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Abstract
The general expressions for transmission probability and resonant peaks in one-dimen-
sional N-periods graphene superlattice with unit cell of two barriers and two wells are ana-
lytically derived, and two types of resonant peaks are obtained: (1) the periodicity induced 
resonant peaks splitting of (N − 1)-fold as N increases; and (2) the resonant peak through 
a unit cell unchanged as N varies. As the two-barriers in unit cell become asymmetric, the 
resonance transmission probability of unit cell becomes imperfect  (T1 < 1), which drops 
quickly with the unit asymmetry increases. Thus, the unit cell related resonant peak could 
only be observed in superlattices with less unit cell asymmetry of a few of period numbers. 
With the period increases, the unit related resonant peak disappears and only periodicity 
induced (N − 1)-fold splitting remains. The splitting rule is further confirmed by the con-
ductance and noise versus the incident energy and the misunderstandings in publication 
domain is cleared up.

Keywords Single-layer graphene · Superlattice · Resonant tunneling · Peak splitting

1 Introduction

Since the concept of semiconductor superlattices was proposed by Tsu and Esaki (1973), 
the electron resonant tunneling phenomena in semiconductor superlattices have attracted 
much attention from both theoretical and experimental scientists (Tsu and Esaki 1973; 
Yamamoto et  al. 1992; Vezzetti and Cahay 1986; Liu and Stamp 1993, 1994; Esposito 
2003; Pereyra and Castillo 2002; Kuiri et  al. 2018; Kamal et  al. 2018). By solving the 
electron’s Schrodinger equations with numerical calculations, Tsu and Esaki (1973) and 
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Yamamoto et al. (1992) had shown that the electron resonance transmission peak through 
structures consisted of N-fold electric barriers and (N − 1)-fold wells splitted into (N − 1) 
peaks. This phenomenon was analytically proven by Vezzetti and Cahay (1986) and Liu 
and Stamp (1993, 1994), respectively, which has demonstrated that the (N − 1)-fold reso-
nance splitting effect in one-dimensional periodic potentials structure with arbitrary profile 
is an inherent property of the semiconductor superlattices, and there is an explicit corre-
lation between the resonance energies with the miniband structure of the corresponding 
infinite superlattice. Later, Zeng et al. (1999, 2001), Wang and Yan (2000), and Guo et al. 
(1998) theoretically investigated the resonant splitting of ballistic conductance peaks in 
magnetic superlattices, and found that there also exists a general (N − 1)-fold resonant peak 
splitting rule for ballistic conductance in magnetic superlattices with periodically arranged 
N-identical magnetic barriers. Therefore, it seems that one could depict the resonance 
splitting for electron tunneling through an electric superlattice and a magnetic superlattice 
in a unified way.

As both semiconductor and graphene superlattices are vastly promising to control the 
electron transport, the question arises as to whether the resonance splitting effect also 
exists in Dirac electrons transported through graphene superlattices. Recently, Lu et  al. 
(2012a, b) numerically investigated the resonance splitting effect through Kronig–Penney, 
step and sinusoidal magnetic superlattices in graphene. They found that the transmission, 
the conductance and the shot noise presented (N − 1)-fold resonance splitting for the mag-
netic superlattices with N-barriers. Pham et  al. (2015) also analytically and numerically 
investigated the resonant peak splitting in two graphene superlattices with periodic elec-
trostatic potentials of rectangular barriers and δ-function magnetic potential. They demon-
strated that the transmission probability spectra exhibited two types of resonance energies: 
the barrier-induced  resonance  energies were unchanged as N varies, while the well-
induced resonance energies had undergone the (N − 1)-fold splitting as N increases. This 
phenomenon is similar to the Schrodinger electrons in semiconductor superlattices. Most 
recently, Xu et al. (2014) analytically and numerically investigated the resonant peak split-
ting in graphene superlattices with periodic electrostatic potentials of square barriers or 
sinusoidal barriers. They found that there were two resonance conditions for the graphene 
superlattices, and some of the resonance transmission peaks presented (N − 1)-fold reso-
nance splitting for N-barriers, which was analogy of the (N − 1)-fold resonant splitting for 
transmission probability in N-barrier electric superlattice in semiconductor. However, the 
resonant splitting rule was not sensitive to the shape of the potential barrier, and there was 
no explicit rule for the conductance and shot noise, which was different from the magnetic 
case. Lately, Lu et al. (2015) found that there existed a (2N − 1)-fold resonance splitting for 
N-barriers superlattices with the realistic magnetic profile, and they attributed those differ-
ences to the different profiles between the realistic and the idealistic models used in their 
numerical calculations.

