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Abstract
In the infrared small target detection, the clutter formed by buildings, trees and protrud-
ing clouds is densely distributed and difficult to filter out. The hysteresis threshold detec-
tion algorithm utilizes the geometric features of small target to reduce false alarms. Images 
are filtered in multiple scales, the location and scale of the points of interest are extracted 
by non-maximum suppression. To determine the connection state of the focus and clut-
ter, local gradient second-order origin moment is proposed to eliminate strong edges. 
The hysteresis threshold segmentation is performed to exclude stubborn false alarms and 
detect small targets. Experiments show that the proposed algorithm has a significant effect 
in removing false alarms, and achieves both the high detection probability and low false 
alarm probability.

Keywords  Small target detection · Complex infrared image · Hysteresis threshold 
detection · Scale space · Local gradient second-order origin moment

1  Introduction

In the air defense early warning system, infrared small target detection is an enduring 
research hot spot. Infrared small target detection consists of preprocessing and threshold 
segmentation.

There are many research results of preprocessing algorithms. Classic algorithms such as 
TOPHAT (Zhao et al. 2013; Bai and Liu 2017) and wavelet (Zhao et al. 2015) are continu-
ously improved. Many interdisciplinary theories such as machine vision (Yang et al. 2015; 
Zhao et al. 2015), scale space theory (Dong et al. 2014) are also applied to infrared small 
target detection. Kim et al. (2009) applies the Laplacian of Gaussian (LOG) scale space to 
the extraction of small targets, models the small targets as Gaussian points, and extracts the 
targets by means of maximum fusion. Dong et al. (2014) filtered the image with difference 
of Gaussian (DOG) and simulated the visual attention mechanism through the Gaussian 
window to enhance the target. The LOG scale space theory can effectively enhance the 
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weak targets of different scales. But it also increases the false alarms similar to small tar-
gets. This is a problem that many small target detections cannot overcome.

Using geometric features is an effective way to detect small targets in complex back-
grounds. The local contrast measure (LCM) algorithm proposed by  Chen et  al. (2014) 
divides the adjacent rectangular region of the point of interest into nine squares, calculates 
the maximum of the contrast. It initially uses the geometric features on the small target 
neighborhood. Han et al. (2014) and Wei et al. (2016) extended the LCM algorithm by sub-
blocks and multi-level models to achieve comprehensive improvement in speed, detection 
probability, and false alarm probability. However, LCM did not consider the case where the 
mean value of the neighborhood is 0, which makes its practicality greatly reduced. Chen 
proposed the average absolute difference maximum (AADM) algorithm (Chen et al. 2007) 
to divide the adjacent rectangular region of the point of interest into four quadrants, cal-
culate the weighted mean respectively, and select the one with the minimum difference 
between the point and the quadrants mean. The algorithm ensures good processing for dif-
ferent brightness. Deng et al. (2016b) proposed three windows with different side lengths 
centered on the point of interest, calculate the variance of the pixels between two windows 
respectively, and enhance the target through the difference of the variance.  Deng et  al. 
(2016a) and Nasiri and Chehresa (2017) combines Average Gray Absolute Difference with 
local entropy to characterize the geometric features of the target. These methods make use 
of the difference in geometric features between the small target and the surrounding area, 
and mostly use the gray difference between the small target and the background clutter to 
measure the saliency of the image. However, these methods cannot distinguish points, lines 
and faces very well. Thus false alarms with higher gray level and gradient than the target 
are hard to exclude.  Qi et  al. (2013) utilizes the non-directionality of small targets, and 
uses four second-order directional derivative operators to calculate the saliency map of the 
image, which is good for targets enhancement. The method utilizes geometric features to 
obtain better detection results. However, it uses empirical threshold segmentation, which 
lacks practicality in dealing with specific images.

Threshold segmentation algorithm has fewer research results. Single threshold segmen-
tation and two-dimensional threshold segmentation are the most common segmentation 
methods. OTSU and maximum entropy segmentation are commonly used in threshold cal-
culations. However, it contains too many pixels in the foreground in small target detection, 
leaving a high false alarm probability. In most of the literature, the value of single thresh-
old segmentation depends on the empirical value, which hinders the popularization of the 
detection algorithm.

