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Abstract
A model of orthogonally polarized two-field fiber ring laser with a linear gain is consid-
ered, with emphasis on the continuous-wave stability and the existence of soliton trains. The 
continuous-wave stability analysis is carried out within the framework of the modulational-
instability approach, the variations of the gain spectrum with the modulation frequency and 
characteristic parameters of the model give rise to a rich variety of stability features including 
single-band and multiband stability regions. Seeking for pulse structures of the model, the 
two coupled cubic complex Ginzburg–Landau equations describing individual mode propa-
gations are transformed into a set of coupled, first-order nonlinear ordinary-differential equa-
tions for the amplitudes and phases of the two modes. Numerical simulations of the last set 
of coupled equations indicate that in the anomalous dispersion regime, envelopes of the two 
fields are periodic trains of pulses the amplitudes of which are affected by the linear gain.

Keywords Fiber ring laser · Orthogonally polarized two-mode fields · Modulational 
instability · Pulse trains

1 Introduction

Mode-locked fiber lasers have attracted a great deal of attention in the recent past (Haus 1975; 
Haus and Silberberg 1986; Ippen et al. 1989; Martinez et al. 1984; Weill et al. 2007; Akhme-
diev et al. 1998; Chen et al. 1995; Pschotta and Keller 2001; Kalashnikov et al. 2003; Tang 
et al. 2008; Fandio Jubgang et al. 2015; Fandio Jubgang and Dikandé 2017), because of their 
outstanding potential in optical transmissions of high-intensity pulses of short durations. Pas-
sively mode-locked lasers (Chen et  al. 1995; Pschotta and Keller 2001; Kalashnikov et  al. 
2003) in particular are much attractive for they require only a saturable absorber in the gain 
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medium, whose absorption coefficient decreases with increase in light intensity, inducing a 
nonlinear coupling between longitudinal modes that causes the relative amplitudes and phases 
to lock thereby generating short pulses.

Although high-intensity ultrashort pulses are hallmarks of mode-locked fiber lasers with 
saturable absorbers, in real applications mode-locked lasers do not usually set up instantly in 
the pulse regime. The typical input will be a continuous-wave (cw) field which is designed to 
undergo spatio-temporal modulations upon propagation, growing in amplitude due to four-
wave mixing related to nonlinearity either from self-phase modulation or cross-phase modula-
tion processes inherent to the propagation medium. Such growth can occur through several 
distinct phases in the laser dynamics including quasi-cw, chaotic, single-pulse, multipulse or 
pulse-train structures. In this context the laser self-starting will refer to the physical situation 
where conditions are no more favourable to cws, such that the laser field stabilizes in a regime 
dominated by pulses (Chen et al. 1995).

Concerning laser self-starting, it is instructive stressing that there are several approaches 
to this problem (Chen et al. 1995; Hermann 1993; Haus and Ippen 1991; Krausz et al. 1991) 
depending on the type of laser, and on the type of mode-locking process. One approach 
involves the picture of a transition from cw to steady-state mode-locked operations (Krausz 
et  al. 1991). This transition is governed by a modulational instability (MI) of the cw field, 
a process whereby a small noise signal coupled to the cw field will grow exponentially as a 
result of the interplay between nonlinearity and dispersion (Hickmann et al. 1993; Martijn de 
Sterke 1998; Agrawal 1987; Tanemura and Kikuchi 2003; Dai et al. 2009). As for passively 
mode-locked lasers, their theoretical investigations rest on two different approaches namely 
ab initio simulations, in which one simulates the entire evolution of light in the fiber starting 
from noise, and a second approch which assumes that the light evolution during one roundtrip 
is small. In this second approach the propagation equation is the Complex Ginzburg–Landau 
equation (CGLE) for which the equilibria can be determined, and their stability studied fol-
lowing a linear-stability theory (Haus 1975; Chen et al. 1995; Dikandé et al. 2017).

