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Abstract
We review our recent theoretical studies on multimode instabilities in Fabry–Pérot cav-
ity mid-infrared quantum cascade lasers (QCLs) caused by parametric excitation of Rabi 
flopping oscillations. Numerical simulations are based on the semiclassical traveling wave 
Maxwell–Bloch equations. QCLs with a few mm cavity without an absorber exhibit inter-
mittent RNGH self-pulsations, while regular self-pulsations are possible in short-cavity 
QCLs, with the cavity length of 100  μm or smaller. However, the second threshold in 
short-cavity QCLs is significantly increased compared to the values for a few mm long 
devices. We provide here a new insight on RNGH instability via bifurcation analysis of 
the output waveform and studies of the recurrence period density entropy. We propose an 
interpretation of the broadening/narrowing of the optical spectrum of a QCL i.e. switching 
the RNGH instability on and off observed in experiment.
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1  Introduction

Periodic pulse production regimes such as self-Q-switching, self-pulsations or passive 
mode-locking (PML) in interband semiconductor laser diodes (LDs) are widely used in 
various practical applications. However, these passive regimes are impossible in the mid-
infrared (Mid-IR) Quantum Cascade Lasers (QCLs) because of their picosecond (or sub-
picosecond) gain recovery time. This time is too short in comparison with the cavity round 
trip time so the gain saturation does not provide a “memory” mechanism to sustain such 
periodic regimes (Gordon et  al. 2008; Wang et  al. 2007). At the same time, the multi-
mode Risken–Nummedal–Graham–Haken (RNGH) instability (Graham and Haken 1968; 
Risken and Nummedal 1968) in QCLs with Fabry–Pérot (FP) cavities (Gordon et al. 2008; 
Wang et al. 2007) may pave a way to practical approaches for ultrafast pulse production 
in the Mid-IR range. More specifically, the spatial hole burning (SHB) effect in FP QCLs 
strongly reduces the excitation threshold for RNGH self-pulsations (SPs).

The question of the origin of RNGH SPs itself is a highly debated subject (Gordon et al. 
2008; Mansuripur et  al. 2016; Piccardo et  al. 2018; Vukovic et  al. 2016a, 2017). Strong 
spectral broadening in single-section FP cavity QCLs (~ 20–60 cm−1) was observed both 
in the ridge waveguide and in the buried heterostructure design operating under CW or 
quasi-CW driving conditions just above the lasing threshold (Bugajski et al. 2013; Gordon 
et al. 2008; Mansuripur et al. 2016; Wang et al. 2007). Low threshold RNGH multimode 
instability was attributed to a combined effect of spatial hole burning and saturable absorp-
tion in the QCL cavity (Gordon et al. 2008) but the nature of saturable absorption which 
should be equally strong in a ridge waveguide and a buried heterostructure QCLs has never 
been fully clarified.

Another mechanism of instability in single-section QCLs has been proposed in Man-
suripur et al. (2016) and Piccardo et al. (2018), where it was linked to a parametric four-
wave mixing gain instability, in full analogy with the phase-locked comb production 
in high-finesse optically pumped micro-cavities (Herr et  al. 2014) The idea stems from 
a parametric gain picture yielding instability of the main cavity mode, along the line of 
comb generation in optically pumped dielectric microdisk resonators with third-order χ(3) 
non-linearity. Mid-IR intersubband transitions in semiconductor QWs do produce strong 
third-order nonlinearity (Capasso et al. 1994; Gravé et al. 1992). However, optically pas-
sive microdisk resonators have a special cavity design to achieve a very high-quality fac-
tor (Q ~ 108). In order to reach parametric instability threshold, they employ whispering 
gallery modes with very small transverse sizes and operate with circulating pump power 
in the resonator on the order of several hundreds of watts. Electrically pumped Mid-IR 
QCLs with FP cavities cannot reproduce such environment to reach a parametric instability 
caused by material third-order nonlinearity χ(3). This conjecture is in agreement with the 
fact that all measurements of the second-order interferometric autocorrelation (IAC) traces 
reported for FP cavity QCLs reveal the peak to background ratio close to 8:3, which cor-
responds to a noisy multimode lasing as opposed to the ratio of 8:1 for a perfectly phase-
locked comb (Diels and Rudolph 2006).