The use of hyperspectral information for small target detection is also a promising 
research direction  (Liu et  al. 2018).  Haskett et  al. (1999) describes an automatic target 
detection algorithm based on the sequential multi-stage approach.  DiPietro et  al. (2010) 
evaluate the performance of detection algorithms for sub-pixel objects using a replacement 
signal model, where the spectral variability is modeled by multivariate normal distribu-
tions. Wang et al. (2016) analyzed the short-wave infrared characteristics of the aircraft. 
Hyperspectral images contain infrared and visible spectrum, and their fusion detection 
results are significantly improved over a single band.

The letter proposed a multiscale hysteresis threshold detection algorithm for the infrared 
image with complex background. First, filter the image by LOG operator in multiple scales, 
and extract the coordinates and scales of the points of interest through nonmaximum sup-
pression. Then the local gradient second-order origin moment (LGSM) is used to deter-
mine whether there is an edge near the point of interest, and both the filtered image and 
LGSM feature are used to perform the hysteresis threshold detection. The double threshold 
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required for small target detection is calculated based on the principle of maximizing the 
interclass variance. Experiments show that in complex background, the hysteresis thresh-
old detection can effectively reduce the probability of false alarms under the premise of 
ensuring the probability of detection. It can also get the coordinates and scale of targets.

2 � Extract the geometric features of points of interest

The infrared image of a tactical missile occupies a much smaller number of pixels than 
8 × 8 , which is consistent with SPIE’s definition of small targets (Chen et al. 2014). At the 
same time, small targets do not have obvious shape and texture features. Detecting small 
targets requires the extraction of the geometric features of the isolated points.

The LOG operator is not only a kernel function of scale space, but also a non-direc-
tional gradient operator. The LOG operator can be used to enhance the small target and 
blur small-scale clutter. However, this operator cannot distinguish small targets with geo-
metric features of a point from clutters with geometric features of a line and a corner. In 
order to measure the geometric characteristics of the pixels to be inspected and determine 
whether the small targets are part of the clutter, this paper proposes the characteristics of 
local gradient second-order origin moments (LGSM). The geometrical characteristics of 
different targets were compared and analyzed.

2.1 � Limitations of the LOG operator

The basic idea of scale space is to introduce a scale factor into the visual information 
(image information) processing model.

The Laplacian Gaussian (LOG) kernel, extracts the feature of small targets in the image. 
The LOG scale space of the image can be represented as a convolution of the original 
image with the multiscale LOG kernel functions as shown below.

The LOG operator is a product of the Laplacian operator and the Gaussian operator. The 
LOG operator blurs the clutter of the image with a smaller scale than the operators and 
sharpens the high gradient image with an equivalent scale. It is assumed that the ideal 
small target model is a two-dimensional Gaussian function. The more similar the point is 
to the operator, the higher the response value is in the corresponding LOG scale space. A 
detailed image whose scale is smaller than the scale of the operator will be suppressed.

The models of the point, the line and the corner are shown in Fig. 1. The ideal point 
model includes: a blob, a line and a corner with the step edges, and a point, a line and a 
corner with the Gaussian edges. We have adjusted the maximum gray level of each point 
so that its response on the scale � = 2 is 0.1. The maximum gray level of the blob, the step 
edge line and the step edge corner are 0.5, 1.35 and 1. And the maximum gray level of the 
point, the Gaussian edge line and the Gaussian edge corner are 0.83, 1.11 and 2. Therefore, 
when the clutters have a similar or a higher gray level and a scale close to the small target, 
their scale space responses will be similar to the small targets. The geometric feature of the 
points of interest should to be extracted for more accurate detection.

