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Abstract
In our paper we modify the Jacobi elliptic function expansion method to obtain solutions 
to the Davey–Stewartson system of equations. Two categories of nonsingular solutions are 
obtained for both traveling and solitary waves and both with and without chirp. In both 
cases there is an arbitrary term in the mean flow field, meaning one can obtain solutions for 
arbitrary forms of the mean flow field.
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1  Introduction

The Davey–Stewartson (DS) system of nonlinear partial differential equations, henceforth 
abbreviated as the DS system, was first introduced in fluid dynamics for the study of the 
evolution of three-dimensional wave packets in water of finite depth (Davey and Stew-
artson 1974). It has since found application in numerous areas of physics, most notably 
nonlinear-optics (Newell and Moloney 1992) as well as related fields such as the study of 
Bose–Einstein condensates (Huang 2005) and the study of electro-magnetic (EM) waves 
in ferromagnets (Leblond 1999). A surprising property of the DS system is that it is one 
of the few multidimensional systems whose inverse scattering transform is known (Sung 
1994a, b, c, 1995). Of considerable interest is also the fact that rogue waves have been 
shown to exist in DS systems (Ohta and Yang 2012, 2013).

Various techniques have been put forth to obtain solutions to the DS system. The earli-
est attempt was given in Anker and Freeman (1978) where the Zakharov–Shabat scheme 
(1974) was used to obtain one- and two-soliton solutions, as well as model some basic 
properties of interaction of multiple solitons. In Hieraninta and Hirota (1990) the Hirota 
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method (Hieraninta 1997) was used to construct a multi-dromion solution. Various other 
methods have been used to find new solutions to the DS system: the variable separation 
method (Lou and Lu 1996; Lou 2002; Wang and Huang 2010), the G�∕G method (Ebadi 
and Biswas 2011), the first integral method (Jafari 2012) as well as many others (Deng and 
Qin 2006; Wazwaz 2008; Tian and Gao 1997; Yildirm 2012). Of particular interest for this 
paper is the work done by Yan (2003) in which Jacobi elliptic functions (JEFs) were used 
to construct solutions to a system of equations resembling the DS system. In the paper, a 
basic expansion of the solution in terms of the twelve JEFs was used and solutions were 
obtained in the form of the first order polynomial (of the JEFs) for the basic wave, while 
the two auxiliary waves were represented with a second order polynomial.

Recently, work was done to find solutions using the JEF expansion method for various 
forms of the Nonlinear Schrödinger Equation (NLSE) (Zhong 2008; Belić 2008; Petrović 
2009) and the Gross–Pitaevskii equation (GPE) (2010, 2011). These forms use distributed 
coefficients which allow the use of dispersion (Eiermann 2003) and diffraction manage-
ment (Eisenberg 2000). The solutions obtained in Zhong (2008), Belić (2008) and Petrović 
(2009, 2010, 2011) were found to have either absolute modulational stability or modula-
tional stability under diffraction/dispersion management (Petrović 2015, 2011).

The form of the solutions of JEF expansion method is well suited when all the nonline-
arity in the problem is solely dependant on amplitude. In the DS system we have two fields: 
the wave-amplitude field which is complex and the mean-field which is real. As will be 
shown, it emerges from the DS system that for the matching conditions to work it is natural 
to consider the mean-flow field to be second order with respect to the wave-amplitude field. 
Therefore the DS system is highly suitable for the JEF expansion method. In this paper we 
will apply the JEF expansion method and the ideas developed in Belić (2008) to solving 
the DS system.

2 � Method

The Davey–Stewartson (DS) system of equations has the following general form:

where u is the wave-amplitude field (WAF), n is the mean-flow field (MFF), t is time, x and 
y are transverse variables, indices are partial derivatives, �(t) is the diffraction coefficient, 
�(t) is the strength of nonlinearity, �(t) is the coupling function and r, s, q and � are non-
zero real parameters. As in Belić (2008), we propose the following solution for the WAF:

where A and B are real functions of x, y and t denoting the amplitude and the phase of the 
solution. Following Belić (2008) and Petrović (2009) we assume the following forms for A 
and B:

(1)iut +
�(t)

2
(ruxx + suyy) + �(t)|u|2u + �(t)un = 0,

(2)nxx + qnyy + �
(
|u|2

)
xx
= 0,

(3)u = AeiB,

(4)A =f1(t)F(�) + f0(t) + f−1(t)F(�)
−1,
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where F is a JEF satisfying the differential equation:

Here, c0 , c2 and c4 are coefficients which depend on the choice of the JEF and M, the param-
eter of the JEF. We will assume that at most one of c0 , c2 and c4 is 0. For the MFF we take 
the following form to ensure matching conditions for the top-order terms with respect to F:

We cannot have all of g2, g1, g−1, g−2 be zero as n would have no dependence on the trans-
verse spatial coordinates and Eq. (2) would be trivially satisfied.