Previously, Huo et al. (2012a, b) investigated the transport properties through magnetic 
superlattices with double-barrier units, and they found that for an N-periodic asymmetric 
double-barrier unit, there was (N − 1)-fold resonance transmission peak splitting, but the 
splitting was (2N − 1)-fold for an N-periodic, symmetric double-barrier unit. Furthermore, 
Zeng et al. (2000) and Guo et al. (1998) found that for electron tunneling through the elec-
tric or magnetic superlattices made of two identical barriers or two different barriers, one 
resonant window of the former split into two subdomains, within each of which the reso-
nance split into (N − 1)-fold, where N was the number of the renormalized building blocks 
consisting of two different barriers of the latter. They indicated that the resonant splitting 
was determined not only by the structure but also by the parameters of the building blocks. 



Resonant peak splitting in finite periodic superlattices with…

1 3

Page 3 of 15 158

Guo et al. (1998) found that there was no explicit and general resonant peak splitting for 
transmission in magnetic superlattices, and the resonance splitting effect in magnetic barri-
ers strongly depended on the tunneling momentum of electrons.

In this paper, the resonant splitting in superlattices with asymmetric double-barrier units 
in graphene will be analytically and numerically investigated. This work has discovered 
that there are two types of resonant peaks: (1) the resonant peak through a unit cell; and (2) 
the periodicity induced peak splitting of (N − 1)-fold. The splitting rule has been further 
confirmed by the conductance and noise versus the incident energy. The obtained results 
have contributed a great deal to the analysis and identification of the oscillatory charac-
terization of transport in experiments, and the differentiation of the line-type resonance 
and the Fabry–Perot interference, especially when more complex resonant tunneling is 
involved. Furthermore, these discoveries will provide greatly superior advantages in the 
design and optimization of effective magneto resistance devices and filter devices.

2  Analytical derivation

Figure 1 show the magnetic vector potential profiles of a unit cell with two barriers and two 
wells in one-dimensional finite superlattices. To simplify the calculations, the electric/mag-
netic fields are assumed as periodically arranged in the x-direction, and the potential A(x), 
defined on 0 < x < L, is of an arbitrary shape and nature of electric/magnetic type. The 
superlattice potential  AN(x) is defined to be the same potential A(x) periodically repeated 
N times, on the interval 0 < x < NL. The spatial period of the external potential is assumed 
much larger than the graphene lattice constant (~ 1.42 Ǻ), so the intervalley scattering in 
the theoretical derivation can be neglected. Thus, the Dirac-like Hamiltonian around the K 
point, in a long-wavelength approximation, could be expressed as (with ℏ = c = 1):

where vF = 106m∕ s is the Fermi velocity, e is the absolute value of the electron charge, A⃗
(x) is the vector potential, �⃗� =

(
𝜎x, 𝜎y

)
 is a 2 × 2 Pauli matrices vector and I is the 2 × 2 unit 

matrix.
The state function � is denoted by � =

[
�A(x, y),�B(x, y)

]T , where �A(x, y) = �A(x)e
ikyy 

and �B(x, y) = �B(x)e
ikyy are the wave functions for two sublattices in graphene, ky is the wave 

vector along the y coordinate. By solving the Dirac equation in each region and by matching 

(1)H = 𝜈F�⃗� ⋅

(
P⃗ + eA⃗(x)

)
+ eU ⋅ I,

Fig. 1  The magnetic vector 
potential profiles of a unit cell 
with two-barriers and two-wells 
in finite periodic superlattices
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the wave function at the boundaries, the transmission probability through a unit cell can be 
simulated by the transfer matrix method below (Wang et al. 2014; Lin et al. 2011)