(1)LOG� =
1

��4

(
1 −

x2 + y2

2�2

)
e−(x

2+y2)∕2�2

(2)L� = LOG� ∗ I
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Fig. 1   Original image, LOG scale space response and LGSM response of ideal points of interest. The charts 
of a blob, a line and a corner with the step edges are shown in the upper part. The maximum gray level A 
and the radius R

t
 of the points of interest are marked. The charts of a point, a line and a corner with the 

Gaussian edges are shown in the lower part. The maximum gray level A and the standard deviation �
t
 of 

the points of interest are also marked. In the original image, the red box marks the center pixel column of 
the points of interest. The scale space response of the pixel column on scales � and the LGSM response on 
inner and outer diameters r are shown below the original image
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2.2 � Local gradient second‑order origin moment

The key difference between a target and a false alarm point is the geometric feature on its 
adjacent area. The target point should have a higher gray level itself, and there should be no 
points with high gray levels or high gradients in the neighborhood. If a point is connected to 
the clutter, difference will occur between the low gradient region and the high gradient region 
generated by the clutters boundary. Points that are not adjacent to the clutter will not have 
this gradient difference. Therefore, we propose the indicator local gradient second-order origin 
moments(LGSM), which measures the gradient distribution on the target neighborhood.

LGSM measures the degree of dispersion of local gradient values. It is used to determine 
whether the point of interest is connected to the clutter. The indicator obtains the non-direc-
tional gradient value of the image by the LOG operator, and calculates the second-order ori-
gin moment of the gradient within the coverage. The LOG operator sharpens the edges by 
forming a peak on the side with high gray level, a valley on the side with low gray level, and 
0 at the center of the edge. The difference in gray levels on both sides of the edge will be 
magnified significantly. And the degree of divergence of the gradient map is calculated by the 
second-order origin moment.

As Fig. 2 shows, for a small target of scale �i , the annulus area �
(
�i, x0, y0

)
 takes the 

untested point 
(
x0, y0

)
 as the center, Ri = 2�i as the inner radius, and 3�i as the outer radius. 

�
(
�i, x0, y0

)
 determines the surrounding area of a point without disturbing the target.

The LGSM is based on gradients on all scales. We use the normalized gradient image Ig to 
calculate LGSM, which combines image gradients at different scales by taking the maxi-
mum value.

The second-order origin moment of all points on �
(
�i, x0, y0

)
 is the LGSM.

(3)𝛹
(
x0, y0

)
=
{
(x, y)|4𝜎2 <

(
x − x0

)2
+
(
y − y0

)2
≤ 16𝜎2

}

(4)Ig = max
i

⎡⎢⎢⎣
Ii

max
(x,y)

�
Ii
�
−max

(x,y)

�
Ii
�
⎤⎥⎥⎦

(5)
LGSM

�
x0, y0

�
=

∑
(x,y)∈�(�i,x0,y0)

�
Ig(x, y)

�2

12��2
i

�
x0, y0

�

Fig. 2   The calculation area for 
the LGSM. Data in the red annu-
lus area are is used to calculate 
the LGSM of the point of interest
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In which, 12��2
i

(
x0, y0

)
 is the area of � . In Sect. 2.1, we filtered the ideal points of inter-

ests by LOG operators. The LGSM of the ideal points are also shown in Fig. 1. The maxi-
mum of the scale space response of the blob is at its center, the corresponding LGSM is 
2.12 × 10−5 . The LGSM of the point is 6.13 × 10−6 . While the response of the step edge 
line, the step edge corner, the Gaussian edge line and the gaussian edge corner are 0.046, 
0.016, 0.013 and 0.019. Obviously, the LGSM shows significant distinguishing ability for 
point-like small targets and clutters. If there are edges or intense interference, the sharpen-
ing effect of the LOG operator will significantly amplify the LGSM.

3 � Multiscale hysteresis threshold segmentation

The multiscale hysteresis threshold segmentation uses both geometric features and gray 
level to segment the image, and uses nonmaximum suppression to extract small target 
coordinates, so that the segmentation result only contains small targets. The main steps 
include multiscale LOG filtering, nonmaximum suppression, and gradient map hysteresis 
threshold segmentation.

