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Abstract
In this work, we study ablation of silicon in distilled water under the action of laser pulses 
with nanosecond duration. The size distribution of produced particles depends on the laser 
processing parameters and therefore can be modified by the varying distance between laser 
pulses, laser fluence or pulse duration. The properties of fabricated nanostructures are 
investigated by scanning electron microscopy to acquire statistical information on nano-
particle sizes. These results can be promising for dielectric nanophotonics, photovoltaics or 
cancer treatment where relatively large spherical silicon particles are necessary.

Keywords  Nanoparticles · Silicon nanoparticles · Laser ablation · Size dependence · 
Fracture

1  Introduction

Quantum confinement effect provides a dramatic change in the properties of bulk material 
compared to nanoparticles (NPs). This change can be manifested in NPs optical, chemical, 
or other characteristics, motivating a strong demand for various types of nanomaterials and 
therefore, the fast development of their fabrication techniques.

Silicon is one of the most widespread semiconductor materials in the world, commonly 
used in the current manufacture of electronic components. Decrease of Si crystal size down 
to nanoscale results in a significant change of electronic energy bands luminescent properties 
in the visible and near-infrared (IR) (Takagi et al. 1990) and enhanced absorption in the ultra-
violet, visible and IR (Her et al. 1998; Wu et al. 2002). These properties open up numerous 
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promising applications in photonics (optical nanoantennas (Krasnok et  al. 2013), detectors 
(Gonzalez and Veinot 2016) and many others), photovoltaics (Priolo et al. 2014; Wippermann 
et al. 2016), biology and medicine [drug delivery (Salonen et al. 2008), fluorophores (Gu et al. 
2013) and photodynamic therapy (Kovalev and Fujii 2005; Timoshenko et al. 2006)].

In general silicon nanomaterials can be fabricated by chemical, physical, physicochemi-
cal, and electrochemical methods [one can find a recent review in (Kabashin et  al. 2019)]. 
Recently laser-assisted methods of Si NPs formation called great attention due to provided 
chemical purity and ability to control the size, phase state, and morphology of produced nano-
materials. Among them pulsed laser ablation in liquids (PLAL) (Dolgaev et al. 2002; Fojtik 
and Henglein 1993) is a rather simple method of synthesis (there is no complicated vacuum 
or chemical equipment) yielding in production of NPs colloidal solution, which can be easily 
stored, transported or used to develop various functional surfaces (Thompson et al. 2013).

Nanosecond PLAL (Abderrafi et al. 2011) is an attractive method, since strong competi-
tiveness and reliability of available fiber-based laser sources. Generated NPs have a wide dis-
tribution of sizes, which can be further tailored through laser-induced fragmentation (Eidel-
man et al. 2017) or size-selectively optically printed from colloid (Zaza et al. 2019) to fit a 
particular application.

Very recently, spherical Si nanoparticles with sizes of a few hundred nanometers 
(100–400 nm) attracted a great interest due to excitation of strong electric and magnetic dipole 
resonances providing a unique optical response in the visible and near IR ranges (Krasnok 
et  al. 2013). For example, silicon particles with diameter 80–160 nm was proposed for NP 
antireflective coatings (Baryshnikova et  al. 2016). Enhanced emission extraction and selec-
tive excitation of NV centers were demonstrated with the silicon nanoparticles with sizes of a 
few hundred nanometers (Krasnok et al. 2015). Oligomers from silicon nanospheres with an 
average size of about 100 nm were used to experimentally demonstrate magnetically induced 
transparency (Yan et al. 2015).

Applied to photovoltaics and energy storage sub-10 nm silicon NPs can enhance conver-
sion efficiency of commercial solar cells (Rasouli et al. 2017); active Si NPs (100–400 nm) 
material sealed in pores of 3D microporous current collector by graphene layers significantly 
improves a cycling stability of Li-Ion battery (Shelke et al. 2017). Si particles with sizes in the 
range from ~ 40 to ~ 250 nm in diameter NPs can be of direct interest for solar water heating 
and vaporization (Ishii et al. 2016).

In medical applications, the laser-ablated Si NPs with a mean size of 25–30 nm in diameter 
were used to improve the efficiency of radio frequency-based treatment of cancer (Tamarov 
et al. 2014). PEG-coated laser-synthesized Si NPs (mean size about 25 nm) were conjugated 
with radioactive 188Re and used as suitable carriers at nuclear therapy (Petriev et al. 2019).

However, most papers in the formation of Si NPs by nanosecond PLAL devoted to NPs 
generation with particular size (Rawat et al. 2018; Ulusoy Ghobadi et al. 2016; Vaccaro et al. 
2014) and therefore did not consider size dependence on laser processing parameters. Here for 
nanosecond PLAL, we study the effect of laser fluence, pulse duration and scanning strategy 
on size of formed Si NPs.

2 � Materials and methods

Commercially available machine (Minimarker 2) on the base of ytterbium pulsed 
fiber laser (λ = 1.06  μm, τ = 4–200  ns, f = 10–99  kHz, maximum average power 
Paver = −20 W) was used. The laser spot with a focal diameter of d0 = 50 µm was moved 
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over the sample surface with a velocity Vsc from 1 to 8000  mm/s. An experimental 
design is presented in Fig. 1.