Earlier studies on laser self-starting within the framework of the MI theory have considered 
mostly a single CGLE (Chen et al. 1995; Dikandé et al. 2017), or two linearly coupled CGLEs 
with linear gain (Trillo et al. 1989; Tasgal and Malomed 1999; Li et al. 2011). In this work we 
shall be interested in a theoretical model describing a fiber ring laser supporting two orthogo-
nally-polarized fields with nonlinear interactions between them. The model is represented by 
two coupled CGLEs for which a MI analysis will be carried out in both normal and anoma-
lous dispersion regimes. Next, numerical simulations will enable us explore shape profiles of 
pulse structures stabilized by characteristic parameters of the model.

2  The model and cw stability

Consider a fiber laser with two orthogonally polarized modes propagating in an optical 
medium with Kerr nonlinearity. The dynamics of this laser field is assumed to be described by 
the following set of two nonlinearly coupled CGLEs:
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The variables u(z, T) and v(z, T) in the above set are normalized envelopes of the two 
orthogonally polarized fields, �� is their wavenumber difference, � is their linear group veloc-
ity difference, �′′ is the second-order dispersion coefficient while � , g and �g represent the 
nonlinearity parameter, the saturable gain coefficient and the bandwidth of the laser gain 
respectively. Note that the model Eqs. (1)–(2) is close to the one studied recently by Yue et al. 
(2013), where account was taken of the effects of a third-order dispersion on the generation 
and stability of dark-dark soliton pairs. In the present context we are interested in the stability 
of cws and on shapes of the two envelopes, laying emphasis on the influence of the linear gain 
g on the envelope amplitudes.

Let the steady-state solutions to Eqs. (1)–(2) be of the following forms:

for which �� = 0 and the wavenumber � is obtained as:

The complex part of � suggests an exponential damping (amplification) of the cw ampli-
tudes during the laser roundtrips, for negative (positive) values of the linear gain g. To 
investigate the stability of the steady-state solutions Eq. (3) with the wavenumber given by 
Eq. (4), we consider small amplitude perturbations ũ(z,T) and ṽ(z, T) such that solutions to 
Eqs. (1)–(2) now read:

Replacing these in Eqs. (1)–(2) and linearizing we obtain:
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We pick the following solutions for the linear Eqs. (6)–(7):

where � is the rate of spatial growth of perturbations and � the modulation frequency. With 
Eqs. (8) and (9), the coupled set Eqs. (6)–(7) can be represented in matrix form i.e.:

where

The 4 × 4 matrix equation (10) is a cumbersome eigenvalue problem for which ana-
lytical solutions are not easy to find, we therefore resort to considerations enabling anlyti-
cal solutions. In this last respect we have seen above that the gain causes an exponential 
growth or damping of the field amplitudes, depending on the sign of the linear gain param-
eter g. Hence we can ignore the contribution of the linear gain in the linear-wave stability 
analysis for its effect is already known, focusing mainly on the possible amplification or 
decay of the small perturbations. With this consideration, we obtain a secular equation for 
the eigenvalues in terms of the following fourth-order polynomial in �:
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ṽ, ṽ∗

]
=
[
B1,B2

]
e(𝜆z+i𝜔T),

(10)�

⎛⎜⎜⎜⎝

A1

A2

B1

B2

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

a b c d

−b e − d − c

c d f k

−d − c − k h

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝

A1

A2

B1

B2

⎞⎟⎟⎟⎠
,

(11)

a = i�

(
u2
0
−

v2
0

3

)
− i�� + i

�2

2
��� −

g�2

2�2
g

,

b = i�

(
u2
0
+

v2
0

3

)
, c =

4

3
i�u0v0, d =

2

3
i�u0v0,

e = i�

(
−u2

0
+

v2
0

3

)
− i�� − i

�2

2
��� −

g�2

2�2
g

,

f = i�

(
−
u2
0

3
+ v2

0

)
+ i�� + i

�2

2
��� −

g�2

2�2
g

,

k = i�

(
u2
0

3
+ v2

0

)
,

h = i�

(
u2
0

3
− v2

0

)
+ i�� − i

�2

2
��� −

g�2

2�2
g

.