Here

with

For convenience, all quantities are expressed in dimensionless units, i.e. l → l0l , k → k0k , 
E → E0E , A → B0l0A , where k0 = 1∕l0 , E0 = ℏvF∕l0 , B0 = ℏ∕el2

0
 . For a realistic value 

B0 = 0.1 T, lB0 = 811 Å and E0 = 7.0 meV are used.
For the N-periods superlattice of potential  AN(x), the transfer matrix is required to be 

applied N times to map an arbitrary solution from x = 0 to NL. There is an easy way to con-
struct the transfer matrix once the single unit cell transmission problem is solved.

The solution for the problem of N-periodic superlattice follows up the solution for the sin-
gle unit cell case as:

(2)
(

1

r1

)
= M

(
t1
0

)
,

(3)T1 =
||t1||2 = 1∕||M11

||2,

(4)M = SLSALSwLSARSwRSR,

(5)SL =
E

2kw

(
kw−iky

E
1.0

kw−iky

E
−1.0

)
,

(6)SR =

(
1.0 1.0

kw+iky

E
−

kw−iky

E

)
,

(7)Swj
=

⎛⎜⎜⎝
Cos

�
kwwj

�
−

ky

kw
Sin

�
kwwj

�
−i

E

kw
Sin

�
kwwj

�

−i
E

kw
Sin

�
kwwj

�
Cos

�
kwwj

�
+

ky

kw
Sin

�
kwwj

�
⎞⎟⎟⎠
,

(8)SAj
=

⎛⎜⎜⎜⎝

Cos
�
kAj

dj

�
− Sin

�
kAj

dj

�
−i

E

kAj

Sin
�
kAj

dj

�

−i
E

kAj

Sin
�
kAj

dj

�
Cos

�
kAj

dj

�
+

(ky+Aj)
kAj

Sin
�
kAj

dj

�
⎞⎟⎟⎟⎠
.

(9)kw =

√(
E2 − k2

y

)
, kAj

=

√[
E2 −

(
ky + Aj

)2]
, j = R, L.

(10)M =

⎛⎜⎜⎝

1

t1

r∗
1

t∗
1

r1

t1

1

t∗
1

⎞⎟⎟⎠
,
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By using the Cayley–Hamilton theorem and after some derivations, obtains

Finally, the transmission probability through an N-period superlattice is derived as:

Here cos � = ReM11 = Re
(
1∕t1

)
 . In fact, ∅ is the Bloch phase associated with the infinite 

periodic potential whose unit is cell A(x) (Lin et al. 2011; Barbier et al. 2010).
Equation (13) is expressed with transmission probability  T1 of unit cell and the Bloch 

phase ∅ , which is the general transmission probability for all types of finite superlattice. It is 
evident that the resonant peaks appear whenever T1 = 1 , in addition, there are (N − 1) peaks 
when N� = m� , m = 1, 2, … (N − 1) in each allowed band, where the increment of ∅ is π. It is 
worthwhile to indicate that the resonance splitting rule is a universal rule, which is also appli-
cable to the one-dimensional, finite, N-periodic semiconductor electrostatic superlattice, the 
magnetic superlattice and the alike one realized in modulation two-dimensional electron gas 
structure, as long as the superlattice is of N-periodicity.

Here, the analytical expression of transmission probability will be derived for several 
model superlattices frequently investigated in previous publications.

(1) A magnetic vector potential Kronig–Penney superlattice: (Lu et al. 2012a, b; Wu et al. 
2008) its unit cell consists of a square magnetic barrier of vector potential A of width 
 dB and a well of vector potential zero of width w. The transmission probability of the 
unit cell is expressed as:

 with kw =
√

E2 − k2
y
, kA =

√
E2 −

(
ky + A

)2  . The  kBdB = 0 corresponds to the 
Fabry–Perot resonance of the single magnetic barrier, which was observed by Lu et al. 
(2012a, b), the result in Lu et al. (2012a, b) can be regard as only a specific case of the 
results presented in this paper.