3.1 � Nonmaximum suppression

Threshold segmentation divides the image into foreground and background. In small target 
detection, the foreground consists of points of interest. After the segmentation, it is still 
necessary to extract the target center from the pixels occupied by the points of interest. 
With nonmaximum suppression, the gradient maximum point of the small target of a cer-
tain scale is approximated to the center of the target. And the pre-extraction of the target is 
completed directly before the segmentation, the number of foreground pixels obtained by 
segmentation is minimized. Coordinates and scales for the detection and further tracking 
and identification of targets.

The steps are as follow:
Step 1 Single-scale suppression. Image Ii is the LOG scale space output of the original 

image I on scale �i . Traverse Ii to determine if any point is a maximum point in its certain 
neighborhood. i = 1, 2,… ,N , where N is the number of scales.

For the jth nonzero point 
(
xj, yj

)
 on image Ii on scale �i , create mask

(
Ri, xj, yj

)
:

where 
(
xj, yj

)
 is the central coordinate of the mask, and Ri is the maximum radius of the 

detectable point on scale �i.
The suppression region �j is delimited by mask

(
Ri, xj, yj

)
 . Suppress the nonmaximum 

points using formula (7)

where Imasked
i,j

= Ii ⋅ mask
(
Rmax, xj, yj

)
.

(6)mask
(
Ri, xj, yj

)
=

{
1 when

(
x − xj

)2
+
(
y − yj

)2
≤ Ri

0 when
(
x − xj

)2
+
(
y − yj

)2
> Ri

(7)I
assigned

i

(
xj, yj

)
=

{
0 ∃k, I

i

(
xj, yj

)
< Imasked

i,j

(
xk, yk

)
I
i

(
xj, yj

)
∀k, I

i

(
xj, yj

)
≥ Imasked

i,j

(
xk, yk

)
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Figure 3 shows the flow of single-scale suppression. The suppressed image Iassigned
i

 
consists of a sequence of discrete nonzero points. The distance between any two is 
greater than the radius Ri , which avoids multiple responses on the same scale.

Step 2 To obtain the points of interest, segment Iassigned
i

 into ITH
i

 with threshold TH.

Step 3 Multiscale suppression. There may still be multiple detection phenomena among 
points on different scales. The shape and gray distribution of the targets are different from 
those of the Gaussian points. Peaks may appear on small scales. Determine if the points of 
interest on the smaller scale are within the radius of a larger scale point. If this is the case, 
consider the point as the texture detail inside the target and assign it to 0. After the fusion 
detection of multiscale points of interest, multiple responses can be eliminated, and each 
point of interest is determined by the central coordinates and scale.

If i < Nscale , obtain the periodically global suppressed image Isuppressed
i

:

In which, s
(
�i
)
 is a binary operator to shade a circular region from detection, and (∗) repre-

sents the convolution operation.

Figure 4 shows the flow of multiscale suppression. After the multiscale suppression, 
the output image sequence is Isup

i
, i = 1, 2,… ,N . The discrete nonzero points in each 

image are corresponded to a point of interest on the relevant scale.
Although nonmaximum suppression can effectively solve the problem of multiple 

responses, the single-scale suppression contains 3 loops, which costs much in terms of 
time and computation. Therefore, the grid nonmaximum suppression is proposed. The 
steps are as follow:

Step 1 As shown in the Fig. 5, the image is meshed into rectangular cells by a length 
of l = 2Rmax∕3 . Cells have a total of Mcell rows and Ncell columns. Every 4 adjacent cells 

(8)ITH
i

=

{
1 when I

assigned

i
≥ TH

0 when I
assigned

i
< TH

(9)I
suppressed

i
=

⎧⎪⎨⎪⎩
ITH
i

⋅ Ii ⋅
Nscale∏
h=i+1

�
1 − ITH

h
∗ s

�
𝜎h
��

when i < Nscale

ITH
i

⋅ Ii when i = Nscale

(10)s
(
𝜎i
)
=

{
1 when x2 + y2 ≤ 2𝜎i
0 when x2 + y2 > 2𝜎i

Fig. 3   Flow chart of single-scale nonmaximum suppression
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are combined into a window. Windows have a total of 
(
Mcell − 1

)
 rows and 

(
Ncell − 1

)
 

columns. Thus a cell will be contained in 4 windows.
Step 2 Search for the maximum value in the window, and mark it on the image Imark

i
.