(12)Q + t�2 + �4 = 0,

(13)
Q = −

2

3
�2�4u2

0
v2
0
���2 −

1

3
�2�4���2

(
u4
0
+ v4

0

)

+
1

6
��6���2

(
u2
0
+ v2

0

)
+

1

16
�8���4,



Modulational instability and soliton trains in a model for…

1 3

Page 5 of 16 361

The four possible roots of the polynomial (12) are:

and are functions of the modulation frequency � , besides their dependence on characteris-
tic parameters of the model. To discuss the cw stability from these eigenvalues, it is useful 
to stress that according to Eqs. (8) and (9) the linear cw solutions will be stable if eigenval-
ues are either purely imaginary or their real parts are negative. In view of the dependence 
of � on the modulation frequency, it is evident that these stability conditions will depend 
on the range of values of � . A very simple picture of cw stability emerges in the case of 
zero modulation frequency, where the four eigenvalues are all zero. In this case the ampli-
tudes (A1,A2) , (B1,B2) of the perturbations do not undergo spatio-temporal modulations 
and hence remain finite, thus favouring the stability of cw modes.

In the general case of nonzero modulation frequency, if we let P = u2
0
+ v2

0
 (where P 

is the total input power), we can rewrite the eigenvalue � obtained in (15) as:

This enables us consider another simple picture of cw stability i.e. when � = 0 , which 
for �′′ ≠ 1 corresponds to a modulation frequency:

such that the eigenvalues (16) can be expressed in terms of the total power P as:

Since the modulation frequency � is always real, Eq. (17) suggests that �′′ should be 
smaller than one for positive � . However Eq. (18) shows that the term ���(1 + ���) can be 
negative for values of 𝛽′′ < 1 , hence for the eigenvalues � in Eq. (18) to be real we need 
��� ∈ ]−1, 0[ and self-starting is favoured. In Fig. 1, we plot the amplification gain Re(�) 
versus the second-order dispersion coefficient �′′ in the relevant range of values of this later 
parameter, for � = 0.5 and different values of the total power i.e. P = 160 kW, P = 180 kW 
and P = 200 kW. Note that for negative values of � the modulation frequency will be real if 
�′′ is greater than one. Since for these values of the second-order dispersion coefficient the 
product ���(1 + ���) is always positive, � should be purely imaginary and the laser cannot 
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In the most general case when the modulation frequency is arbitrary, the self-starting 
dynamics of the cw laser is complex but we can still gain a clear picture of the cw stability. 
To this end let us first take the upper branch of Eq. (15), i.e.:
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The lower branch of Eq. (15) is given by:
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Fig. 1  Plot of gain i.e. Re(�)/(/m) 
as a function of �′′ , for � = 0.5 /
(kWm)
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These behaviours are summarized in Figs. 2 and 3, where we represented the variation 
of the amplification gain Re(�) as a function of the modulation frequency � and the input 
power P in three and two dimensions, in the case of normal dispersion (Fig. 2) and anoma-
lous dispersion (Fig. 3). Parameter values are indicated on the graphs and figure captions.

In the case with normal dispersion there is a single MI band, with the maximum gain 
increasing with increase in the total input power P (Fig. 2). On the contrary, when �′′ is 
negative Fig. 3 suggests two MI bands as the modulation frequency increases. This two-
band structure can actually be seen in Eq. (19) as being related to the existence of at least 
one nonzero characteristic modulation frequency, for positive values of the nonlinear coef-
ficient � (here also playing the role of coupling parameter between the two fields) and nega-
tive values of the second-order dispersion coefficient � ”. This characteristic modulation 
frequency corresponds to the value of � at which the modulation gain vanishes in Fig. 3, 
and according to the figure it is a function of the input power P. Note that the multiband 
structure of the MI gain observed in Fig. 3 is not specific to the present context, indeed a 
similar behaviour is observed for linearly coupled CGLEs (Li et al. 2011) and is generally 
favored by the combination of the coupling and an anomalous group-velocity dispersion.