(2) An asymmetrical two-magnetic barrier superlattice: (Huo et al. 2012a, b) its unit cell 
consists of an asymmetrical two magnetic barrier of rectangular magnetic vector poten-
tial of  AL,  AR with widths of  dL,  dR, and two wells of zero vector potential of width of 
 wL and  wR, respectively. The unit cell transmission probability is given as follows: (Xu 
et al. 2017)

(11)
(

1

rN

)
= MN

(
tN
0

)
,

(12)MN =
1

sin �

[
MsinN� − I sin (N − 1)�

]
,

(13)TN =

{
1 +

sin2 N�

sin2 �

(
1

T1

− 1

)}−1

,

(14)T1 =

{
1 + sin2

(
kAdB

)[ EA

kAkW

]2}−1

,
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where

and

Here �L,R is the characteristic phase difference. When both the PDCR and the MCPV 
are satisfied simultaneously, the complete transmission  (T1 = 1) will occur in an asym-
metrical two-magnetic-barrier structure (Xu et al. 2017). Otherwise, the resonant transmis-
sion peak becomes less than unity (i.e.,  T1 < 1). When  AL = AR,  dL = dR, and  wL ≠ wR, it 
reduces to the biperiodic superlattice case. For a general asymmetric two magnetic barriers 
structure as illustrated frequently in literature (Huo et al. 2012a, b),  AL ≠ AR,  dL ≠ dR, and 
 wL ≠ wR, it most likely leads to  TL ≠ TR, so the unit cell related resonant peak can only be 
observed in a few of the superlattices.

It should be pointed out that in Kronig–Penney type of superlattice, the unit cell con-
sists of one barrier and one well, and the well layer is often assumed to be the same as the 
contact layer, it leads the transmission probability of N-fold barriers superlattice with N 
barriers and (N − 1) wells to coincide with that of the N period one with N barriers and N 
wells. As adding a well layer to the N barriers and (N − 1) wells superlattice only brings in 
a phase difference in its transmission amplitude. The phase difference has no effect on the 
transmission probability, as the transmission probability is given by square of the module 
of transmission amplitude. As a result, people were frequently misled to believe that the 
resonant peak splitting is correlated with the number of barriers, rather than the period 
number of a finite superlattice. It always arises confusions on understanding of the reso-
nance peaks splitting in superlattices with complex unit, especially when different type of 
barriers are added one by one. For example, The authors of Zeng and Zhang (2000) and 
Guo et al. (1998) had investigated the superlattices periodically juxtaposed with two dif-
ferent barriers, they observed smaller number of resonance peaks in each resonant subdo-
main, and the total number of peaks is not always equal to N − 1 for N barrier tunneling. 

(15)T =
TM

1 +
[
Dscos(�∕2)

]2 ,

(16)
TM =

TLTR�
1 −

√
1 − TL

√
1 − TR

�2 ,

(17)DS =
2 4
√
1 − TL

4
√
1 − TR

1 −
√
1 − TL

√
1 − TR

,

(18)TL,R =

{
1 + sin2

(
kL,RdL,R

)(EAL,R

k0kL,R

)2
}−1

,

(19)� = �L + �R + 2kwwL,

(20)�L,R = Arctan

(
k2
L
+ k2

R
+ B2

L,R

2kL,Rkw
tan

(
kL,RdL,R

))
,
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Moreover, the resonance splitting occurred each time when two new barriers are added 
to the exiting ones. Here, one could easily found out that the barriers are of odd numbers 
in the former situations, then the corresponding superlattices are no longer periodic ones. 
While in the later the barrier are of even numbers, and the new superlattices are still peri-
odic ones. To clear up the confusions in the literatures, some numerical calculations will be 
carried out and presented below.