Find the maximum point Pm,n in window of the mth row and nth column, whose coor-
dinates are 

(
l(m − 1) + xm,n, l(n − 1) + ym,n

)
 , where xm,n , ym,n are the coordinates of Pm,n 

inside the window. Increase the value
Imark
i

(
l(m − 1) + xm,n, l(n − 1) + ym,n

)
 by 1. The initial value of Imark

i
 is 0. Repeat the 

search in all windows.
Step 3 Points marked four times are used as the output of the nonmaximum suppres-

sion. The binarized image Imark−4
i

 describes whether a point is the output of the suppression 
algorithm.

The suppressed image Ia
i
ssigned is shown as follows:

The optimized algorithm replaces the circular mask with a rectangle mask, decreasing the 
amount of computation. Given the number of all points in the image as S, the original 

(11)Imark−4
i

=

{
1 when Imark

i
= 4

0 others

(12)I
assigned

i
= Ii ⋅ I

mark−4
i

Fig. 4   Flow chart of multiscale suppression

Fig. 5   Every 4 adjacent cells 
are combined to form a sliding 
window (blue shadow)
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algorithm has 3 circles, which requires approximately 4�R2
max

S comparison operations. 
The optimized algorithm requires 4S comparison operations. Experiments on multiple 
images show that the average operation time is shortened from 2.866 to 0.2700 s, and the 
suppression effect is almost the same as the original algorithm.

3.2 � Hysteresis threshold segmentation based on LGSM

Hysteresis threshold segmentation detects a target using two gray level thresholds and two 
LGSM thresholds. The segmentation intends to automatically select different thresholds to 
detect the points of interest. Blob-like points use a low threshold (loose threshold). While the 
points that may be connected to clutters use a high threshold (strict threshold). The points 
with a gray level higher than the high threshold is detected as the real ones. As for the points 
with a gray level between the two thresholds, we can determine whether the requirement of 
a low gray level and low gradient is satisfied by LGSM. A point satisfies the strcit LGSM 
threshold(low threshhold) will also be judged as a real target.

Therefore, the segmentation is expressed as follows:
Step 1 The filtered and suppressed image Isup

i
 of scale �i should be segmented using the 

thresholds Thlow_gray
i

 and Thhigh_gray
i

 
(
Th

low_gray

i
< Th

high_gray

i

)
 . In formula (8) the threshold 

TH = Th
low_gray

i
 , which is used to determine whether a point is a point of interest for multi-

scale suppression. The results are shown as sets of points Dloose_gray

i
 and Dstrict_gray

i
.

Step 2 Use the thresholds Thhigh_LGSM
i

 and Thlow_LGSM
i

 
(
Th

low_LGSM

i
< Th

high_LGSM

i

)
 to seg-

ment the LGSM of the targets, and obtain sets of points Dloose_LGSM and Dstrict_LGSM.

Step 3 The results of the test are:

The threshold should be adaptively based on the image. Maximizing interclass variance is 
the most common method for threshold calculation. However, it is meant for binarization 
of images, and small targets detection requires a higher threshold. We use the threshold 
that follows this principle as a low threshold and set a high threshold based on it:

(13)D
loose_gray

i
=
{
(x, y)|Thhigh_gray

i
≥ Ii(x, y) > Th

low_gray

i

}

(14)D
strict_gray

i
=
{
(x, y)|Ii(x, y) > Th

high_gray

i

}

(15)Dloose_LGSM =
{
(x, y)|Thhigh_LGSM ≥ LGSM(x, y) > Thlow_LGSM

}

(16)Dstrict_LGSM =
{
(x, y)|LGSM(x, y) ≤ Thlow_LGSM

}

(17)
(
Dloose_LGSM

⋂
D

strict_gray

i

)⋃(
Dstrict_LGSM

⋂
D

loose_gray

i

)

(18)Th
low_gray

i
= argmax

T

[
�O(T)

1 − �O(T)
×
(
�O(T) − �(T)

)2]

(19)Th
high_gray

i
= � ⋅

[
max

(
Ii
)
− Th

low_gray

i

]
+ Th

low_gray

i
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In which �O is the probabilities of the foreground, �O is the expected value of the fore-
ground, � is the expected value of the whole image, and � is the adjustment parameter 
determined by experiments, which is taken as 0.4.

