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Abstract
In this paper, with the aid of the Mathematica package, several classes of exact analytical 
solutions for the time-fractional (2 + 1)-dimensional Ito equation are obtained. To analyti-
cally tackle the above equation, the Kudryashov simple equation approach and its modified 
form are applied. Rational, exponential-rational, periodic, and hyperbolic functions with 
a number of free parameters were represented by the obtained soliton solutions. Graphi-
cal illustrations with special choices of free constants and different fractional orders are 
included for certain acquired solutions. Both approaches include the efficiency, applica-
bility and easy handling of the solution mechanism for nonlinear evolution equations that 
occur in the various real-life problems.
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1  Introduction

A wide range of complex phenomena in the fields of physics, engineering, chemistry, biology, 
and finance dynamics are modeled by nonlinear ordinary (NODEs) and partial (NPDEs) dif-
ferential equations of integer and fractional orders (Wazwaz 2009; Kilbas et al. 2006; Owusu 
et al. 2020). Since there is no single method that can treat various kinds of nonlinear evolu-
tion equations (NLEEs), many techniques have been proposed, modified, and expanded for 
seeking exact analytic, semi-analytic and numerical solutions for NLEEs in conjunction with 
the development of software symbolic computations that helps researchers accomplish these 
tasks. Such solutions expand the area of understanding qualitative and measurable features of 
complex phenomena to draw efficient and appropriate conclusions. For this purpose, a variety 
of effective approaches have been suggested. The Darboux transformation (Gu et al. 1999), 
Bifurcation method (Song and Yang 2010), Hirota bilinear method (Hirota 2004), iterative 
shehu transform method (Akinyemi and Iyiola 2020b), expansion version of method (Wang 
et al. 2008), Adomian decomposition method and ifts extensions (Az-Zo’bi and Al-Khaled 
2010; Az-Zo’bi 2013, 2014; Az-Zo’bi et  al. 2019), Exp-function method (Ozis and Aslan 
2018), F-expansion method (Seadawy and El-Rashidy 2018; Wang and Li 2005), He’s vari-
ational iteration method (Az-Zo’bi 2015), inverse scattering method (Biondini et  al. 2016), 
reduced differential transform method (Az-Zo’bi et al. 2015, 2020; Az-Zo’bi 2014), homo-
geneous balance method (Rady et al. 2010), q-homotopy analysis method (Senol et al. 2019; 
Akinyemi et  al. 2020; Akinyemi 2019), Lie symmetry method (Olver 1993), first integral 
method (Akram and Mahak 2018), residual power series method (Senol 2020; Az-Zo’bi 
2018, 2019; Az-Zo’bi et al. 2019), simplest equation method (SEM) (Kudryashov 2005a, b), 
modified simplest equation method (MSEM) (Jawad et al. 2010), exp-�(�) method (Az-Zo’bi 
2019), q-homotopy analysis transform method (Akinyemi 2020; Akinyemi and Huseen 2020; 
Akinyemi and Iyiola 2020a), sub-equation method (Kurt et al. 2020; Akinyemi et al. 2021), 
modified extended direct algebraic method (Arshad et al. 2017a), modified extended mapping 
method (Arshad et al. 2017b) and some others (Seadawy et al. 2019; Helal et al. 2014; Lu 
et al. 2018; Seadawy et al. 2020; Iqbal et al. 2020; Farah et al. 2020; Ahmad et al. 2020).

The simple equation method (SEM), derived by Kudryashov, and its expansions (Irshad 
et al. 2017; Arnous et al. 2017; Al-Amr and El-Ganaini 2017; Hossain et al. 2018; Zayed et al. 
2019; Vitanov 2019; Az-Zo’bi 2019a, b) have succeeded in constructing solutions for several 
NLEEs. By means of the SEM and MSEM, this work will focus on constructing new ana-
lytic solutions for the time-fractional (2 + 1)-dimensional Ito integro–differential equation in 
the conformable derivative sense:

where �x =
�

�x
, �y =

�

�y
, �∗�t  is the conformable time-fractional derivative operator of order 

𝜌 (0 < 𝜌 ≤ 1), 𝛼 and � are given constants, and u(x, y, t) denotes the relevant waves ampli-
tude that approaches zero as x unboundedly decreases. By making use of differential opera-
tor u = �xv , Eq. 1 will be converted into the fifth-order NPDE

