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Abstract
This paper studies bright highly dispersive optical solitons that are with nonlocal type of 
nonlinearity. The numerical scheme, adopted in the paper, is Laplace-Adomian method. 
The analytical results, reported earlier, and the numerical results from the current work, 
agree with an impressively small error measure.

Keywords  Nonlinear Schrödinger equation · Non-local nonlinearity · Higher-order 
dispersion · Laplace-Adomian decomposition method

1  Introduction

One of the featured concepts that was introduced during 2019 is highly dispersive (HD) 
optical solitons. This happens when in addition to chromatic dispersion (CD), the effects 
of inter-modal dispersion (IMD), third-order dispersion (3OD), fourth order disper-
sion (4OD), fifth order dispersion (5OD) and sixth-order dispersion (6OD) effects are all 
included. This leads to solitons to the governing nonlinear Schrödinger’s equation. There 
are only four forms of nonlinear refractive index that leads to the retrieval of closed form of 
a soliton solution (Alshaery et al. 2014; Biswas et al. 2019a, b, c, d, e, f, 2020; Kara et al. 
2018; Kohl et al. 2019a, 2020a, b; Kudryashov 2020a, b, c, d; Vega-Guzman et al. 2014; 
Yanan et al. 2013; Yildirim et al. 2020). These are Kerr law, quadratic-cubic law, non-local 
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law and polynomial law. Today’s paper will study HD solitons, with nonlocal nonlinear 
form, in polarization-preserving optical fibers.

In this context, it must be noted that with the effect of higher order dispersions, one will 
naturally encounter the effect of soliton radiation that will lead to the shedding of energy. 
However, these effects have been discarded and the solitons only in the discrete regime 
with bound states have been studied. Our numerical scheme is the Laplace-Adomian algo-
rithm that studies bright optical solitons and the accuracy of the scheme is depicted in the 
error plots are exhibited with impressive measure. After a quick revisitation of the govern-
ing model and the algorithmic scheme, the results are enumerated and displayed.

2 � Governing equation

The nonlinear Schrödinger’s equation (NLSE) for highly dispersive optical solitons in the 
presence of a non-local nonlinearity is given by Biswas et al. (2019g, h, i, j), Rehman et al. 
(2019) and Kohl et al. (2019b):

where q = q(x, t) is a complex-valued function of x (space) and t (time). In Eq. (1), the first 
term stands for linear temporal evolution with i =

√
−1 . The next six terms are dispersion 

terms that make the solitons highly dispersive. These are given by the coefficients of ak 
for 1 ≤ k ≤ 6 which are inter-modal dispersion (IMD), group velocity dispersion (GVD), 
third-order dispersion (3OD), fourth-order dispersion (4OD), fifth-order dispersion (5OD) 
and sixth-order dispersion (6OD) respectively. Finally, b is the coefficient of non-local 
nonlinearity.

2.1 � Bright highly dispersive optical solitons

The bright highly dispersive optical soliton solution to (1) was recently reported in Biswas 
et al. (2019g), using the extended Jacobi’s elliptic function scheme the authors obtain

In Eq. (2), where � is the speed of the wave, � is its wave number, � is the soliton frequency 
and �0 is the phase center constant.

In Biswas et al. (2019g, h), the parameters and constraints for the highly dispersive opti-
cal soliton are given by: 

(a)	 The relationship between the system parameters are: 

(1)iqt + ia1qx + a2qxx + ia3qxxx + a4qxxxx + ia5qxxxxx + a6qxxxxxx + b(|q|2)xxq = 0,

(2)q(x, t) = A sech2[(x − �t)] × exp{i[−�x + �t + �0]}.

