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Abstract
In this paper, a vortex-Hermite-cosh-Gaussian beam (vHChGB) is introduced as a general 
form of the vortex cosh-Gaussian and vortex Hermite-Gaussian beams. Based on the Huy-
gens-Fresnel diffraction integral, a propagation formula of the vHChGB passing through 
a paraxial optical system is derived. The evolution of the intensity pattern of the propa-
gated vHChGB as a function of the beam order, decentered parameter (b parameter) and 
topological vortex charge is discussed with numerical results. It is shown that the vHChGB 
shape in the source plane depends crucially on the decentered parameter. In far-field, the 
multi-lobe profile obtained for small b evolves into a four-petal-like beam. Whereas the 
initial four-lobe profile for large b, morphs into a multi-lobes pattern. The vHChGB shows 
specific intensity patterns depending on the beam order and the vortex charge. This study 
may be beneficial for applications involving beam shaping of hollow vortex beam, beam 
splitting techniques and optical communications.

Keywords  Hermite-cosh-gaussian beams · Vortex hollow beams · Topological charge · 
Cosh-gaussian beam · Huygens-fresnel integral transformation

1  Introduction

During the last few years, there has been growing interest for the study of dark hollow 
vortex beams due to their potential applications in various fields, such as optical trapping, 
optical microscopy, wireless communications and optical micromanipulations (Ito et  al. 
1996; Kuga et al. 1997; Paterson et al. 2001; Cai et al. 2003; Bishop et al. 2004; Torok 
and Munro 2004; Cai and Ge 2006; Wang et al. 2012; Rubinsztein-Dunlop, et al. 2017). 
Several vortex beams which were introduced for the cylindrical symmetry are separable 
in the polar coordinates, as examples, we cite the well-known Laguerre-Gaussian (Allen 
et al. 1992; Kennedy et al. 2002; Vallone 2015), Bessel-Gaussian (Arlt and Dholakia 2000; 
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McGloin and Dholakia 2005; Kotlyar et al. 2006; Vaity and Rusch 2015), hypergeometric-
Gaussian (Kotlyar et  al. 2007; Karimi et  al. 2007; Skidanov et  al. 2013) and flat-topped 
Gaussian beams (Liu et al. 2015). While, the well–known rectangular laser beams which 
are separable in the orthogonal direction, such as Hermite sinusoidal-Gaussian (Casperson 
and Tovar 1998; Tovar and Casperson 1998), four-petal Gaussian (Duan and Lü 2006), 
Lorentz-Gaussian (Zhou 2010) and Finite Airy beams (Siviloglou et al. 2007; Siviloglou 
and Christodoulides 2007) are not originally vortex modes but they can be embedded by 
vortex phase amplitude. The resulting vortex beams can then carry the orbital angular 
momentum and have specific shape patterns. Some of the beams considered above were 
generated experimentally by means of laser resonators or diffractive optical elements (Guo 
et  al. 2014; Wang et  al. 2019; Kotlyar et  al. 2015; Monin and Ustinov 2018; Dai et  al. 
2010; Zhou and Ru 2013). A kind of hollow vortex-beam, named as hollow vortex-Gauss-
ian beams, has been discovered by Zhou et al. (Zhou et al. 2013, 2018). These beams show 
a high propagation stability in free space and thus may have potential application in opti-
cal micromanipulations. More recently, a vortex cosh-Gaussian beam (vChGB), which is a 
cosh-Gaussian field embedded with a vortex phase has been proposed to describe a more 
general type of hollow vortex beams in the rectangular symmetry (Hricha et al. 2020). The 
proposed model beam has one additional control parameter more than to the simple vor-
tex Gaussian beam. The propagation properties of this beam in free-space and in FrFT 
system have been investigated in details (Hricha et  al. (2020)). In the source plane, the 
vChGB may resembles to the vortex-Gaussian field for small values of b, whereas it splits 
into a four-lobes structure resembling to the four-petal Gaussian beam when b is large. To 
extend further our research on rectangular beams carrying vortex phase structure, we pro-
pose in this paper a Hermite-cosh-Gaussian beam embedded with a vortex phase, which 
we will refer to as vortex Hermite-cosh-Gaussian beam (vHChGB). In the source plane, 
the vHChGB has three key parameters, namely the beam orders (p, q), the decentered 
parameter b and the vortex charge number M. The high number of the parameter permits 
to produce a broad variety of beam patterns, and the well-known vortex-Gaussian, vortex 
Hermite-Gaussian and vortex-cosh-Gaussian beams can be regarded as limiting cases of 
the vHChGB. The present paper is aimed at investigating the propagation characteristics of 
the vHChGB passing through a paraxial optical system. The closed-form expression of the 
propagated vHChGB in a paraxial optical medium is derived based on the Collins formula. 
The spatial characteristics of the beam are analyzed numerically with illustrated examples. 
The reminder of the manuscript is organized as follows: in Sect. 2, the vHChGB pattern is 
illustrated, in the source plane, as a function of the beam parameters. Then in Sect. 3, the 
propagation formula of the vHChGB through a paraxial ABCD optical system is derived 
by means of the Huygens-Fresnel diffraction integral. In Sect.  4, the spatial characteris-
tics of the vHChGB in free space are discussed numerically with illustrated examples. The 
main results are outlined in the conclusion part.