The Ito model (Eq.  2) (or equivalently Eq.  1) was firstly derived by generalizing the 
well-known bilinear Korteweg-de Vries equation (Ito 1980). For � = � = 0 , we get the 
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one-dimensional Ito equation. Recently, many authors have paid their concern to ana-
lytically process the (2+1)-dimensional Ito equation of integer time-derivative ( � = 1 ); 
Wazwaz (2008) applied the tanh-coth method to derive single soliton and periodic solu-
tions. Also, N-solitons were derived by combining Hereman’s method and Hirota’s 
method. The extended homoclinic test technique and the bilinear method were performed 
to obtain single, two-solitons, periodic and doubly-periodic wave solutions (Li and Zhao 
2009). Hyperbolic and periodic solutions were obtained using the extended F-expansion 
method (Bhrawy et al. 2012). The 

(

G�∕G
)

 method was used to carry out one-soliton solu-
tions (Ebadi et al. 2012). Adem (2016) deduced multiple wave solutions by using the mul-
tiple exp-function algorithm. The Wronskian determinant technique was employed by 
Yildirim and Yasar (2018). Lump and stripe solutions with the diversity of interactions 
basing on the Hirota bilinear form were investigated by Ma et. al. in Yang et al. (2018), Ma 
et al. (2018), He et al. (2019).

This paper is prepared, in what follow, to present the basic concepts of conformable 
fractional calculus theory in Sect.  2. Mathematical analysis of the employed methods is 
included in Sect. 3. The derived exact analytic solutions for Eq. 1 by applying the proposed 
techniques are discussed in Sect. 4. Discussion and conclusions, with numerical simula-
tions of some obtained solitons, are displayed in Sect. 5.

2 � Conformable fractional derivative

Khalil et al. (2014) suggested the conformable fractional derivative (CFD) which satisfies 
the basic principles of normal derivative. In this section, the basic definition and necessary 
properties of the CFD are given. Suppose that u(t) is a function defined for t > 0 . The CFD 
of order � , 0 < 𝜌 ≤ 1 , is defined as

In the following theorem, the useful properties of the CFD are listed.

Theorem 2.1  (Ma et  al. 2018; He et  al. 2019; Abdeljawad 2015) Suppose that u1(t) and 
u2(t) are two �-differentiable functions on some interval I in the positive semi half space 
(0,∞), � ∈ (0, 1] and � are real numbers. Then

1.	 The CFD operator is linear,
2.	 D

�

t
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3.	 D
�

t
t� = � t�−�.
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6.	 D
�

t
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�(t)u1
�(v(t)).

7.	 D
�

t
u1 = t1−�u�

1
 are satisfied for all t ∈ I.

Remark 1  Recently, several researchers have used the CFD when treating the fractional dif-
ferential equations due to the efficiency and applicability of the CFD, which overcomes 

(3)D
�
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.
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the existence complexity of other fractional derivatives such as Riemann-Liouville and 
Caputo. See Osman et al. (2019), Islama et al. (2019), Kurt et al. (2020), Zhu et al. (2019), 
Odabas (2020), Korpinar et al. (2020) for more detailed.

3 � Mathematical analysis

In the current section, solution procedure to the constant-coefficients (2+1)-dimensional PDE

using the SEM and MSEM are outlined. P is assumed to be a polynomial u = u(x, y, t) and 
its derivatives including the highest derivative and the higher power of linear terms. The 
solution process also works for time-dependent coefficients NPDEs and systems. The SEM 
includes many other existing schemes; the Riccati equation, sub-equation, F-expansion, 
and 

(

G�∕G
)

 methods. The MSEM is considered here since it has a different procedure that 
used in the other one as will be shown in Sect. 3.2. To investigate Eq. 4, assume that its 
exact solution has the form

where � = x + y − �
t�

�
 is the wave variable, and � is the wave frequency. In the time-

dependent case, we put � = �(t) . Under this consideration, and by using of properties of the 
CFD in Theorem 2.1, Eq. 4 is reduced to be

where u(i) = diu

d�i
 , i ≥ 1 . Taking integration of Eq. 6 as much as possible and setting the inte-

gration constants to zero, will reduce the transformed equation and keep the solution pro-
cess as simple as possible. According to the aforementioned schemes, a positive integer M 
should be calculated by balancing the derivative with the highest order and the linear term 
of highest order in the completely-integrated form of Eq. 6. In what follow, the solution 
steps of each method will be discussed.