Fig. 2  (Color online) 3D (left graph) and 2D (right graph) plots showing the MI gain spectrum as a func-
tion of the modulation frequency � and total power P, calculated for the normal dispersion regime with 
� = 0.1∕(kWm) and ��� = 1.6 ps2∕m

Fig. 3  (Color online) 3D (left graph) and 2D (right graph) plots showing the MI gain spectrum of a func-
tion of the modulation frequency � total power, P calculated for the anomalous dispersion regime with 
� = 0.1∕(kWm) and ��� = −1.6 ps2∕m



 E. N. Mesumbe, A. M. Dikandé 

1 3

361 Page 8 of 16

3  Pulse trains

The MI analysis of cws has a long history in the study of linear-wave stability in systems 
described by nonlinear Schrödinger equations (Zakharov and Ostrovsky 2009). Usually, when 
linear waves become unstable, direct simulations of these equations assuming an input field 
with a cw profile leads to modulated-wave structures with envelopes having the shape of a 
pulse or a dark soliton. In the case of CGLE, which can readily be regarded as a nonlinear 
Schrödinger equation with complex coefficients, the MI analysis enables us determine param-
eter values for which cw fields are stable. However the CGLE has a far richer dynamics com-
pared with the nonlinear Schrödinger equation, thus in addition to modulated-wave structures 
which can be generated by direct simulations of the equation using an input cw field, a wealth 
of interesting distinct soliton-type solutions have so far been proposed (see for instance Aran-
son and Kramer 2002; Akhmediev et al. 1997, 2001; Issokolo and Dikandé 2018).

We are interested in a particular form of nonlinear solutions to the coupled CGLEs (1)–(2), 
which describe real-amplitude envelopes undergoing spatio-temporal modulations in their 
course of propagation. Such solutions are represented as Soto-Crespo et al. (2002):

where a1 , a2 , �1 and �2 , which are real functions of � = T − v1z , represent the amplitudes 
and phases of the two fields. The quantity v1 is the inverse velocity of pulses and � is the 
pulse propagation constant. Replacing these solutions in Eqs. (1)–(2) and isolating real 
from imaginary terms, we obtain:
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where the prime and double-prime symbols on field variables refer to first and sec-
ond-order derivatives respectively, with respect to � . The above system of four cou-
pled second-order nonlinear ordinary differential equations, can be transformed to 
a set of coupled first-order nonlinear ordinary differential equations by defining: 
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The coupled first-order nonlinear ordinary differential Eqs. (27)–(30) have been solved 
numerically using a sixth-order Runge-Kutta algorithm with fixed step ( �� = 10−5 ) (Luther 
1968; Dikandé Bitha and Dikandé 2018). Below we present numerical results of the time 
series for the amplitudes a1 and a2 , for some positive values of the linear gain g.

Figure  4 represents profiles of the field amplitudes a1 (left graph) and a2 (right 
graph) as a function of time � , when the linear gain is zero(i.e. g = 0 ). In all our simu-
lations we have fixed �g = 5.0 , and values of other characteristic parameters in the 

(28)
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,
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equations are given in the figure captions. Figure  4 shows that envelopes of the two 
fields are periodic trains of pulses of constant amplitudes. As we increase the linear 
gain g in the positive branch, we notice an amplification of pulse amplitudes which is 
more and more pronounced as g is increased. Figure 5 corresponds to g = 0.025 , and 
Fig. 6 to g = 0.05.