(3)� =
1260a1� + b�2

2
(25�6 − 336�4 + 560�2 + 768m3 + 80(7�2 + 36)m2 − 16ml1 + 768)

1260
,

(4)a4 = −
b�2

2
(−75�2 + 112(m + 1))

1260
, � = a1 − 2�(a2 + 4a4�

2 + 8a5�
3), A = �2m,
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 where 

 and m is any parameter that satisfies the Eqs. (3), (4) and (5).
(b)	 The constraint condition are 

3 � Description of the method applied

The aim of this section is to discuss the use of the Laplace-Adomian decomposition method 
(LADM) and its algorithm to solve the NLSE (1). The present method was first proposed 
in Adomian (1994) and Khuri (2001).

Let us look for soliton solutions of Eq. (1) in the form q(x, t) = u(x, t) + iv(x, t) . Then we 
can decompose the Eq. (1) in its real and imaginary parts, respectively as

In order to find analytical approximate solutions for Eq. (1) using LADM, we first rewrite 
the Eqs. (7) and (8) in the following operator form

with initial conditions u(x, 0) = ℜe(q(x, 0)) and v(x, 0) = ℑm(q(x, 0)).
In the equations system (9)–(10) the operator Dt denotes derivative with respect to t, 

whereas that Dj
x is the j− th order linear differential operator �

j

�xj
 and Nk represents nonlinear 

differential operators for k = 1, 2.
The method consists of first applying the Laplace transform L  to both sides of equa-

tions in system (9)–(10) and then by using initial conditions, we have

Now, applying inverse Laplace transform L−1 and initial conditions to system (11) and 
(12), we get

(5)a2 = −
b�2

2
(75�4 − 672�2 + 560m2 − 112(6�2 + 35)m) + 560)

1260
,

�2
2
= −

252a6

b
, l1 = 21�4 + 245�2 − 180,

(6)a5 = 6a6𝜅, a3 =
4

3
𝜅(3a4 + 5a5𝜅) and a6b < 0.

(7)ut = −a1ux − a2vxx − a3uxxx − a4vxxxx − a5uxxxxx − a6vxxxxxx − 2bv(uuxx + vvxx)

(8)vt = −a1vx + a2uxx − a3vxxx + a4uxxxx − a5vxxxxx + a6uxxxxxx + 2bu(uuxx + vvxx)

(9)Dtu = −a1D
1
x
u − a2D

2
x
v − a3D

3
x
u − a4D

4
x
v − a5D

5
x
u − a6D

6
x
v + N1(u, v)

(10)Dtv = −a1D
1
x
v + a2D

2
x
u − a3D

3
x
v + a4D

4
x
u − a5D

5
x
v + a6D

6
x
u + N2(u, v)

(11)
u(x, s) =

u(x, 0)

s
+

1

s
L{−a1D

1
x
u − a2D

2
x
v − a3D

3
x
u − a4D

4
x
v − a5D

5
x
u − a6D

6
x
v + N1(u, v)}

(12)
v(x, s) =

v(x, 0)

s
+

1

s
L{−a1D

1
x
v + a2D

2
x
u − a3D

3
x
v + a4D

4
x
u − a5D

5
x
v + a6D

6
x
u + N2(u, v)}
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Now we represent the unknown functions u and v by an infinite series of the form

In addition, the nonlinear terms can be written as

and

where An and Bn are the Adomian’s polynomials (Rach 1984; Wazwaz 2000), which are 
defined by

On making the substitution of Eqs. (15) and (16) into Eqs. (13) and (14), we can arrive at

In general, the recursive relations are given by

With the help of the above procedure first few terms of Adomian polynomials An and Bn 
can be obtained as

(13)
u(x, t) = u(x, 0) +L

−1
[
1

s
L{−a1D

1
x
u − a2D

2
x
v − a3D

3
x
u − a4D

4
x
v − a5D

5
x
u − a6D

6
x
v + N1(u, v)}

]

(14)
v(x, t) = v(x, 0) +L

−1
[
1

s
L{−a1D

1
x
v + a2D

2
x
u − a3D

3
x
v + a4D

4
x
u − a5D

5
x
v + a6D

6
x
u + N2(u, v)}

]

(15)u(x, t) =

∞∑

n=0

un(x, t), v(x, t) =

∞∑

n=0

vn(x, t)