3  Results and discussions

Figure  2a shows the transmission probability versus the incident energy for biperiodic 
magnetic superlattices with different periods,  wL = 0.5 and  wR = 0.4. Other structural 
parameters in the numerical calculations are taken as  BL = BR = 3.0,  dL = dR = 0.5, respec-
tively. It is clear that the periodicity induced resonant peaks split into (N − 1)-folds as N 
increases, while the resonant peak through a unit cell remains unchanged as N varies. Fur-
thermore, the width of every peaks and the separation between them become narrower as 
N increases. Figure 2b shows the transmission probability versus the incident energy for 
5-periods biperiodic magnetic superlattices with different righthand well width while fixed 
 wL = 0.5. As the righthand well width becomes wider, the whole transmission spectra shift 
to lower energy, and each peak width and the separation between peaks becomes narrower. 
When  wR < wL, the resonant peak through a unit cell appears as the highest energy one in 
the lower domain, while  wR > wL, it becomes the lowest energy peak in the higher domain. 
When  wR=wL, it appears to be the middle peak. Compared with the results of Peeters and 
Vasilopoulos (1989) and Vasilopoulos et al. (1990), one could easily find that the domain 
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Fig. 2  a Transmission probability versus incident energy for biperiodic superlattices with different periods 
N; b Transmission probability versus incident energy in 5-periods superlattices with different right well 
width  wR. Here,  BL = BR = 3.0,  dL = dR = 0.5 and  wL = 0.5
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versus the asymmetry of the unit cell represents exactly the energy band splitting, and the 
transmission peaks in each subband contain (N − 1)-folds peaks, as described by Eq. (13).

Figure 3 shows the transmission probability versus the incident energy for two super-
lattices of different periods with  BL = 3.0, i.e., (a)  BR = 2.4; (b)  BR = 1.8. Other structural 
parameters in the numerical calculations are taken as  dL = dR = 0.5 and  wL = wR = 0.5. It 
is clear that the periodicity-related resonant peaks split into (N − 1)-folds of unity trans-
mission probability in each subband while increasing the period number N. However, the 
number of the periods for observing the unit cell related imperfect resonant peaks depends 
on the asymmetry of the unit cell. The greater the asymmetry of the two magnetic bar-
riers is, the smaller the number of the periods is for observing the unit cell related peak. 
Here, it is 6 periods with  BR = 2.4 in Figs. 3a and 3 periods with  BR = 1.8 in Fig. 3b. When 
the righthand barrier becomes asymmetrical to the lefthand barrier of the unit cell, the 
resonant transmission peak of the unit cell becomes less than unity  (T1 < 1). Meanwhile, 
the greater the asymmetry of the unit cell is (i.e. the righthand barrier’s height or width is 
away from that of the lefthand’s barrier), the quicker the transmission probability of the 
unit cell related transmission peak approaches to zero (Xu et al. 2017). The unit cell related 
resonant transmission peak of the N-periods superlattice could be proximately expressed 
as  (T1)N, thus it decreases much quicker when  (T1 < 1). Finally, it becomes unobservable 
when the righthand barrier potential’s  BR is lower than 2.4.

Figure 4a shows the transmission probability for 5-periods superlattices with righthand 
barrier potential height  BR of 3.0, 2.7, 2.4, 2.1, and 1.8, respectively. Other parameters 
in the numerical calculations are taken as  BL = 3.0,  dL = dR = 0.5,  wL = wR = 0.5. When 
 BR = BL, the superlattice is reduced to a magnetic Kronig-Penney superlattice of 10 periods 
with unit cell consisting of barrier  BL and well  wL, the resonant peaks split into 9-fold with 
the peak transmission probability of unity, and the Fabry–Perot resonant peak  (kBdB = 0) 
from unit cell does not appear in the given energy region. Similar phenomena have been 
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Fig. 3  Transmission probability versus incident energy for two series of superlattices of different periods N. 
Here, a  BR = 2.4 and b  BR = 1.8, with  BL = 3.0,  dL = dR = 0.5 and  wL = wR = 0.5
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observed by Lu et al. (2012) and Pham et al. (2015), respectively. The degenerate 9 energy 
levels of the independent 9 identical wells become nondegenerate and split due to the cou-
pling between the wells via tunneling through the barriers, thus the number of splits is 
equal to that of the case with 9 wells.