In our theoretical studies (Vukovic et  al. 2016a, b, 2017) on the RNGH instability in 
QCLs we attribute the leading role to the gratings of population inversion and coherences 
(medium polarization) induced by the standing wave pattern of the cavity modes due to the 
spatial hole burning (SHB) effect. The formation of the carrier and coherence gratings is 
conditioned by the carrier lifetime T1 (longitudinal relaxation time), the carrier dephasing 
time T2 (transverse relaxation time) and the carrier diffusion coefficient D.
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2 � Model

The starting point of our analysis is the system of Maxwell–Bloch equations (Vukovic 
et al. 2016b, 2017):

where �ab is the off-diagonal element of the density matrix, Δ = �bb − �aa is the population 
inversion, ω, and µ denote the resonant frequency and the dipole matrix element respec-
tively. Δpump is the steady-state population inversion, E, N, and Γ stand for the optical field, 
the number of two-level systems per unit volume and the overlap factor between the optical 
mode and the active region, ng is the group refractive index (Vukovic et al. 2016a, b, 2017). 
Numerical simulations with the semiclassical traveling wave (TW) rate equation model 
(Vukovic et al. 2016a, 2017) are accomplished by introducing in Eqs. (1)–(3) two slowly 
varying amplitudes for the counter-propagating waves in the FP cavity A± and distinguish-
ing the medium’s polarizations associated with the forward and backward traveling waves 
P± (Boiko and Vasil’ev 2012):

Here, J(z,t)  is pump current density and d is the active region thickness.  The model is 
adapted from Boiko and Vasil’ev (2012) by removing the saturable absorber section. It 
incorporates Langevin force terms �± in Eq. (5) that seed spontaneous polarization noise 
into the system. The QCL gain chip parameters used in numerical simulations are listed in 
Table 1.

The field amplitudes are normalized in accordance with the secondary quantization con-
vention â±||N±
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Boundary conditions for the wave amplitudes are applied at left (z = 0) and right (z = L) 
cavity facets in the usual way:

The evolution of the carrier density n, medium polarization P± (coherences) and output 
power at the facets is obtained by numerically integrating the system of Eqs. (4)–(9) (Boiko 
and Vasil’ev 2012).

3 � Results and discussion

3.1 � Short cavity FP QCLs

To begin with, we consider an FP QCL chip with a very short cavity (L = 0.1 mm) and 
T1 = 1.3  ps. Excitation of RNGH self-pulsation regime requires a perturbation which is 
achieved by introducing polarization noise in the model (Langevin force terms in Eq. (5)). 
The cavity round trip time (Tcav= 2.2 ps) is comparable to the gain recovery time and QCL 
produces regular RNGH self-pulsations at a current of pth2= 2.4 times above the lasing 
threshold (Vukovic et al. 2016a, b, 2017). Numerical simulations reveal the onset of self-
pulsations within the first 8 ps interval (~ 4 cavity round trips). After 30 ps (~ 14 cavity 
round trips), we observe a transit to a steady regime of regular self-pulsations (Vukovic 
et al. 2017). The waveform example can be found in the inset of Fig. 1a. The field has a 
sine-wave envelope with a period being close to the cavity round trip time of 2.2 ps. The 
optical field and polarization of the gain medium change the sign at each passage in the 
cavity (at each half-period of the sine-wave). The intensity pulses are of 0.9 THz repetition 

(8)P± =

√
n2
g
g0

4��T2
e±P± sin(�t ∓ kz).

(9)
A+(0, t) =

√
R1A−(0, t),

A−(L, t) =
√
R2A+(L, t).