(16)N1(u, v) = −2bv(uuxx + vvxx) = −2b

∞∑

n=0

An(u0, u1,… , un;v0, v1,… , vn)

(17)N2(u, v) = 2bu(uuxx + vvxx) = 2b

∞∑

n=0

Bn(u0, u1,… , un;v0, v1,… , vn)

(18)An(u0,… , un;v0,… , vn) =
1

n!

dn

d�n

[
N1

( ∞∑

i=1

�iui;

∞∑

i=1

�ivi

)]

�=0
, n = 0, 1, 2,…

(19)Bn(u0,… , un;v0,… , vn) =
1

n!

dn

d�n

[
N2

( ∞∑

i=1

�iui;

∞∑

i=1

�ivi

)]

�=0
, n = 0, 1, 2,…

(20)

∞∑

n=0

u
n
= u(x, 0) +L

−1
[
1

s
L{−(a1D

1

x
+ a3D

3

x
+ a3D

5

x
)

∞∑

n=0

u
n
− (a2D

2

x
+ a4D

4

x
+ a6D

6

x
)

∞∑

n=0

v
n
− 2b

∞∑

n=0

A
n
}

]

(21)

∞∑

n=0

v
n
= v(x, 0) +L

−1
[
1

s
L{−(a1D

1

x
+ a3D

3

x
+ a3D

5

x
)

∞∑

n=0

v
n
+ (a2D

2

x
+ a4D

4

x
+ a6D

6

x
)

∞∑

n=0

u
n
+ 2b

∞∑

n=0

B
n
}

]

(22)

{
u0(x, t) = ℜe(q(x, 0)),

un+1(x, t) = L
−1
[
1

s
L{−(a1D

1
x
+ a3D

3
x
+ a3D

5
x
)un − (a2D

2
x
+ a4D

4
x
+ a6D

6
x
)vn − 2bAn}

]
, n ≥ 0,

(23)

{
v0(x, t) = ℑm(q(x, 0)),

vn+1(x, t) = L
−1
[
1

s
L{−(a1D

1
x
+ a3D

3
x
+ a3D

5
x
)vn + (a2D

2
x
+ a4D

4
x
+ a6D

6
x
)un + 2bBn}

]
, n ≥ 0.
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and

Using Eqs. (22) and (23) through the LADM method, we obtain the next recursive algo-
rithm for the real and imaginary part of solution q(x, t), respectively.

(24)

A0 = v0xxv
2

0
+ u0u0xxv0,

A1 = v1xxv
2

0
+ u1u0xxv0 + u0u1xxv0 + 2v1v0xxv0 + u0u0xxv1,

A2 = v2xxv
2

0
+ u2u0xxv0 + +u1u1xxv0 + u0u2xxv0 + 2v2v0xxv0 + 2v1v1xxv0 + u1u0xxv1 + u0u1xxv1

+ u0u0xxv2 + v
2

1
v0xx,

A3 = v3xxv
2

0
+ u3u0xxv0 + u2u1xxv0 + u1u2xxv0 + u0u3xxv0 + 2v3v0xxv0 + 2v2v1xxv0 + 2v1v2xxv0

+ u2u0xxv1 + u1u1xxv1 + u0u2xxv1 + u1u0xxv2 + u0u1xxv2 + u0u0xxv3 + 2v1v0xxv2 + v
2

1
v1xx,

A4 = v4xxv
2

0
+ u4u0xxv0 + u3u1xxv0 + u2u2xxv0 + u1u3xxv0 + u0u4xxv0 + 2v4v0xxv0 + 2v3v1xxv0

+ 2v2v2xxv0 + 2v1v3xxv0 + u3u0xxv1 + u2u1xxv1 + u1u2xxv1 + u0u3xxv1 + u2u0xxv2 + u1u1xxv2