Plugging in Eqs. (4)–(8) into Eqs. (1)–(2) we obtain the following equations for param-
eters k, l, fi ( i = 1, 0,−1 ), a, b and �:

We also obtain the following set of integrability conditions:

and the following equations for parameter e:

(5)� =k(t)x + l(t)y + �(t),

(6)B =a(t)(x2∕r + y2∕s) + b(t)(x + y) + e(t),

(7)
(
dF

d�

)2

= c0 + c2F
2 + c4F

4.

(8)n = g2(t)F(�)
2 + g1(t)F(�) + g0(t) + g−1(t)F(�)

−1 + g−2(t)F(�)
−2.

(9)fit + 2a�fi = 0, i = 1, 0,−1,

(10)kt + 2a�k = 0,

(11)lt + 2a�l = 0,

(12)�t + �b(rk + ls) = 0,

(13)at + 2a2� = 0,

(14)bt + 2a�b = 0.

(15)k2(2�f0fi + gi) + gil
2q = 0, i = ±1,

(16)k2(�f 2
i
+ g2i) + g2il

2q = 0, i = ±1,

(17)3� f 2
i
f0 + �figi + �f0g2i = 0, i = ±1,

(18)� f 3
i
+ �fig2i + �c2+2i(rk

2 + sl2) = 0, i = ±1.

(19)f0

(
−et −

b2�

2
(1 + s) + � f 2

0
+ 6� f1f−1

)
+ �(f0g0 + f1g−1 + f−1g1) = 0,
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We note that while the general set-up is similar to that of Belić (2008), there are several 
key differences. First, due to the presence of the MFF, we obtain four pairs of integrability 
conditions instead of one, albeit with several new parameters to work with. Note that the 
function g0 only appears in the equations for e. Second, the presence of the MFF in Eq. (1) 
affects Eqs. (19)–(20). In particular, one can no longer trivially discard Eq. (19) by assum-
ing f0 = 0 . We shall see that the obtained constraints on the parameters are quite different 
from those in Belić (2008).

3 � Results

We now proceed to solve Eqs. (9)–(20). Solving Eqs. (9)–(14) we obtain:

Where p is the chirp function given by:

We now distinguish between two cases: f0 ≠ 0 and f0 = 0.

3.1 � Case f
0
≠ 0

We first cover the most general case, i.e. the case when f0 is non-zero. First we assume that 
f1 and f−1 are also non-zero. We also assume k2

0
+ ql2

0
≠ 0 , as from assuming otherwise it 

quickly follows that f1, f−1 = 0 . Solving Eqs. (15)–(16), we obtain the following equations:

where the parameter � is given by the formula:

(20)

fi

(
−et −

b2�

2
(1 + s) + 3� f 2

0
+ 3� f1f−1 +

�c2

2
(k2r + l2s)

)
+ �(fig0 + f0gi + f−ig2i) = 0, i = ±1.

(21)fi = fi0p, i = 1, 0,−1,

(22)k = k0p,

(23)l = l0p,

(24)a = a0p,

(25)b = b0p,

(26)� = �0 − b(k0 + l0s)p∫
t

0

�(t)dt,

(27)p =
1

1 + 2a0 ∫ t

0
�(t)dt

.

(28)gi = 2�f0fi, i = ±1,

(29)g2i = �f 2
i
, i = ±1,
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Equations (28)–(29) coincide with Eq. (14) in Ebadi and Biswas (2011) for n = 2 in 
the special case of f0 = f−1 = 0 . Plugging the results in Eqs. (17) we obtain a matching 
condition:

Finally, plugging in this condition into Eqs. (18), one obtains the constraint:

This constraint doesn’t occur in the previous systems studied in Belić (2008) and Petrović 
(2010). Given these conditions one obtains that Eqs. (19)–(20) are automatically matched 
with each other, i.e. equivalent. A surprising result emerges in that there are no constraints 
on function g0(t) . In other words, for every form of g0(t) one can find a form for the free 
term of the phase e(t) for which give us a solution to the DS system. Thus, we truly obtain 
a wide range of solutions and the ability to study many different forms of the DS system 
of equations. It is also worth noting that unlike in Belić (2008) the nonlinearity � as an 
integrability condition no longer has to follow the form of f and that there is no longer any 
imposed relationship between f10 and f−10 . Additionally, since � is free to be of arbitrary 
form, there is no longer a simple formula for e, but e is highly dependent on the choice of 
� and g0.

Assuming f−1 = 0 and f1 ≠ 0 one obtains:

Similarly, assuming f1 = 0 and f−1 ≠ 0 one obtains:

In both cases, Eq. (31) holds and g0(t) is arbitrary.

(30)� = −
�k2

0

k2
0
+ ql2

0

.

(31)� = −��.

(32)rk2
0
+ sl2

0
= 0.

(33)g1 = 2�f0f1, i = ±1,

(34)g2 = �f 2
1
, i = ±1,

(35)g−1 = g−2 = 0,

(36)c4(rk
2

0
+ sl2

0
) = 0.