Instructively, as in the case of nonlinear Schrödinger equation the cubic CGLE 
does not admit pulse-soliton solutions in the normal dispersion regime. Kivshar and 
Turitsyn (1993) have shown that in the normal dispersion regime, two coupled non-
linear Schrödinger equations admit dark-dark soliton pairs which they referred to as 
vector dark solitons. Yue et al. (2013) carried out numerical simulations on the model 
Eqs. (1)–(2) including a third-order dispersion term. They established that when the 
effective (i.e. total) dispersion was positive, nonlinear solutions to the coupled CGLEs 
would be dominantly dark-dark soliton pairs irrespective of the contribution of the 
third-order dispersion.
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Fig. 4  (Color online) Time series of the laser-field amplitudes a1 (left graph) and a2 (right graph), for 
��� = −0.6 , � = 0.9 , � = 0.01 , �� = 0.9 , � = 0.8 : g = 0
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Fig. 5  (Color online) Time series of the laser-field amplitudes a1 (left graph) and a2 (right graph), for 
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4  Conclusion

We considered the dynamics of a two-mode laser model assumed to describe the propaga-
tion of two orthogonally polarized optical fields. This model is closely related to a recent one 
studied in ref. Yue et al. (2013), where the authors includes a third-order dispersion term and 
investigated its effects on the generation and propagation of a train of dark soliton pairs. Start-
ing with the modulational-instability analysis of linear waves, we found that in the cw regime 
the laser stability was governed by a complex combination of characteristic parameters of the 
model. However, at zero modulation frequency a simple picture of modulational instability of 
cws was obtained in terms of a process determined by the sign and magnitude of the second-
order dispersion coefficient. Thus, for positive values of this coefficient corresponding to a 
normal dispersion regime, the MI gain was characterized by a single band the maximum of 
which was increased with increase of the input power. In the anomalous dispersion region, 
a positive value of the nonlinear coupling coefficient � resulted into a nonzero characteristic 
modulation frequency for which the MI gain was zero. Numerical simulations of the two cou-
pled CGLEs were carried out to gain a firm picture about profiles of the envelopes of the two 
fields. In the anomalous dispersion regime, we found that envelopes of the two fields were 
periodic trains of pulses the amplitudes of which were amplified by an increase of the linear 
gain in the positive branch.

As indicated in the introduction, the concept of laser self-starting can be linked with the 
MI in that this picture assumes a transition from cw to pulse operation when the cw regime 
is unstable. However this is not always the case, indeed when the cw amplitude starts grow-
ing there are transient regimes driven by period-doubling biburcations of the field amplitudes 
before a permanent regime dominated by stable pulses. A detailed analysis of these transient 
regimes is expected to provide more insight onto the stability of both cws and pulses, but also 
on other possible forms of optical soliton patterns supported by the model. This analysis is 
under consideration.
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Appendix

To derive Eqs. (23)–(26) or Eqs. (27)–(30) from the model Eqs. (1)–(2), we consider nonlin-
ear solutions in the forms of Eqs. (21) and (22). Substituting in Eqs. (1)–(2) we obtain:

By separating the real part from the imaginary part in Eqs. (31) and (32) we obtain a 
system of four coupled second-order nonlinear differential equations given by,

(31)
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By defining ��
1
= M1,�
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2
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Eqs. (33), (34), (35)and (36) we obtain a set of coupled first-order nonlinear ordinary dif-
ferential equations given in matrix form as,

where A, B, C and D are given by,
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By carrying out the following operation on the matrix equation (37): 
R2 × g∕(2�2

g
) + R1 × (���∕2) , R3 × (���∕2) + R4 × g∕(2�2

g
) where Rj(j = 1, 2, 3, 4) is the jth 

row of the matrix, we obtain,

From the matrix equation (39) we write the following four simple equations:

Therefore, simplifying Eqs. (40)–(43) we obtain the equations for y′
1
,M′

1
, y′

2
 and M′

2
.
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