3.1 � The simple equation method

The solution of Eq. 6 using the SEM (Kudryashov 2005a, b) can be expressed as

where Bi(i = 0, 1,… ,M) are the parameters to be calculated, the function �(�) is assumed 
to satisfy some solvable ODE of order less than the completely-integrated form of Eq. 6 
known by the simplest equation. The simplest equations considered in this work are the 
Bernoulli and Riccati first order ODEs. By using the Bernoulli equation

as a simplest equation, the solution function �(�) will definitely possess 

(4)P
(

u, �xu, �yu,D
�

t
u, �x�yu,⋯

)

= 0,

(5)u(x, y, t) = u(�),

(6)F
(
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= 0,

(7)u(�) =

M
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Bi �
i(�), BM ≠ 0,
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i.	 the rational form

	 ii.	 the rational-exponential form

or,

In the case of using the simplest Riccati equation

�(�) will be in the following form: 

i.	 the hyperbolic form 

or,

if 𝜆𝜇 < 0, then 

	 ii.	 the periodic form 

 or, 

if 𝜆𝜇 > 0 , where �0 is a constant comes from the integration. Via using of Bernoulli equa-
tion Eq. 8, substituting Eq. 7 into Eq. 6, and equating each coefficients with the same power 
in the resulted polynomial of �(�) to zero, a system of algebraic equations in the variables 
�, � and Bi ’s would be resulted. Solving this system and substituting the obtained values of 
�, � and Bi’s, along with the general solutions of Eq. 8, into Eq. 7 gives the exact analytic 
solution in travelling-wave form for Eq. 4. Repeating this process with replacing Eq. 8 by 
Eq. 12, new classes of solutions could be derived. The simplest equation scheme is applica-
ble while the gotten algebraic system is solvable in the undetermined parameters.

(9)�(�) =
1

�
(

�0 − �
) , if � = 0,

(10)𝜙(𝜉) =
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1 − 𝜇 e(𝜆(𝜉+𝜉0))
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3.2 � The modified simple equation method

The MSEM (Jawad et al. 2010) proceeds by considering the solution of Eq. 6 as

where Bi, (i = 0, 1,⋯ ,M) are parameters to be calculated afterwards. M is the positive 
integer that obtained by the homogeneous balance principle. �(�) is an unknown function 
to be subsequently defined. Substituting the assumed anstanz in Eq. 17 into Eq. 6, a system 
of algebraic-differential system would be deduced. Forcing numerator of the resulting sys-
tem to be vanished, and putting back the results into Eq. 17 will complete the determina-
tion of exact solution for the considered problem.

4 � Applications for Ito equation

In this part, we investigate the (2 + 1)-dimensional non-local Ito equation Eq. 1 by applying 
the Kudryashov simple equation Algorithms that discussed in the previous section. Along 
Eq. 5 and Theorem 2.1, Eq. 2 will be carried into the following NODE

In more compact form, Eq. 18 can be written as

Integrating Eq. 19 twice with respect to � and setting the integration constants to be zeros 
gives the missing-v NODE

Let z(�) = v�(�) to get

Making balance between z′′ and z2 in Eq. 21 results M = 2.

4.1 � Using the SEM

Consequently, Eq. 21 owns the formal solution

Substituting Eq. 22 into Eq. 21, making use of the Bernoulli equation Eq. 8, and setting 
the coefficients of �i,i = 0, 1,⋯ , 4 , to be zeros, gives the following simultaneous algebraic 
equations set in the sense of B0, B1, B2, �, � and � ∶

(17)u(�) =

M
∑

i=0

Bi

(

��(�)

�(�)

)i

, BM ≠ 0,

(18)(� − � − �) v��� − 6
(

(v��)2 − v�v���
)

− v(5) = 0.

(19)(� − � − �) v(���) − 3((v�)2)�� − v(5) = 0.

(20)(� − � − �) v� − 3(v�)2 − v(3) = 0.

(21)(� − � − �) z − 3z2 − z�� = 0.

(22)z(�) = B0 + B1 �(�) + B2 �(�)
2
.

