectrum for two states (for example ( n = 1, l = 0 ) 
and ( n = 0, l = 1 )) show that the two states are not degenerate ( ΔE ≠ 0).

Thereafter, we have calculated optical properties for GaAs. The used parameters in the 
calculation are nr = 3.2 , T12 = 0.2ps , Γ12 =

1

T12
 , �� = 3 × 1016cm−3 (Khordad 2011) and we 
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Fig. 1  The DLVO potential as a 
function of distance
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Fig. 2  Variations of five eigenfunctions of DLVO potential for quantum numbers pairs ((5,0), (5,1), (5,2), 
(5,3), (5,4); in Q = k = � = 1)

Fig. 3  Variations of four eigenfunctions of DLVO potential for quantum numbers pairs ((2,1), (3,1), (4,1), 
(5,1); in Q = k = � = 1)
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take arbitrary parameters for potential constant. Figure 4 shows linear, nonlinear and total 
refractive index changes of GaAs as a function of photon energy with I = 0.1MW

/
cm2 . The 

linear and nonlinear term are opposite in sign and expressed by Δn(1) and Δn(3) term. There-
fore, the total refractive index change will be reduced.

Figure  5 displays the total refractive index changes as a function of photon energy 
for different I as 0.1, 0.2, 0.3 and 0.4MW

/
cm2 . It is clear that the refractive index change 

increase and shift towards higher energies with increasing intensity. In Fig. 6, the varia-
tions of linear, third-order nonlinear and total absorption coefficients are plotted as a func-
tion of the photon energy with I = 0.1MW

/
cm2 . Figure 7 shows the total changes in the 

absorption coefficient as a function of the photon energy for different I as 0.1, 0.2, 0.3 and 

Table 1  Energy eigenvalues of quantum number pairs (n, l)

l = 0 l = 1 l = 2 l = 3 l = 4 l = 5

Energy eigenvalues for quantum number pairs ( n, l)
n = 0 − 8.5779 − 9.8848 − 12.4597 − 16.2453 − 21.1864 − 27.2392
n = 1 − 2.2149 − 3.2149 − 5.2149 − 8.2149 − 12.2149 − 17.2149
n = 2 4.1481 3.4550 2.0299 − 0.1844 − 3.2433 − 7.1905
n = 3 14.2153 13.6952 12.6163 10.9149 8.5203 5.3672
n = 4 29.6032 29.1639 28.2573 26.8335 24.8309 22.1855
n = 5 50.7738 50.3743 49.5556 48.2811 46.5031 44.1675
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Fig. 4  The variations of linear, third-order and total refractive index changes with the photon energy for 
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0.4MW
/
cm2 . In this figure, we observed that the total changes in the absorption coefficient 

will be increases as I increases and shift toward higher energies. As we seen in Fig. 7, the 
radiation intensity does not effect on the peak position but increases the peaks. The physi-
cal reason is the increase in the number of electrons in the interband bandwidth. As we 
know, by increasing radiation intensity, more electron are excited.
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Fig. 5  The variations of total refractive index changes with the photon energy for different intensity
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5  Conclusion

In the present work, we have solved the radial Schrödinger equation for DLVO potential. 
We calculated energy spectrum and corresponding eigenfunction. By using the compact 
density matrix approach, the linear and third-order nonlinear optical properties for GaAs 
have been theoretically obtained. According to the results, it is found that the incident 
optical intensity has a rather great effect on the optical properties as it is expected from 
theoretical expressions. Here, we used arbitrary parameters for potential and hope that 
this study can make a significant contribution both to the experimental and theoretical 
investigations on this topic.
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