The LGSM itself can be viewed as a simplified variance on �  . �  covers the possible 
edge clutter regions and nonclutter regions around the point. The nonclutter region 
occupies most of the entire image, while the edge clutter region occupies a smaller 
portion of the entire image. Therefore, the second-order origin moment of the entire 
image can be used as a low threshold for target detection.

In which,  is the set of all the points in the image Ig , and S is the number of all points in 
the image.

The optimal threshold for image Ig can be obtained by maximizing the interclass 
variance between the foreground and the background. It can be assumed that most of 
the foreground area is composed of edge clutter regions, and a small part is composed 
of nonclutter regions. Therefore, the intra-class second-order origin moment of the 
foreground can be used as the loose threshold of the target detection.

In which,  is the set of points in the foreground, and SO is the number of all points in the 
foreground.

To verify the performance of the algorithm, we performed a simulation on ideal 
targets and clutters. In the upper part of Fig. 6, the small target detection in the simple 
background is carried out. In the image, the left column shows the small targets with 
the step edges, the right column shows the small targets with Gaussian edges, all the 
targets are sorted by radius or standard deviation.

As Fig. 6 shows, targets larger than 8 × 8 have higher LGSM and will be excluded. 
The points of interest obtained by non-central suppression are also shown in the phased 
results, and each target corresponds to a unique detection point. The LOG operator has 
limited performance in enhancing the target, the detection probability of the small tar-
get under the condition of low signal to noise ratio(SNR) can be enhanced by other 
preprocessing algorithms.

The lower part of Fig. 6 is for small target detection in complex backgrounds, where 
the targets are the same as the upper part, and the complex background contains lines 
and corners of different edges and scales. The background contains lines and angles as 
clutter, and in the case of higher signal-to-clutter ratio(SCR), It is still able to detect 
small targets and eliminate the interference of clutter at the same time. Grayscale 
and LGSM are simultaneously used as the basis for segmentation, which effectively 
improves the performance of small target detection under complex background.

(20)
Thlow_LGSM =

∑
(x,y)∈

�
Ig(x, y)

�2

S

(21)
Thhigh_LGSM =

∑
(x,y)∈

�
Ig(x, y)

�2

SO
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3.3 � Experiment and analysis

In order to verify the research ideas and compare the image effects before and after 
restoration, the following experiments were designed and carried out. We uses a Long-
wavelength infrared (LWIR) detector with a working band of 8–14 µm. The Noise-
equivalent temperature difference (NETD) of the detector is 110 mK, and the Minimum 
resolvable temperature difference (MRTD) is 580 mK. The NETD is much smaller than 
the MRTD of the detector. Therefore, the system random noise will not affect the image 
quality.

During the experiment, the drone hovered in the air, and the infrared lens was mounted 
on the ground. The height of the pan-tilt is relatively negligible relative to the height of 
the drone. The take-off position of the drone is 350 m to 500 m from the camera, and the 
hovering height of the vertical take-off is 100 m. Therefore, the linear distance between the 
drone and the infrared lens is about 364 to 509 m. According to the principle of camera 
imaging, it can be calculated that the size of the drone on the photosensitive element is 
about 0.1187 mm , less than 8 pixels, which meets the definition of small targets.