2 � Characteristics of the vHChGB pattern at the source plane

In the Cartesian coordinates system, the z-axis is taken to be as the propagation direction. 
A vHChGB can be for instance generated by using a Hermite-cosine hyperbolic-Gaussian 
beam (HChGB) (Belafhal and Ibnchaikh 2000; Ibnchaikh et al. 2001; Hricha and Belafhal 
2005a, 2005b) in passage through a spiral phase plate (SPP) (Oemrawsingh et  al. 2004; 
Kotlyar et al. 2005). The SPP may modulate the wave-front phase of the field so that the 
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resulting beam may acquire the orbital angular momentum, which is associated with a vor-
tex charge M at the beam’s center.

The general vHChGB in the source plane z = 0 takes the form

where

with j = p or q, and u = x0 or y0 . 
(

x0,y0
)

 being the Cartesian coordinates at the source 
plane, and (p, q) are the mode indexes associated with the Hermite polynomials Hp(.) and 
Hq(.) in the x- and y-directions, respectively. cosh (.) denotes the hyperbolic-cosine func-
tion, ω0 is the waist size of the Gaussian part, b is the decentered parameter associated 
with the cosh part, and the integer parameter M denotes the topological charge of the spiral 
phase plate.

From Eq. (1a) one can deduce that the profile of a vHChGB at the source plane is deter-
mined by five parameters, i.e., p, q, b, M and ω0. By setting particular values of the beam 
parameters, Eq. (1a) may describe a set of well-known beams, such as the Gaussian beam 
when p = q = M = b = 0 , hollow vortex-Gaussian beam for p = q = b = 0 (Zhou et  al. 
2013), vortex-cosh-Gauss beam (vChGB) when p = q = 0 (Hricha et  al. 2020), vortex 
Hermite–Gaussian beam (vHGB) (Kotlyar et al. 2015; Monin and Ustinov 2018) for b = 0 
and HChG beam for M = 0 (Belafhal and Ibnchaikh 2000; Ibnchaikh et al. 2001; Hricha 
and Belafhal 2005a). With the embedded vortex charge, the vCHGBs can be used as opti-
cal traps; they may be able to trap both high- and low-index microparticles as well as to set 
them into rotation by use of the orbital angular momentum of light.

Equation (1a) can also be rewritten as

this suggests that the vHChG beam can be obtained by a superposition of four Hermite-
decentered Gaussian modes embedded with the same vortex phase.

As a preliminarily illustration of vHChG field at the source plane, we depicted in Figs. 
(1, 2), the intensity distributions of the beam versus the parameters (p, q), b and M. For 
convenience, the waist width is fixed to be ω0 = 1 mm in all calculations.