Table 1   Dynamic model 
parameters for InGaAs QCL 
considered in this paper using 
data from Vukovic et al. (2016a, 
b, 2017)

a Figures 1, 2 and 3
b Figures 4, 5 and 6

Symbol Quantity Value

λ Lasing wavelength 10 μm
T1 Carrier lifetime 1.3 psa or 0.5 psb

T2 Carrier dephasing time 140 fs
αi Intrinsic material loss 24 cm−1

D Diffusion coefficient 180 cm2/s
ng Group refractive index 3.3
R1 QCL back facet reflectivity 27%
R2 QCL front facet reflectivity 27%
Γ Optical mode confinement factor 0.55
g0 = ∂g/∂n Differential gain of one cascade 2.1 × 10−4 cm3/s
nt Transparency carrier density 7 × 1014 cm−3
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rate and of 0.6 ps FWHM duration. The examples of optical and RF power spectra, 2nd 
order IAC traces as well as P-N attractors can be found in Vukovic et al. (2016a, b, 2017).

In contrast to our previous studies focused at the origin of the RNGH SPs (Vukovic 
et al. 2016a, b, 2017), in this paper we analyze bifurcations of the self-pulsations waveform 
as a function of the pump current, which we normalize to the lasing threshold p = I/Ith. We 
construct the bifurcation diagrams in a few different ways. In all cases, the pump current 
is changed in small steps of δp = 0.05. For each p value, the numerical simulations are 
performed over 50 cavity round trips while only the last 25 periods after the end of all tran-
sients are used in the waveform analysis.

The bifurcation diagrams of extreme values (maxima and minima) in the output power 
waveform Pout are plotted in Fig. 1a, b. The red (blue) circles indicate the global and local 
maxima (minima) in the output power waveform. For instance, the largest values designate 
the peak power variations while the zero values in the output power waveform are due to 
the sign changes in the optical field envelope.

In Fig. 1a, for each value of p, we reset the initial conditions to zero field and let the 
self-pulsations to occur and grow. Thus we obtain the bifurcation diagram of the self-start-
ing SPs. For example, for p above the second threshold pth2 =  2.4, the QCL exhibits a self-
starting oscillatory behavior, while below pth2, it exhibits only CW emission. The insets 
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Fig. 1   Results of numerical simulations with TW model for monolithic QCL of the cavity length 100 μm: a 
bifurcation diagrams of self-starting SPs represented by extreme values in the output power waveform Pout 
(red and blue symbols correspond to the maxima and minima, respectively). The insets show the steady-
state Pout waveforms for different p values. b Bifurcation diagram of stable SPs (but not necessarily self-
starting) obtained by adiabatically decreasing p from the initial value of p = 5.5. Note a bi-stability region 
p = 1.55–2.4 in (a, b). c Contour plot of Pout distribution when decreasing p (long time scale, x-axis), during 
time interval equal to 2 cavity round trips (short time scale, y-axis). d Behavior of the normalized Recur-
rence Period Density Entropy (RPDE) (Little et al. 2007) with decreasing p. The following time-embedding 
parameters are used: embedding dimension m = 4, embedding delay τ = 10, embedding ball radius r = 0.003. 
More details about these parameters can be found in Kantz and Schreiber (2004) and Little et al. (2007). 
(Color figure online)
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in Fig. 1a display the corresponding output power waveforms for different pump rates and 
provide a hint for interpretation of the bifurcation diagram.

In the bifurcation diagram of Fig.  1b, we study the stability of already ongoing SPs 
which have been excited earlier. In a particular case, we start the numerical simulations 
from the largest value of p = 5.5 to excite the SPs. After that, we adiabatically reduce the 
pump current in small δp steps. In contrast to the sequence used in Fig. 1a, for each value 
of p, we continue the simulations without resetting the initial conditions to zero field. Sur-
prisingly, for the adiabatically decreasing pump rate, the SPs continue even below the self-
excitation threshold pth2. There is thus a hysteresis loop, associated with a bi-stable QCL 
operation either in the RNGH SPs or CW lasing regimes in the range from p = 1.5–2.4 
[compare Fig. 1a, b]. This hysteresis loop effect is in agreement with the results of Lyapu-
nov stability analysis and RNGH threshold discussed in Vukovic et al. (2016a, 2017). For 
p > pmin, the Lyapunov exponent is positive, that is the SPs regime is possible. For instance, 
pmin≈ 1.3 was obtained for QCL with parameters shown in Table 1 (Vukovic et al. 2017). 
However, the self-starting RNGH SPs in a short-cavity QCL can build up provided the 
initial optical pulse perturbation is of sufficient pulse area. This condition is met at p > pth2 
(pth2≈ 2.4 in considered case). Note that the longer the QCL cavity, the smaller the hyster-
esis width. In mm-long QCL devices, the hysteresis loop practically disappears because of 
pth2≈ pmin (Vukovic et al. 2016a, 2017).