+ u0u2xxv2 + u1u0xxv3 + u0u1xxv3 + u0u0xxv4 + 2v1v0xxv2 + 2v1v1xxv2 + v
2

1
v2xx + v

2

2
v0xx,

A5 = v5xxv
2

0
+ u5u0xxv0 + u4u1xxv0 + u3u2xxv0 + u2u3xxv0 + u1u4xxv0 + u0u5xxv0 + 2v5v0xxv0

+ 2v4v1xxv0 + 2v3v2xxv0 + 2v2v3xxv0 + 2v1v4xxv0 + u4u0xxv1 + u3u1xxv1 + u2u2xxv1 + u1u3xxv1

+ u0u4xxv1 + u3u0xxv2 + u2u1xxv2 + u1u2xxv2 + u0u3xxv2 + u2u0xxv3 + u1u1xxv3 + u0u2xxv3 + u1u0xxv4

+ u0u1xxv4 + u0u0xxv5 + 2v2v0xxv3 + 2v1v0xxv4 + 2v1v1xxv3 + 2v1v2xxv2 + v
2

1
v3xx + v

2

2
v1xx.

(25)

B0 = u0xxu
2

0
+ u0v0xxv0,

B1 = u1xxu
2

0
+ u1v0xxv0 + u0v1xxv0 + 2u1u0xxu0 + u0v0xxv1,

B2 = u2xxu
2

0
+ u2v0xxv0 + u1v1xxv0 + u0v2xxv0 + 2u2u0xxu0 + 2u1u1xxu0 + u1v0xxv1 + u0v1xxv1

+ u0v0xxv2 + u
2

1
u0xx,

B3 = u3xxu
2

0
+ u3v0xxv0 + u2v1xxv0 + u1v2xxv0 + u0v3xxv0 + 2u3u0xxu0 + 2u2u1xxu0 + 2u1u2xxu0

+ u2v0xxv1 + u1v1xxv1 + u0v2xxv1 + u1v0xxv2 + u0v1xxv2 + u0v0xxv3 + 2u1u0xxu2 + u
2

1
u1xx,

B4 = u4xxu
2

0
+ u4v0xxv0 + u3v1xxv0 + u2v2xxv0 + u1v3xxv0 + u0v4xxv0 + 2u4u0xxu0 + 2u3u1xxu0

+ 2u2u2xxu0 + 2u1u3xxu0 + u3v0xxv1 + u2v1xxv1 + u1v2xxv1 + u0v3xxv1 + u2v0xxv2 + u1v1xxv2

+ u0v2xxv2 + u1v0xxv3 + u0v1xxv3 + u0v0xxv4 + 2u1u0xxu2 + 2u1u1xxu2 + u
2

1
u2xx + u

2

2
u0xx,

B5 = u5xxu
2

0
+ u5v0xxv0 + u4v1xxv0 + u3v2xxv0 + u2v3xxv0 + u1v4xxv0 + u0v5xxv0 + 2u5u0xxu0

+ 2u4u1xxu0 + 2u3u2xxu0 + 2u2u3xxu0 + 2u1u4xxu0 + u4v0xxv1 + u3v1xxv1 + u2v2xxv1 + u1v3xxv1

+ u0v4xxv1 + u3v0xxv2 + u2v1xxv2 + u1v2xxv2 + u0v3xxv2 + u2v0xxv3 + u1v1xxv3 + u0v2xxv3 + u1v0xxv4

+ u0v1xxv4 + u0v0xxv5 + 2u2u0xxu3 + 2u1u0xxu4 + 2u1u1xxu3 + 2u1u2xxu2 + u
2

1
u3xx + u

2

2
u1xx.
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The approach introduced above will illustrated through examples in the following section. 
All our computations are performed by MATHEMATICA software package (Mangano 
2010).

4 � Numerical simulations

To illustrate the ability, reliability and the accuracy of the proposed method for find 
solutions of Eq. (1) in the case of bright highly dispersive optical solitons in the pres-
ence of a non-local nonlinearity, some examples are provided. The results reveal that the 
method is very simple to use and highly efficient.