(23)B0(3B0 + � + � − �) = 0,
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Solving Eqs. 23–27 implies B0 = 0, B1 =
1

3

(

� − � − �
)

 and B2 = −2�2, where � is nonzero 
constant. As a consequence, the following exact moving wave solutions from Eq. 1 can be 
obtained as:

Case 1 If B0 = 0, � = � + � and � = 0, we get B1 = 0 and

Case 2 If B0 = 0, � = � + � + �2, and B1 = −2 �� , we get

Case 3 If B0 =
1

3
(� − � − �), � = � + � − �2 and B1 = −2 ��, we get

We get the following system of algebraic equations, as in the case of the Bernoulli equa-
tion, and using the Riccati equation Eq. 12:

(24)B1(6B0 + � + � − � + �2) = 0,

(25)3B1(B1 + ��) − B2(6B0 + � + � − � + 4�2) = 0,

(26)2(3B1B2 + 5�� B2 + �2B1) = 0,

(27)3B2(B2 + 2�2) = 0.

(28)u01(x, y, t) = −
2

(�0 − �)2
.

(29)u02(x, y, t) = −
2𝜆2𝜇e𝜆 (𝜉+𝜉0)

(

1 − 𝜇 e𝜆 𝜉+𝜉0
)2
, for 𝜆 > 0 and𝜇 < 0,

(30)u03(x, y, t) =
2𝜆2𝜇e𝜆 (𝜉+𝜉0)

(

1 + 𝜇 e𝜆 𝜉+𝜉0
)2
, for 𝜆 < 0 and𝜇 > 0.

(31)u04(x, y, t) = −
𝜆2

3

(

1 +
6 e𝜆 (𝜉+𝜉0)

(

1 − 𝜇 e𝜆 𝜉+𝜉0
)2

)

, for 𝜆 > 0 and𝜇 < 0,

(32)u05(x, y, t) = −
𝜆2

3

(

1 −
6 e𝜆 (𝜉+𝜉0)

(1 + 𝜇 e𝜆 𝜉+𝜉0 )
2

)

, for 𝜆 < 0 and𝜇 > 0.

(33)3B2

0
+ B0(� + � − �) + 2�2B2 = 0,

(34)B1(6B0 + � + � − � + 2 ��) = 0,

(35)3B2

1
+ B2(6B0 + � + � − � + 8 ��) = 0,

(36)2B1

(

3B2 + �2
)

= 0,
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Eliminating the trivial solution, Eq. 33 and Eqs. 36–37 imply that B2 = −2�2, B1 = 0 , and 
B0 = −

1

6

(

� + � − � + 8 ��
)

 . The solutions can be classified as follows:
Case 4 If � = � + � − 4�� and 𝜆𝜇 < 0 , we get

or,

Case 5 If � = � + � + 4 �� , and 𝜆𝜇 < 0 , we get

or,

Case 6 If � = � + � − 4 �� , and 𝜆𝜇 > 0 , we get

or,

Case 7 If � = � + � + 4�� and 𝜆𝜇 > 0 , we get

or,

where � = x + y − �
t�

�
.

4.2 � Using the MSEM

By applying the MSEM for the Ito equation Eq. 2 with M = 2, Eq. 21 gets the solution

It is simple to find that

(37)3B2

(

B2 + 2�2
)

= 0.

(38)u06(x, y, t) = −2�� sech
2
�

√

−�� � + �0

�

,

(39)u07(x, y, t) = 2�� csch
2
�

√

−�� � + �0

�

.

(40)u08(x, y, t) = −2��
�

1

3
− tanh

2
�

√

−�� � + �0

��

,

(41)u09(x, y, t) = −2��
�

1

3
− coth

2
�

√

�� � + �0

��

.

(42)u10(x, y, t) = −2�� sec2
�

√

�� � + �0

�

,

(43)u11(x, y, t) = −2�� csc2
�

√

�� � + �0

�

.

(44)u12(x, y, t) = −2��
�

1

3
+ tan2

�

√

�� � + �0

��

,

(45)u13(x, y, t) = −2��
�

1

3
+ cot2

�

√

�� � + �0

��

.

(46)z(�) = B0 + B1

��(�)

�(�)
+ B2

(

��(�)

�(�)

)2

.
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Substituting Eqs. 47, 48 into Eq. 21 and equating the coefficients of �−i (i = 0,⋯ , 4), to be 
vanished implies the algebraic-differential system:

The Eqs.  49–50 with B2 ≠ 0 and ��(�) ≠ 0 to avoid trivial solution, yields 
B0 = 0, B1 =

1

3

(

� − � − �
)

 and B2 = −2 respectively. Accordingly, solving Eq.  51 (or 
equivalently Eq. 52) with nonzero arbitrary constant B1 , exact solutions for Eq. 1 are listed 
as follows:

Case 8 If B0 = 0,  �(�) = 2e
B1 �

2

B1

�1 + �2 and � =
1

4

(

B2

1
+ 4� + 4�

)

, we get

Case 9 If B0 =
1

3
(� − � − �), �(�) = 2 e

B1 �

2

B1

�1 + �2 and � =
1

4

(

−B2

1
+ 4� + 4�

)

, we get

where �1 and �2 are the constants of integration and � = x + y − �
t�

�
.