With increasing pump rate p, we observe a period-doubling (at p = 4) of intensity SPs 
and harmonic waveform distortion.

To study whether we can trigger a sequence of the period-doubling and a bifurcation to 
chaos, we resolve the QCL dynamics on the fast (within one cavity round trip) and the slow 
(on subsequent cavity round trips) time scales, while adiabatically changing p. In Fig. 1c 
we show a contour plot representing the evolution of the output power waveform with 
decreasing p. For 10 > p>7.8, the period of intensity SPs is equal to the half of the cavity 
round trip time. Then for 7.8 > p>4, the period-doubling occurs (the period of SP is equal 
to the round trip time). For p < 4, the period of intensity SPs reduces back to the half of the 
cavity round trip time. We thus do not observe any sign of the period-doubling sequence.

In Fig. 1d we calculate the normalized recurrence period density entropy (RPDE) (Lit-
tle et al. 2007), by applying a so-called time-delay embedding (Kantz and Schreiber 2004). 
Recall that a perfectly periodic waveform (and a CW signal) has the RPDE entropy value 
of “0”, while the RPDE value of “1” corresponds to chaos. In this manner, the RPDE indi-
cates whether the SPs are periodic or quasi-periodic (chaotic).

For a short-cavity QCL in Fig. 1d, the RPDE entropy oscillates nearby “0” attesting for 
a perfectly periodic waveform even at a high pump rate p despite strong waveform anhar-
monicity. The spike on the RPDE curve at the lower p side of the SP/CW hysteresis loop 
can be attributed to the loss of stability of the SP regime at p ≤ pmin and, as a consequence, 
to a higher sensitivity of the waveform to polarization noise �± injected in the model sys-
tem (Vukovic et al. 2017).

In the considered example of a short-cavity QCL, the optical gain “memory” effect 
(T1 = 1.3 ps) persists between the subsequent passages in the cavity (Tcav/2 = 1.1 ps), result-
ing in a regular pulse train.

3.2 � Long cavity FP QCLs

In this subsection, we present numerically calculated optical field waveform, optical and 
RF power spectra, IAC trace, bifurcation diagram and RPDE plots for 1.5 mm length FP 
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QCL chip and the same T1 = 1.3 ps as for the short cavity QCL in subsection 3.1. The 
cavity round-trip time is Tcav = 33 ps while all other parameters can be found in Table 1. 
Figure 2a shows the optical field waveform when the pump rate normalized to the las-
ing threshold is p = 2. It develops into square waves, in agreement with our findings 
in Vukovic et al. (2017). The waveform just slightly changes at each round-trip, yield-
ing the quasi-periodic chaotic behavior. Optical spectra in Fig.  2b shows suppression 
of the main lasing mode (at 0  GHz) in agreement with multimode behavior observed 
experimentally (Gordon et  al. 2008; Wang et  al. 2007) and calculated numerically in 
Vukovic et al. (2017). RF power spectrum depicted in Fig. 2c confirms multimode comb 
emission. In Fig.  2d we calculate the interferometric autocorrelation trace. The peak 
to background ratio of the interferometric AC trace for the numerically simulated out-
put waveform is worse than 8:3, as it can be expected for such noisy multimode lasing 
behavior (Diels and Rudolph 2006). However it is this 8:3 peak to background ratio that 
was found in experimentally measured interferometric AC traces (Antonov et al. 2017a, 
b; Boiko et al. 2017; Gordon et al. 2008). Quasi-periodic chaotic pulse train (Fig. 2a) 
with multiple pulses on the cavity round-trip is responsible for the secondary lobes seen 
in the IAC trace in between the cavity round-trips, (Fig. 2d). Similar IAC traces with 
secondary lobes have been experimentally observed in Gordon et  al. 2008. In some 
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realizations, they appear nearly at half of the cavity round-trip as in Fig. 2d [other exam-
ples can be found in Vukovic et al. (2017)].