From the plots of these figures, it is shown that a vHChG field has a multi-petal struc-
ture with a dark central region. The shape pattern is mirror symmetric and depends cru-
cially on the value of b parameter, that is, for small b (b < 1), the beam exhibits 2(p + q) 
petals (see Fig.  1). The main lobes are located at the vertices of the four-squared beam 
pattern. While for large b, the secondary lobes disappear and only the main lobes remain 
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visible (see Fig.  1, columns (c–d)); the beam profile resembles closely to the four-petal 
beam (Duan and Lü 2006). One can also see a slight increasing of the inter-lobes space, 
and a narrowing of the lobes width when the beam orders (p, q) are increased (see the 
intensity distribution in the x-direction in the right side of Fig. 1).

Figure 2 illustrates the influence of the topological charge M on the vHChGB pattern. 
As can be seen, the main four petals slightly widen and elongate into an elliptical form 
under the effect of increasing the topological charge. In addition, one can note also an 
increasing of the inter-lobes space; this is clearly illustrated in Fig. 3 which presents the 
normalized intensity distribution in the x-direction.

3 � Theoretical model

Within the framework of the paraxial approximation, the propagation of a laser beam 
through a paraxial ABCD optical system obeys the Collins formula (Collins 1970):
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Fig. 1   The normalized intensity distribution of a vHChG beam at the source plane with ω0 = 1  mm and 
M = 1 for different values of (p,q) and b. The top, middle and bottom rows denote respectively p = q = 1, 
p = q = 2 and p = q = 3:(a.1–3) b = 0, (b.1–3) b = 1, (c.1–3) b = 1.5 and (d.1–3) b = 4
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Fig. 2   The normalized intensity distribution of vHChG beam at the source plane with �
0
= 1 mm and 

p = q = 3 for different b. The first, second, third and fourth rows denote respectively M = 1, M = 2, 4 and 
M = 6: (a.1–4) b = 0, (b.1–4) b = 1.5 and (c.1–4) b = 4
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where E0

(

x0, y0, 0
)

 and E(x, y, z) are the fields at the source (z = 0) and the receiver planes, 
respectively. z is the propagation distance, A, B, and D are the matrix elements of the opti-
cal system, k = 2�

�
 is the wave number and · is the wavelength of radiation in vacuum.

Substituting from Eq. (1a) into Eq. (3), and recalling the binomial expansion (Grad-
shteyn and Ryzhik 1994)

where

we obtain

where

with u = x or y , r is an integer, j = p or q and α is the auxialiary parameter defined as
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Fig. 3   The normalized intensity 
distribution of vHChG beam at 
the source plane with ω0 = 1 mm, 
b = 4 and p = 2 for different topo-
logical charge values M 
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Using the expansion form of the Hermite function Hj( . ) (Gradshteyn and Ryzhik 
1994),

and recalling the following integral formula (Prudnikov et al. 1986; Belafhal et al. 2020)

then carrying on some tedious calculations, Eq. (5) turns out to be

where

and

Equation  (8) is the propagation formula of a vHChGB passing through a paraxial 
optical system.

This formula can be reduced in the following cases:

(1)	 When b = 0, Eq. (8) will give the diffracted vortex Hermite–Gaussian beam which can 
be expressed as

where

	   Equation (10a) is consistent with the result of Ref. (Kotlyar et al. 2015).
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(2)	 In the case p = q = 0 , Eq. (8) will give the propagation formula of the vChGB, which 
can be expressed as

where

The obtained equation is consistent with the result of Hricha et al. (2020).
	   Equation (10a) is consistent with the result of (Kotlyar et al. 2015).
(3)	 When p = q = b = 0 , Eq. (8) will reduce to the hollow vortex Gaussian beam propagat-

ing trough ABCD optical system (Zhou and Ru 2013), which can be written as

It is worth noting that the Eq. (12) is equivalent to Eq. (8) of Zhou et al. (2013) (if we 
take n = m/2 in Zhou et al. (2013)) even if they are different in form.

	   Equation (10a) is consistent with the result of Kotlyar et al. (2015).