We now consider the initial condition at t = 0 from Eq. (2)

We now perform the simulation of the four cases listed in Table 1 and the results obtained 
as well as the absolute errors are shown in Figs. 1, 2, 3 and 4.

u0(x, t) = ℜe(q(x, 0)),

v0(x, t) = ℑm(q(x, 0)),

u1(x, t) = L
−1
[
1

s
L{−(a1D

1
x
+ a3D

3
x
+ a3D

5
x
)u0 − (a2D

2
x
+ a4D

4
x
+ a6D

6
x
)v0 − 2bA0}

]
,

v1(x, t) = L
−1
[
1

s
L{−(a1D

1
x
+ a3D

3
x
+ a3D

5
x
)v0 + (a2D

2
x
+ a4D

4
x
+ a6D

6
x
)u0 + 2bB0}

]
,

u2(x, t) = L
−1
[
1

s
L{−(a1D

1
x
+ a3D

3
x
+ a3D

5
x
)u1 − (a2D

2
x
+ a4D

4
x
+ a6D

6
x
)v1 − 2bA1}

]
,

v2(x, t) = L
−1
[
1

s
L{−(a1D

1
x
+ a3D

3
x
+ a3D

5
x
)v1 + (a2D

2
x
+ a4D

4
x
+ a6D

6
x
)u1 + 2bB1}

]
,

⋮

un(x, t) = L
−1
[
1

s
L{−(a1D

1
x
+ a3D

3
x
+ a3D

5
x
)un−1 − (a2D

2
x
+ a4D

4
x
+ a6D

6
x
)vn−o − 2bAn−1}

]
,

vn(x, t) = L
−1
[
1

s
L{−(a1D

1
x
+ a3D

3
x
+ a3D

5
x
)vn−1 + (a2D

2
x
+ a4D

4
x
+ a6D

6
x
)un−1 + 2bBn−1}

]
.

(26)q(x, 0) = A sech2(x) × exp{i[−�x + �0]} = u0(x, t) + iv0(x, t).

Table 1   Coefficients of Eq. (1) for bright highly dispersive optical solitons

Cases a
1

a
2

a
3

a
4

a
5

a
6

b � � �
0 � N |Max Error |

I 1.22 0.03 − 0.02 0.60 0.07 − 1.20 1.35 − 0.01 0.22 1.80 2.33 15 2.5 × 10−9

II 1.32 0.01 0.07 0.28 0.34 1.90 − 1.82 0.03 0.91 1.92 3.15 15 1.5 × 10−9

III 1.40 0.09 − 0.69 0.35 − 0.30 − 0.05 0.85 1.02 0.36 1.52 2.22 15 5.0 × 10−9

IV 1.10 0.01 0.14 0.85 0.32 1.35 − 0.75 0.04 0.72 0.34 1.15 15 1.0 × 10−9
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Fig. 1   Numerically computed bright highly dispersive optical soliton (a), corresponding density plot (b) 
and absolute error (c) for case I
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Fig. 2   Numerically computed bright highly dispersive optical soliton (a), corresponding density plot (b) 
and absolute error (c) for case II
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Fig. 3   Numerically computed bright highly dispersive optical soliton (a), corresponding density plot (b) 
and absolute error (c) for case III
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5 � Conclusions

Today’s paper retrieved HD bright optical solitons by the aid of LADM. The numerical 
scheme also yielded the error estimates of the approximations. These error measures 
stand very impressive. The simulations with bright solitons are exhibited for nonlocal 
form of nonlinearity. These results will now be extended to birefringent fibers with non-
local law of nonlinearity where LADM will be implemented to demonstrate the numer-
ics in it. In future, the mode will also be studied with additional forms of nonlinear 
media in the context of birefringent fibers and these would include Kerr law, quadratic-
cubic law and polynomial law. The results of those research activities would be reported 
with time.
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Fig. 4   Numerically computed bright highly dispersive optical soliton (a), corresponding density plot (b) 
and absolute error (c) for case IV
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