In Fig. 3a we plot the bifurcation diagram of the waveform intensity extremes and in 
Fig. 3b we show the RPDE in function of adiabatically increasing pump rate p. SPs start 
at very low pump excess above threshold (pth2 ~ 1.1) while the bistable CW/SP region 
between pmin and pth2 is very narrow in QCLs with mm-long cavities. In Fig. 3a, for the 
pump rate higher than p = 2.5 the number of local extremes in the intensity waveform 
increases, as well as their amplitude, the intensity waveform becomes more chaotic.

In Fig. 3b, large values of RPDE entropy (compare to Fig. 1d) attest that the waveform 
becomes quasi-periodic (p > 1.2) or even chaotic (p > 2.5) when it reaches 0.7, as we sus-
pected from Fig. 3a and the IAC trace from Fig. 2d for p = 2.

3.3 � Switching the Risken–Nummedal–Graham–Haken instability on and off

In Antonov et al. (2017a, b) and Boiko et al. (2017) authors have shown experimentally 
that the onset of broadband multimode emission associated with RNGH instability in the 
FP cavity QCLs can be tailored during a transient switching-on process under the pulsed 
pumping. Homogeneous interaction of all cascades (periods) with the lasing mode and a 
small diffusion length allows for a strong SHB effect and facilitates formation of the popu-
lation and coherence gratings. It was proposed that in these conditions, a sudden increase 
of the carrier lifetime T1 e.g. from 0.2 to 0.5 ps as a result of the lasing transition change 
causes a drop in the second threshold. A QCL starting initially to operate in the usual emis-
sion regime with a few lasing cavity modes switch to broadband multimode RNGH self-
pulsations (Antonov et al. 2017a, b).

Fig. 3   Results of numerical 
simulations with TW model for 
monolithic QCL of the cavity 
length 1.5 mm: a bifurcation 
diagrams of self-starting SPs rep-
resented by extreme values in the 
output power waveform Pout (red 
and blue symbols correspond to 
the maxima and minima, respec-
tively). b The behavior of the 
normalized Recurrence Period 
Density Entropy (RPDE) (Little 
et al. 2007) with increasing p. 
The following time-embedding 
parameters are used: embedding 
dimension m = 4, embedding 
delay τ = 10, embedding ball 
radius r = 0.02. More details 
about these parameters can be 
found in Kantz and Schreiber 
(2004) and Little et al. (2007). 
(Color figure online)
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The second mechanism proposed in Antonov et al. (2017a, b) is for the switching-off of 
the RNGH instability at high currents. It has been attributed to the change of the contrast 
of the SHB-induced grating as a result of inhomogeneous interaction of the cascades with 
the lasing field when driving a QCL on the unstable part of I-V curve leads to a forma-
tion of electric field domains (EFDs) with non-uniform charge accumulation and depletion 
across the QCL periods (Lu et al. 2006; Wienold et al. 2011). The contrast reduction of the 
population grating as a result of inhomogeneous broadening reduces the efficiency of the 
mode coupling through the induced carrier grating and leads to an increase of the second 
threshold to prohibitively high currents (Antonov et al. 2017a).

These experimentally observed changes in the dynamic regimes were explained using 
a simple analytical expression for the second threshold in QCLs (Vukovic et  al. 2016a). 
Here we verify both mechanisms of RNGH instability switching in numerical simulations. 
As a reference testbed, we use a FP QCL with a very short cavity (L = 0.1 mm), λ = 8 μm, 
T1 = 0.5 ps, 1/4Dk2 = 2 ps, and all other parameters being as listed in Table 1. We label 
it as “QCL#1” (The upper state lifetime T1 = 0.5  ps is more realistic in Mid-IR QCLs). 
In Fig. 4 we study the evolution of the output intensity waveform in QCL#1 and resolve 
its dynamics on the fast (within two cavity round trips) and the slow (on subsequent cav-
ity round trips) time scales. In difference to Fig. 1c obtained with adiabatically decreasing 
pump current, in Fig. 4 the bifurcation map is built for the pump rate increasing adiabati-
cally in small steps of δp = 0.05. Self-starting RNGH self-pulsations occur at a current of 
Ith2= 0.45 A corresponding to the normalized pump rate of pth2= 2.1 times above the lasing 
threshold.