4 � Numerical results and discussions

Here, we investigate the evolution behavior of the vHChGB propagating in free space by 
calculating Eq. (8). The calculation parameters are taken as λ = 632.8 nm, ω0 = 1 mm and 
zR =

k�2
0

2
 denotes the Gaussian Rayleigh length, which is used as the unit scale for the prop-

agation distance. Figure (4) presents the typical intensity distributions of a vHChGB beam 
with M = 1 at the initial plane (z = 0), near field (z = zR) and far field (z = 15zR), respectively, 
for different values of b and for p = q = 1 and p = q = 2. From the plots of Fig. 4, it is shown 
that in near field, the main lobes widen gradually and the secondary lobes disappear com-
pletely (see plots (a.4)–(a.5); the field evolves into a four petal-like beam. In far-field, the 
size of the beam spot widens and the lobes bond. When b is large, the beam morphs into a 
“fan blades” structure whose pattern depends crucially on beam orders (p,q) (see the plots 
(d.3)-(d. 6)).

The effects of the beam orders (p, q) and the topological charge M on the vHChG beam 
shape in far field are illustrated in Figs. (5) and (6). It is seen that for small b, the beam keeps 
the four-petal shape and the inter-lobes space increases with the increase of the beam orders (p, 
q). Whereas for large b and with M = 1, the four lobes overlap and morphs into fan blades-like 
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Fig. 4   Normalized intensity distribution of the vHChG beam with ω0 = 1 mm, � = 632.8 nm and M = 1 for 
different propagation distance and different parameter values of b. the first three rows and the second ones 
denote respectively p = q = 1 and p = q = 2. The first (z = 0), the second (z = zR) and the third row (z = 15zR): 
(a.1–6) b = 0, (b.1–6) b = 0.1, (c.1–6) b = 1.5 and (d.1–6) b = 4

▸
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pattern with a dark spot at the center for all the beam orders (p,q) (see Fig. 5(d.1–d.3). For 
M = 2 and large values of b (see Fig. 6), the beam shape and the intensity at its center depend 
on the parity of p and q; when (p,q) are odd the beam shape evolves into nine petals of mirror 
symmetry with a bright central core (see Fig. 6.(a4–c4)), whereas when (p,q) are even, the 
beam has four symmetrical wide spots with a dark central core (see Fig. 6. (b4–d4)).

Figure 7 illustrates the same characteristics as in Fig. 6 but with taking M = 3. From the 
obtained plots, one can note the absence of the bright central core for all the orders presented; 
this is in accordance with the result obtained with M = 1 (see Fig. 5). This means that the par-
ity of M is crucial for controlling the intensity at the beam’s center.

Figure 8 shows the effect of the topological charge M (M = 5, 6 and 8) on the beam shape 
in far field. One can clearly see that the main lobes elongate into elliptic form and separate 
with increasing the value of M. It follows from the above analysis that when the b parameter 
is large, the beam shape and the central area intensity of the diffracted vHChGB in far field 
depend significantly on the values and the parities of M, p and q.

Fig. 5   Normalized intensity distribution of the vHChG beam with ω0 = 1 mm, � = 632.8 nm and M = 1 at 
z = 15zR for different parameter values of b. The top, middle and bottom rows denote respectively p = q = 1, 
p = q = 2 and p = q = 3: (a.1–3) b = 0, (b.1–3) b = 1, (c.1–3) b = 1.5 and (d.1–3) b = 4
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5 � Conclusion

In summary, a vHChG beam is introduced. Based on the Collins diffraction integral, the 
propagation formula of the vHChGB through a paraxial ABCD optical system is derived. 
It emerges from illustrated examples that the beam parameters influence crucial the inten-
sity pattern of the propagated vHChGB in free space. The shape of the vHChGB gradually 

Fig. 6   Normalized intensity distribution of the vHChG beam with ω0 = 1 mm, � = 632.8 nm and M = 2 at 
z = 15zR for different values of p and q. The first, second, third and the fourth rows denote respectively 
b = 0.1, b = 1, 1.5 and b = 4: (a.1–4) p = q = 1, (b.1–4) p = q = 2, (c.1–4) p = q = 3 and (d.1–4) p = q = 4 
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changes upon propagating in near field, then morphs drastically in far-field. The size, the 
structure of the petals and the intensity of the central area of the beam can be controlled by 
adjusting the beam parameters. Our results may be useful in many applications where spe-
cial intensity pattern of beam is privileged such as micro-optics, beam splitting techniques 
and optical communications.

Fig. 7   The same as Fig. 6 except M = 3
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