Four infrared image sequences are selected according to the type of interferences they 
contain, as well as the size and intensity of the small targets. The left column in Fig. 7 
show one frame of each sequence. Images I and II contain the background of buildings and 
trees. Image III contains a small amount of background of buildings and trees. Image IV 
contains a small amount of cloud background and two targets, a strong one and a weak one. 
The phased results and final results are shown in Fig. 8. TOPHAT background suppres-
sion (Qi et al. 2013), NWIE (Deng et al. 2016b), AADM (Chen et al. 2007) and DOG (Han 
et al. 2014) algorithms are selected as the control group. The comparison of the experi-
mental results of different algorithms are shown in Fig. 8.

Original Image
with Complex Background

Result
SNR=8,SCR=1

Result
SNR=8,SCR=0.5

Result
SNR=8,SCR=0.25

Result
SNR=8,SCR=0.125

Original Image
with Simple Background

Result
SNR=32

Result
SNR=16

Result
SNR=8

Result
SNR=4

1
2
3
4
5
6
7

1
1.5
2

2.5
3

3.5
4

Radius Standard
Deviation

TargetsClutters

Clutters

Fig. 6   Original Image, phased result (upper) and compact result (lower) of the proposed algorithm. The 
smaller box represents the detection result of the multiscale LOG operator, and the larger circle represents 
the test result of the LGSM. The red mark means that the strict condition is met, and the green mark means 
that only the loose condition is satisfied
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In the phased results in Fig. 7, the smaller box represents the detection result of the mul-
tiscale LOG operator, and the larger circle represents the test result of the LGSM. The red 
mark means that the strict condition is met, and the green mark means that only the loose 
condition is satisfied. The column of Final Results show a compact representation of the 
results. The marked points satisfy the hysteresis threshold condition.

Images I, II and III contain the interference of strong edges including buildings and 
trees, and the proposed algorithm shows a strong ability to eliminate false alarms, false 
alarms within a strong edge cannot pass the LGSM threshold, yet real targets have lower 
LGSM. For the targets of low gray level, a loose threshold can guarantee that the targets be 
detected. Image IV contains interference of high gray level but weaker edges than the for-
mer ones, therefore the adaptive threshold of LGSM may be strict to fill. In this situation, 
points with higher gray level should be detected.

I-Original Image I-phased results I-Final Results

II- Original Image II-phased results II-Final Results

III- Original Image III-phased results III-Final Results

IV- Original Image IV-phased results IV-Final Results

Fig. 7   phased results and final results of proposed algorithm. I, II, III, VI represent the sampling frames of 
4 respective sequence. phased results show the phased detection results using dual threshold segmentation 
on the gray level and the LGSM. Final Results show the results of the hysteresis threshold segmentation
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I-Original Image I-TOPHAT I-NWIE

I-AADM I-DOG I-proposed algorithm

II-Original Image II-TOPHAT II-NWIE

II-AADM II-DOG II-proposed algorithm

III- Original Image III-TOPHAT III-NWIE

III-AADM III-DOG III-proposed algorithm

IV-Original Image IV-TOPHAT IV-NWIE

IV-AADM IV-DOG IV-proposed algorithm

Fig. 8   Small target detection results. I, II, III, VI represent the sampling frames of 4 respective sequences
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In Fig. 8, the original image and results obtained using TOPHAT background suppres-
sion, NWIE, AADM, DOG and the proposed algorithm are presented. Some algorithms 
do not include a threshold value method. Therefore, the paper uses the maximum entropy 
method for segmentation.

The information of the image detection results is shown in Table. 1.
In images I, II and III, TOPHAT background suppression, AADM, and LOG algorithms 

fail to detect target points, and some false alarm points are detected. The multiscale hyster-
esis threshold detection algorithm detects the target point without a false alarm in images 
I and II and detects the target point with a false alarm in image III. Image IV contains a 
highlighted cloud layer and two targets. Due to the existence of strong targets, TOPHAT 
and AADM fail to detect the weak targets by maximum entropy threshold segmentation. 
The hysteresis threshold algorithm detects both targets with 4 false alarms. The NWIE 
algorithm works poorly on images with a complex background, detecting false alarms in a 
cluster from images I, II and IV with no targets detected.

The proposed algorithm does cost more time than the TOPHAT and DOG methods, but 
is equal to the AAGM, a state-in-art algorithm.