The period of self-starting intensity self-pulsations is equal to the cavity round trip time 
(2.2 ps). Output power waveform develops into two pulses per round trip, where width of 
the pulses is approximately equal to T1.

To verify the suppression of RNGH SPs for a transition with a shorter gain recovery 
time, we perform a second test. In a model device labeled as QCL#2 we decrease the car-
rier relaxation time T1 down to 0.2 ps, and take all other parameters as in the reference 
QCL#1. The waveform bifurcation diagram for QCL#2 is plotted as a color map in Fig. 5. 
The pump excess above threshold required to excite RNGH SP increases from pth2= 2.1 (in 
QCL#1) to pth2= 2.5 indicating that RNGH instability is indeed more difficult to achieve if 
the lasing transition has a very short gain recovery time. This conclusion is in qualitative 

Fig. 4   Numerical simulations with the TW model for monolithic QCL of the cavity length 100 μm, QCL#1. 
Color map of Pout distribution when adiabatically increasing p (long time scale, x-axis), during a time inter-
val equal to 2 cavity round trips (short time scale, y-axis). Carrier relaxation time T1 = 0.5 ps, carrier deco-
herence time T2 = 0.14 ps, diffusion coefficient D = 180 cm2/s, the emission wavelength λ = 8 μm. Note that 
in comparison with Fig. 1c here we increase p while resetting field to zero, and use lower T1
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agreement with experimental results from Antonov et al. (2017a) showing no RNGH SPs 
for transient lasing on a transition from an upper subband with reduced carrier lifetime.

The reduction of the SHB is modeled by introducing strong carrier diffusion such that 
4Dk2T1 ≥ 1. In the third numerical test (QCL#3) we increase the diffusion coefficient D 
by a factor of 5 (to the value D = 900  cm2/s) in order to make the population grating 
relaxation time comparable to T1, i.e. 1/4Dk2 = 0.4  ps, while other parameters are the 
same as in QCL#1. As a result, the contrast of the SHB-induced grating is significantly 
reduced. The waveform bifurcation diagram for QCL#3 is shown in Fig. 6. The second 
threshold current increases in 1.4 times as compared to QCL#1 in Fig. 4. This test con-
firms that RNGH SPs can be suppressed at a high pump rate if SHB strength is reduced. 
This provides a possible interpretation of the experimental results from Antonov et al. 
(2017a) and Bugajski et al. (2013) where RNGH SPs cease at high currents. Once QCL 
bias exceeds the optimal one for the tunneling resonance, QCL enters into the part of 
the I-V curve characterized by unstable electric field domain formation (EFD) (Lu et al. 

Fig. 5   Numerical simulations with the TW model for monolithic QCL of the cavity length 100 μm, QCL#2. 
Color map of Pout distribution when adiabatically increasing p (long time scale, x-axis), during a time inter-
val equal to 2 cavity round trips (short time scale, y-axis). Carrier relaxation time T1 = 0.2 ps, while all other 
parameters are the same as in Fig. 4, for QCL#1

Fig. 6   Numerical simulations with the TW model for monolithic QCL of the cavity length 100 μm, QCL#3. 
Color map of Pout distribution when adiabatically increasing p (long time scale, x-axis), during a time inter-
val equal to 2 cavity round trips (short time scale, y-axis). Diffusion coefficient D = 900 cm2/s, while all 
other parameters are the same as in Fig. 4
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2006). It results in inhomogeneous broadening of the gain across different cascades and 
hence in the weakening of the SHB effect.

4 � Summary

In this paper, we provide a review of our recent theoretical studies on the origin of 
Risken–Nummedal–Graham–Haken self-pulsations and large spectral broadening in mid-
infrared FP QCLs. We report new results on bifurcation analysis of the waveforms and 
the recurrence period density entropy used to distinguish periodic self-pulsations from the 
chaotic self-pulsations. We provide numerical simulations supporting our interpretation of 
switching the RNGH self-pulsations on and off observed in the experiment. Our findings 
open up a new point of view on understanding RNGH instability and the possibility of con-
trolling it for specific applications.
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