The silicon wafer with sizes of 7 × 7 × 0.25 mm was used as the target. Samples were 
ultrasonically washed in distilled water and acetone in sequence. Then cleaned substrate 
was placed to contamination-free Petrie dish filled with 2 ml of distilled water, where 
nanosecond PLAL took place. Finally, 50 μl of obtained colloidal solution was dropped 
on silicon substrate dried out under normal conditions for subsequent studies.

The resulting NPs were investigated in an Auriga (Carl Zeiss) scanning electron 
microscope (SEM) operating at 20 kV. SEM images were analyzed with an open-source 
software ImageJ (Schneider et al. 2012) to acquire statistical information on NPs sizes.

Laser particle size analyzer SZ100 (Horiba Jobin–Yvon) was used to measure the 
zeta-potential of colloidal solutions.

3 � Results and discussion

3.1 � Effect of scanning strategy on NPs size

PLAL process is accompanied with cavitation bubble appearance (Tsuji et al. 2004), in 
the case of nanosecond duration of laser pulses bubble size and lifetime can be up to 
200 μm and 100–200 μs (De Giacomo et al. 2013; Lam et al. 2016), that could have a 
substantial impact on NPs generation. Three typical cases can be selected: the distance 
between consecutive laser pulses is higher than cavitation bubble size, laser pulses come 
one after another immediately (0% overlapping), and 50% pulse overlapping (Fig.  2). 
For all tests here, pulse duration is 50 ns and fluence is 10 J/cm2.

For short distance between pulses or their overlapping laser radiation is partially 
blocked by growing cavitation bubble, thereby providing additional heating, that results 
in an enhancement of agglomeration processes in the bubble volume. At the same time, 
the heating of silicon target decreases due to partial loss of laser power, which has a 
negative impact on NPs concentration in the solution.

Therefore, the optimal scanning pattern for the generation of NPs with the highest 
concentration and uniformity of size distribution is that supporting the 350 μm distance 
between laser pulses. This pattern is used at all experiments stated below.

Fig. 1   A schematic course of the experiment: I ablation of Si target by nanosecond laser pulses in distilled 
water, II drop deposition of obtained colloidal solution on silicon substrate, III natural drying and prepara-
tion for SEM studies
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3.2 � Effect of laser fluence (in the range 5–15 J/cm2) on NPs size

Silicon ablation threshold for 50 ns laser pulses at 1064 nm was experimentally found 
to be equal to 2 J/cm2. Therefore, to ensure intense ablation of a silicon target, the low-
est used fluence is 5 J/cm2, while upper boundary (15 J/cm2) comes from a processing 
limit of available laser source. Figure 3 presents obtained results. One can see that flu-
ence growth gives considerable increase in NPs concentration, while size distribution 
is not uniform—both large and small particles can be found. Probably it comes from an 
enlargement of ablated silicon as the fluence increases.

3.3 � Effect of laser pulse duration (in the range 50–200 ns on NPs size

To investigate the effect of laser pulse duration on the size of formed NPs all PLAL 
experiments in this section was made at the fluence of 10 J/cm2 (Fig. 4).

Fig. 2   SEM images (first row) and size distribution histograms (second row) of Si NPs formed by PLA in 
water for different distances between laser pulses (overlapping): a 350 μm (0%), b 50 μm (0%) and c 25 μm 
(50%)

Fig. 3   SEM images and size distribution histograms (insets) of Si NPs formed by PLA in the water at dif-
ferent fluences: a 5 J/cm2, b 10 J/cm2 and c 15 J/cm2
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In the case of 50 ns laser pulses, silicon reaches higher temperatures than for 100 ns 
and 200 ns pulses due to faster heating. Therefore, it longer resides in a liquid state after 
the cavitation bubble collapse, and consequently there is higher probability of agglomera-
tion processes. Potentially, it could provide a quantity reduction for large particles with an 
increase in laser pulse duration.

To analyze the stability of colloidal solutions, zeta-potential measurements were per-
formed. The typical value is found to be − 60 mV, which is indicative of high solution sta-
bility and a low tendency for agglomeration. Table 1 summarizes the data of experimental 
findings.

4 � Summary

In this work, Si NPs produced by nanosecond PLA in distilled water was investigated. This 
process allows generation of NPs with a wide distribution of sizes, which can be modified 
to some extent by altering key laser processing parameters—the distance between laser 
pulses, laser fluence, and pulse duration.

These results represent the initial step to the fabrication of spherical silicon particles for 
the benefit of such rapidly developing areas as dielectric nanophotonics, photovoltaics or 
cancer treatment where relatively large spherical silicon particles are necessary.

Fig. 4   SEM images and size distribution histograms (insets) of Si NPs formed by PLA in the water at dif-
ferent durations of laser pulses: a 50 ns, b 100 ns and c 200 ns

Table 1   Effect of laser 
processing parameters on Si NPs 
size at PLA in water

Size distribution (nm)

Distance between laser pulses (μm)
 350 204 ± 33
 50 375 ± 57
 25 573 ± 75

Laser fluence (J/cm2)
 5 226 ± 40
 10 164 ± 21
 15 500 ± 117

Pulse duration (ns)
 50 210 ± 45
 100 132 ± 32
 200 126 ± 10
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