As the righthand barrier’s height  BR is decreased gradually from 3.0 to 2.4, the unit cell 
becomes an asymmetrical two-magnetic barrier structure, the periodicity-related resonant 
peaks of N-periods superlattice split into (N − 1)-fold, and all the resonant peaks transmis-
sion probabilities are still of unity. However, the transmission probability of the unit cell-
related resonant peak, corresponding to the middle one, becomes less than unity  (T1 < 1). 
As the righthand barrier’s height  BR is further decreased from 2.4 to 1.8, the unit cell 
related resonant peak becomes unobservable. As the righthand barrier’s height is decreased 
from 3.0 to 0, the domain on the lefthand of  T1 peak shifts to lower energy, but the domain 
on the righthand of  T1 peak shifts to higher energy. The width of peaks and the separations 
between them become wider, both domain width and the energy gap between these two 
domains are enlarged. Similar phenomena can also be observed when the righthand mag-
netic barrier’s width becomes asymmetrical to the lefthand barrier’s width  dL, as shown in 
Fig. 4b. Here the righthand barrier’s width  dR is of 0.7, 0.6, 0.5, 0.4, and 0.3, respectively, 
when the other parameters are taken as  BL = BR = 3.0,  dL = 0.5,  wL = wR = 0.5.

The similar splitting features of the transmission probability are also reflected in the 
conductance. According to the Laudauer and Buttiker formula, the conductance G of the 
system at zero temperature is given as: (Büttiker 1986)

(21)G = G0

�∕2

∫
−�∕2

TNcos�0d�0,
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Fig. 4  Transmission probability versus incident energy in 5-periods superlattices a with  BR of 3.0, 2.7, 
2.4, 2.1, and 1.8, here,  BL = 3.0,  dL = dR = 0.5; b with  dR of 0.7, 0.6, 0.5, 0.4, and 0.3, here  BL = BR = 3.0, 
 dL = 0.5; and  wL = wR = 0.5
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Here �0 is the angle of the incidence relative to the x-direction,  TN is the transmission prob-
ability of the N-periods superlattice, and G0 = 2e2ELy∕(�ℏ) is taken as the conductance 
unit and  Ly is the sample’s width along the y-direction.

Figures  5 and 6 show the conductance as a function of incident energy for superlat-
tices described in Figs. 3 and 4. The conductance spectra show (2N − 1) fold peaks for the 
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superlattices with 2.4 ≤  BR≤ 3.0 or width of 0.4 ≤  dR≤ 0.6, while there are two domains 
of each with (N − 1)-fold resonant conductance peaks for superlattices when  BR< 2.4 , 
or  dR< 0.4 or  dR> 0.6 , and the resonant domain’s width and the gap between these two 
domains are enlarged. The zero-conductance region widens as the values of  BR and  dR 
increase. The higher the degree of asymmetry of the unit cell structure is, the more drastic 
the deduction of the unit cell related conductance peak turns out,and the wider the gap 
between these two domains becomes. The domain gap in the actual device structure can 
bring about various graphene based electronic devices.

Finally, the shot noise during the transmission will be investigated. The shot noise is a 
consequence of the quantization of charge, which is useful to reveal information on trans-
mission beyond that contained in the conductance. Many researchers work on shot noise in 
graphene recently, and a convenient measure of shot nose is the Fano factor and it is given 
as follows: (Tworzydlo et al. 2006)

According to Eq. (22), the Fano factor F = 0 is the perfect transmission case while F = 1 
corresponds to the case when transmission is blocked.

Figures 7 and 8 show the Fano factor as a function of incident energy for 2 series of 
superlattices described in Figs. 3, and 4. It is found that the valleys in the Fano factor are 
associated with the peak in the conductance. There are (N − 1)-fold valleys in the Fano 
factor spectra for N-period superlattices, corresponding to the (N − 1)-fold peaks in con-
ductance, while a striking Poisson value plateaus of the Fano factor is formed in the lower 
energy region due to the conductance blockage. With a decrease in the righthand barrier’s 
height or width, the Poisson plateaus are broadened towards higher energy. 