(37)g−1 = 2�f0f−1, i = ±1,

(38)g−2 = �f 2
−1
, i = ±1,

(39)g1 = g2 = 0,

(40)c0(rk
2

0
+ sl2

0
) = 0.
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3.2 � Case f
0
= 0

We now assume f0 = 0 and, without loss of generality, f1 ≠ 0 . As in the previous sec-
tion k2

0
+ ql2

0
≠ 0 . From Eqs. (15)–(16), we obtain:

It follows that Eqs. (17) are automatically satisfied. In order for Eqs. (18) to be satisfied we 
must either have Eqs. (31)–(32) or:

We note that for the special case of � = 0 , coinciding with the system in Belić (2008), we 
obtain the matching condition from Belić (2008). Finally, given these conditions, Eq. (19) 
is trivially satisfied, while Eq. (20) are automatically matched with each other. In this case, 
we no longer have the constraint given in Eq. (32).

4 � Solutions

We now analyze the obtained solutions. We note that the condition (32) largely restricts 
us to r and s being the opposite sign. By default we take F = dn which is the most 
convenient function as both it and its inverse are free from singularities, though one 
can obtain similar solutions in many cases with other choices for F. We note that for all 
cases where g0 = 0 we have that n is qualitatively similar to |u|2 and therefore only |u|2 
will be shown.

We take M = 0.97 , describing so-called traveling wave solutions. In Fig. 1a we see 
the most basic form of the solution for |u|2 . Since k and l are of equal sign they cancel 
out in 12 leading to no time dependence in � in the absence of chirp. In Fig. 1b we see 
the results when k0 and l0 are of opposite sign. For M = 1 , a solitary wave solutions is 
obtained as shown in Fig. 1c. In Fig. 1d–f we see the effects of chirp on our solutions. 
We note the loss of periodicity in the traveling wave solutions and the stretching effect 
present in Fig. 1d away from the center, whereas in Fig. 1e this pattern is shifted away 
from the center. We also note the oscillation in amplitude in all three cases, especially in 
Fig. 1f, where the solution corresponds to a breather solitary wave.

In Fig. 2 we see the effects of combining several terms in the solution. We see the 
inverse function dominate in Fig.  2a with respect to Fig.  1a. The presence of f00 = 1 
shifts the function upward in the regime without chirp.

Finally in Fig.  3 we only cover cases not applicable under Case 1, i.e. we see the 
solutions for r = s = 1 which was inadmissable under Case 1. In Fig. 3a we take � = 0 , 
in Fig. 3b � = 1 , while in Fig. 3c we look at dark soliton solutions by taking F = sn.

(41)gi = 0, i = ±1,

(42)g2i = �f 2
i
, i = ±1.

(43)f−1 = �

√
c0

c4
f1, � = 0,±1,

(44)� = −�� −
�c4(k

2 + l2s)

f 2
1

.
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Fig. 1   (Color online) Solitary and traveling wave solutions for F = dn as functions of time. Inten-
sity |u|2 for a0 = 0 (a–c) and a0 = 0.2 (d–f) are presented as a function of k0x + l0y and t for p = −3 , 
�(z) = �0 cosΩt and a, d M = 0.97 , l0 = 1 b, e M = 0.97 , l0 = −1 and c, f M = 1 , l0 = −1 . Coefficients: 
b0 = 0 , e0 = 0 , k0 = 1 , �0 = 0 , �0 = 1 , f10 = 1 , f00 = f−10 = 0 , r = 1 , s = −1 , q = 1 and � = −1

Fig. 2   (Color online) Traveling wave solutions as functions of time. The parameters are the same as 
in Fig.  1b except a0 = 0.2 in (d–f) and a, d f10 = f−10 = 1 , f00 = 0 b, e f10 = f00 = 1 , f−10 = 0 and c, f 
f10 = f−10 = f00 = 1
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In all of these solutions, the novelty comes from the presence of chirp. The previ-
ous papers dealing with solutions using expansion methods or related methods, such as 
Refs. Ebadi and Biswas (2011), Jafari (2012), Yildirm (2012) and Yan (2003) all utilize 
a linear dependence of the phase on the transverse variables. In addition, we have dem-
onstrated that any function satisfying Eq. (7) can be used to construct solutions to the 
DS system of equations.

In all these solutions we’ve set g0 = 0 . However, you can add an arbitrary function of 
time to g0 and as a consequence to n. The only restriction is that there is no dependence on 
the transverse variable. Thus, a large range of possible forms for n is possible.

5 � Conclusion

To sum up, we analyzed the Davey–Stewartson system and obtained large new classes of 
solitary and traveling wave solutions using the JEF expansion method. We obtained large 
classes of new solutions, both solitary and traveling wave solutions and both with and with-
out chirp. Since the DS system appears in many areas of physics, there is a good possibility 
of practical application for these solutions.

Acknowledgements  Work at the Institute of Physics is supported by project OI 171006 of the Serbian Min-
istry of Education and Science. Work in Qatar was done under the Qatar National Research Fund (QNRF) 
Project: NPRP 8-028-1-001.

Fig. 3   (Color online) Traveling wave solutions as functions of time for Case 2. The parameters are the same 
as in Fig. 1b except s = 1, a0 = 0.2 in (d–f) and a, d � = 0 , b, e � = 1 and c, f � = 0 and F = sn
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