5 � Discussion and conclusion

In this work, the simple equation scheme (Kudryashov 2005a, b) and some of its vari-
ants developed by Jawad et al. (Az-Zo’bi 2019b) are successfully employed to analytically 
process the conformable time-fractional nonlinear (2 + 1)-dimensional Ito equation (Eq. 1). 
Different types of travelling-wave solutions are formally extracted. The obtained solutions 
include one and multi-soliton wave solutions. The modified scheme outputs solutions of 

(47)z�(�) = B1

(

���

�
−

(

��

�

)2
)

+ 2B2

(

�����

�2
−

(

��

�

)3
)

,

(48)

z��(�) = B1

(

����

�
− 3

�����

�2
+ 2

(

��

�

)3
)

+ 2B2

(

2
���2 + ������

�2
− 5

��2���

�3
+ 3

(

��

�

)4
)

.

(49)B0(3B0 + � + � − �) = 0,

(50)3B2

(

2 + B2

)

��(�)4 = 0,

(51)2
(

B1�
�(�)

(

1 + 3B2

)

− 5���(�)
)

��(�)2 = 0,

(52)B1

(

��(�)(6B0 + � + � − �) + ����(�)
)

= 0,

(53)2B2�
��2 − (3B1 �

�� − 2B2 �
���)�� + (3B2

1
+ B2(6B0 + � + � − �))��2 = 0.

(54)u14(x, y, t) =
�1�2B

3

1
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1

2
B1 �
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2�1e
1

2
B1 � + �2B1

)2
.
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12
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1
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2
B1 �
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single soliton shapes coincide the obtained solutions in the SEM along Bernoulli equa-
tion with special choice of parameters. Some of these solutions are represented in Figs. 1, 
2, 3, 4, 5, 6 for distinct values of the fractional order �. In Fig. 1, the xt-behavior of sound 
amplitude in soliton-like shape is shown for different fractional order. The corresponding 

(a) ρ = 0.1 (b) ρ = 0.5

(c) ρ = 1

Fig. 1   3D soliton profile of Eq. 31 in the xt-plane with � = � = � = 1, � = −1 and �
0
= 0

(a) ρ = 0.1 (b) ρ = 0.5 (c) ρ = 1

Fig. 2   3D corresponding contour plots to the soliton profiles in Fig. 1
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Contour profiles are plotted in Fig.  2. In the same manner, singular kink-like (Eq.  40) 
are presented in Figs.  3, 4 while singular periodic sound amplitudes (Eq.  45) are illus-
trated in Figs. 5, 6 respectively. The order of derivative effect is clearly visible. Depend-
ing on the choice of free parameters, different physical structures could be suggested. As 

(a) ρ = 0.1 (b) ρ = 0.5

(c) ρ = 1

Fig. 3   3D soliton profile of Eq. 40 in the xt-plane with � = � = � = 1, � = −1 and �
0
= 1.

(a) ρ = 0.1 (b) ρ = 0.5 (c) ρ = 1

Fig. 4   3D corresponding contour plots to the soliton profiles in Fig. 3
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(a) ρ = 0.3 (b) ρ = 0.7

(c) ρ = 1

Fig. 5   3D soliton profile of Eq. 45 in the xt-plane with � = � = �
0
= 1 = 1 and � = � = 0.1.

(a) ρ = 0.3 (b) ρ = 0.7 (c) ρ = 1

Fig. 6   3D corresponding contour plots to the soliton profiles in Fig. 5
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no researchers make consideration to solve time-fractional Ito equation, to the best of our 
knowledge, the solutions achieved throughout this paper are firstly presented and not pub-
lished before. All of the obtained solutions are checked by replacing them back into the 
original equation. Because of the complexity of solving the NODEs result when applying 
the MSEM, as in Eq. 53, the results emphasize the effectiveness and powerful of the SEM. 
In general, the two methods are applicable to tackle several types of NLEEs with integer 
and fractional order derivatives.
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