(22)F =
∫ �∕2

−�∕2
TN

(
1 − TN

)
cos�0d�0

∫ �∕2

−�∕2
TNcos�0d�0
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Fig. 7  Fano factor versus Fermi energy for superlattices described in Fig. 3
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It is worth pointing out that the Eq. (13) is generic for all kinds of superlattices with 
unit of any combination of barriers and wells, including structures with two magnetic 
barriers/wells, or with two electric barriers, or with electric/magnetic composite double-
barriers. For an electrostatic potential Kronig-Penney superlattice: (Pham and Nguyen 
2015; Xu et al. 2014) its unit cell consists of a square electrostatic barrier of potential U 
with width  dB and a well of potential zero with width w. The transmission probability of 
unit cell is obtained as:

with kw =
√

E2 − k2
y
 , kU =

√
(E − U)2 − k2

y
 . It can be seen that the resonance occurs at 

 ky = 0 for normal incidence, which corresponds to the Klein tunneling, or  kBdB = 0 from 
 T1 = 1 for oblique incidence, corresponding to the Fabry–Perot resonance of a single elec-
trostatic barrier. The similar results have been obtained by Pham and Nguyen (2015) and 
Xu et al. (2014), respectively. Due to the Fabry–Perot resonant peak appearing frequently 
at the energy of allowed band, such a coexistence of both types of resonant peaks always 
leads to a confusion of the generic (N − 1)-fold resonance splitting effect.

For a biperiodic electric superlattice: (Sprung et al. 2008) its unit cell consists of two 
identical rectangular electric-barriers of potential height U of width  dB and two wells of 
potential zero of different widths,  wL and  wR,  (wL ≠ wR). The transmission probability of 
the unit cell is obtained as:

with

(23)T1 =

{
1 + sin2

(
kUdB

)[ kyU

kUkW

]2}−1

,

(24)T1 =
{
1 + sin2

(
kUdB

)
H2

}−1
,
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with kw =
√

E2 − k2
y
, kU =

√
(E − U)2 − k2

y
.

The unit cell’s length of the biperiodic superlattice is  dB + wL + dB + wR, while the trans-
mission probability of unit cell at resonance  T1 = 1 is determined by the symmetric double-
barrier structure  (UL + 0+UR). It does not change by varying the righthand well’s width. 
When  wR = wL, the biperiodic superlattice is reduced to a 2N-periods electric Kronig-Pen-
ney superlattice, while the unit cell consists of  (UL + 0) with the widths of  (dB + wL). As 
well’s widths  wL or  wR increases, all the periodicity related resonant peaks shift to the 
lower energy, and the peaks’ separation and the subband domain width become narrower 
accordingly. As the two well’s widths diverge from each other, the separation between 
these two domains becomes enlarged, which is in a good agreement with the energy band 
variation obtained in Peeters and Vasilopoulos (1989) and Vasilopoulos et al. (1990)

4  Conclusion

In summary, the resonance splitting effect of transmission through a one-dimensional 
finite N-periods superlattice with a unit of two barriers and two wells in graphene has been 
studied analytically and numerically in this paper. It is shown that there are two types of 
resonant peaks: (1) the periodicity induced resonant peaks splitting of (N − 1)-fold as N 
increases; and (2) the resonant peak through a unit cell remains unchanged as N varies. As 
these two barriers in a unit cell become asymmetrical, the resonance transmission prob-
ability of the unit cell becomes imperfect  (T1 < 1), and drops quickly as the its asymmetry 
increases. Therefore, the unit related resonant peak could only be observed in superlattices 
with less unit asymmetry, of a few period numbers. As the number of periods increase, the 
unit related resonant peak disappears and only periodicity induced (N − 1)-fold splitting 
remains.

Although the conclusion of this work is deduced based on an assumption of the Dirac 
electron, the (N − 1)-folds resonant peak splitting rule is guaranteed by the repeatability, 
and it is confirmed by peak splitting of ballistic conductance and shot noise. The analyt-
ical findings are generic and applicable to various kinds of finite  graphene superlattices 
regardless of electron nature, Schrodinger or Dirac electron, their potential types (electric 
or magnetic) and potential barrier shapes, single barrier or multiple barriers in a unit cell, 
even though electron tunneling in an electric superlattice is a one-dimensional process and 
that in a magnetic superlattice is inherently two-dimensional. It is believed that these phe-
nomena will be useful for the design of graphene based nanoelectronic devices, such as the 
multichannel electron wave filter.
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