In Fig. 9, we changed the threshold of each detection algorithm and plotted the ROC 
curve of each image sequence according to the detection probability and false alarm proba-
bility. Since the NWIE algorithm works poorly in complex infrared images, the ROC curve 
is not calculated.

In the case of single threshold segmentation, the univariate algorithm makes the ROC 
curve a monotonically increasing curve. Since the proposed algorithm uses dual thresholds 
on two variables, when different thresholds are traversed, abnormal situations may occur 
when there is an inappropriate match between the thresholds. The same false alarm prob-
ability corresponds to different detection probabilities, or the high false alarm probability 
corresponds to a low detection probability. Therefore, the ROC of the proposed algorithm 
is not a monotonically increasing curve.

Table 1   Statistics of small target detection

Algorithm I II

P
d

P
f

False alarm in 
cluster

t (ms) P
d

P
f

False alarm in 
cluster

t (ms)

TOPHAT 0 1 5.29 0 1 5.78
NWIE 0 1› ✓ 512 0 1 ✓ 513
AADM 0 1 192 0 1 191
DOG 0 1 33.1 0 1 ✓ 31.2
Proposed 1 0 217 1 0 216

Algorithm III IV

P
d

P
f

False alarm in 
cluster

t (ms) P
d

P
f

False alarm in 
cluster

t (ms)

TOPHAT 0 1 ✓ 5.57 0.5 0 4.09
NWIE 0 1 529 0 1 ✓ 561
AADM 0 1 194 0.5 0.5 217
DOG 0 1 ✓ 35.5 0.5 0 32.3
Proposed 1 0.5 223 1 0.6 219
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In I, II, and III, the ROC of the proposed algorithm is much higher than the other 
algorithms. In II and III, with the change of the threshold, the maximum probability of 
detection of the target by the proposed algorithm exceeds other algorithms. This finding 
means that the proposed algorithm can detect small targets that other algorithms cannot 
detect, and the detection ability for small targets is much higher than for the others.

In IV, when the false alarm probability is lower than 0.15, the proposed algorithm 
has no obvious advantage. However when the false alarm rate is high, the detection 
probability of the proposed algorithm is still much higher than other algorithms. The 
gradient change in the highlighted cloud background is small, making the LGSM adap-
tive threshold lower. The small target is more likely to be judged as a high LGSM point 
and be segmented using the high gray threshold. This results in a lower detection prob-
ability than the others. When the threshold values becomes loose, the target is more 
likely to be judged as a low LGSM point, and be segmented using the low gray thresh-
old. This phenomenon leads to a rapid rise in the probability of detection. and explains 
why the maximum value of the detection probability is superior to other algorithms. 
Since the blob-like points use a low gray threshold for segmentation, the proposed algo-
rithm can detect weaker targets that other algorithms cannot, and obtains a higher detec-
tion probability.

The multiscale hysteresis threshold detection algorithm has a significant suppression 
effect on complex backgrounds such as buildings, trees and highlighted clouds. Experi-
ments show that the calculation time of the algorithm is comparable to the state-in-art 
algorithms. At the same time, the hysteresis threshold detection algorithm extracts the 
coordinates and scales and eliminates the multiple detection, which is beneficial for ver-
ification or tracking on the basis of the small target detection results.

Fig. 9   ROC curve of the image sequence detection results. I, II, III, VI represent the sampling frames of 4 
sequences
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4 � Conclusion

The LGSM indicator is proposed to measure the geometric features in the neighborhood of the 
point of interest. Combined with the scale space theory and the LGSM, a multiscale hyster-
esis threshold detection algorithm is proposed to eliminate stubborn false alarms. We measure 
the local neighborhood gradient of the image on multiple scales, set the hysteresis thresholds, 
eliminate the false alarms from buildings, trees and clouds, and achieve the detection of a low 
gray level target. Experiments show that the algorithm works satisfactorily on removing false 
alarms, and maintains a high detection probability and a low false alarm probability in a com-
plex background.
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