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Abstract
In this paper, the quintic derivative nonlinear Schrödinger equation is investigated into 
two main aspects. Firstly, a series of solutions of this equation are derived. More specifi-
cally, the singular solitons and dark solitons are obtained by using the ansatz method. The 
explicit power series solutions for the equation has also been constructed by employing 
power series method. Secondly, linear stability analysis is applied to estimate the stability 
of the equation. Finally, all solutions are presented via 3-dimensional plots with choices 
some special parameters to show the dynamic characteristics.

Keywords The quintic derivative nonlinear Schrödinger equation · Singular solitons · Dark 
solitons · The explicit power series solutions · Stability analysis

1 Introduction

The application of nonlinear evolution equations (NLEEs) has covered in the filed of math-
ematical physics and engineering, and their solutions which are important for describing 
nonlinear physical phenomena. In almost all the branches of physics, such as plasma physics 
and optical fibers (Moslem 2011; Bailung et al. 2011), the traces of NLEEs can be found. 
Solitons have been defined by physical system in early work and these solutions of nonlinear 
dispersive partial differential equations are also very important in the study of physical phe-
nomena (Zhang and Ma 2015a, b; Liu et al. 2018; Ma 2015; Jiangen et al. 2017; Deng and 
Gao 2017; Ji-Guang et al. 2015; He et al. 2013). Recently, more and more studies have found 
that optical solitons in optical fibers with nonlinearity can be described well by the nonlin-
ear Schrödinger (NLS) equation (Zhang and Si 2010; Trombettoni and Smerzi 2001; Biswas 
and Konar 2006; Biswas 2003; Dai et al. 2010; Belmonte-Beitia et al. 2008; Agrawal 2000; 
Gangwar et al. 2007; Krishnan et al. 2015; Sardar et al. 2016; Mirzazadeh et al. 2015, 2016). 
Optical solitons can be structured by a variety of different approaches, including the sine-
cosine method (Yan 2001), the tanh–coth method (Heris and Lakestani 2013; Manafian Heris 
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and Lakestani 2014; Wazwaz 2006), inverse scattering transformation (Ablowitz et al. 1974), 
the symbol calculation method (Tian and Zhang 2010; Tian 2017) and so on. Not only that, 
but the symmetries, Bäcklund transformation, conservation laws and Darboux transformation 
(Latha and Vasanthi 2014) of the nonlinear Schrödinger (NLS) equation also deserve our 
attention and research. Modulation instability (MI) analysis often be used to analyze whether 
the modulated envelopes are modulationally stable or not (Moslem et al. 2011). This is of 
great significance to our research.

In this paper, we mainly studied the quintic derivative nonlinear Schrödinger equation 
(Rogers and Chow 2012). The models can be found in various physical contexts, includ-
ing the study of hydrodynamic wave packets and media with negative refractive index. In 
hydrodynamics, packets of free surface waves are governed by the nonlinear Schrödinger 
equation to leading order. However, cubic nonlinearity weakens in the parameter regime 
kh ≈ 1.363 , where k is the wave number and h is the water depth considerably, and higher 
order effects need to be restored (Grimshaw and Annenkov 2011). Then, produce a quintic 
DNLS equation is necessary. Many aspects of this equation are described in other papers. 
For example, some new exact chirped soliton solutions are obtained by applying the new 
method to the quintic derivative nonlinear Schrödinger equation (Triki and Wazwaz 2017). 
But the same type articles are not found when compared with this paper. On the basis of 
previous work, some new solutions of this equation have not yet been obtained and modu-
lation instability have not been studied.

The paper is organized as follows. In Sect. 2, we introduce the ansatz method to derive 
the singular solitons and dark solutions of the quintic derivative nonlinear Schrödinger equa-
tion. In Sect. 3, the explicit power series solutions for the equation has also been obtained by 
employing power series method. In Sect. 4, linear stability analysis is used to analyze modula-
tion instability and prove the dark solitons are stable. we investigate the modulation instability 
(MI) analysis of the equation. In Sect. 5, conclusions and discussions will be given.

2  Mathematical analysis

In this section, the quintic derivative nonlinear Schrödinger equation is given by Rogers and 
Chow (2012)

Introduce the following hypothesis

where

in which � , � , � , x0 and �0 are real constants. Substituting Eq. (2.2) into Eq. (2.1) and sepa-
rating the real and imaginary parts. The imaginary part can be derived as

while the real part is

Equation (2.5) can be reduced to the following form by integrating with respect to �

(2.1)iqt + �qxx + i�|q|2qx + �|q|2q + �|q|4q = 0.

(2.2)q(x, t) = u(�)ei�(x,t),

(2.3)� = x − �t + x0, � = −�x + �t + �0,

(2.4)� + 2�� = �u2,

(2.5)�u
��

− (� + ��2)u + (�� + �)u3 + �u5.
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where C is integration constant. Setting

Then, Eq. (2.6) can be written as

Let u2 = v and u�

=
1

2u
v
� into Eq. (2.8), we have

2.1  Singular solitons

In the section, we consider the ansatz method to get the singular solitons solutions for the 
quintic derivative nonlinear Schrödinger equation. Assuming the following ansatz

where � is the wave number and � , � , n are parameters to be determined later. The deriva-
tive of Eq. (2.10) can be represented as

Substituting Eq. (2.10) into the imaginary part Eq. (2.4), we have

then

What is more, we can get the transforms of Eq. (2.9) by substituting Eqs. (2.10) and (2.11) 
into Eq. (2.9)

By balancing the highest-order exponents of csch2n+2(��) and csch4n(��) functions, we get

(2.6)(u
�

)2 −
(� + ��2)

�
u2 +

(�� + �)

2�
u4 +

�

3�
u6 + 2C = 0,

(2.7)d1 =
(� + ��2)

�
, d2 =

(�� + �)

�
, d3 =

�

�
, d4 = 2C.

(2.8)(u
�

)2 − d1u
2 + d2

u4

2
+ d3

u6

3
+ d4 = 0.

(2.9)(v
�

)2 − 4d1v
2 + 2d2v

3 +
4

3
d3v

4 + 4d4v = 0.

(2.10)f (�) = �cschn(��),

(2.11)

f
�

(�) = −�n�cschn(��) coth(��),

f
��

(�) = �n�2
[
(n + 1)cschn+2(��) + ncschn(��)

]
,

f
���

(�) = −�n�3
[
(n + 1)(n + 2)cschn+2(��) + n2cschn(��)

]
coth(��),

… .

(2.12)csch
2n(��) =

� + 2��

��2
= 0,

(2.13)� = −2��.

(2.14)
�2n2�2csch2n+2(��) + �2n2�2csch2n(��) − 4d1�

2csch
2n(��)

+ 2d2�
3csch

3n(��) +
4

3
d3�

4csch
4n(��) + 4d4�csch

n(��) = 0.

(2.15)2n + 2 = 4n ⇔ n = 1.
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Therefore, the Eq. (2.14) can be written as

Collecting the coefficients of the same exponent of cschi(��) to zero ( i = 1, 2, 3, 4 ), we have

Solving the system above, we get

where must be satisfied

Substituting the Eqs. (2.13) and (2.18) into Eq. (2.10), the ansatz f (�) can be represented 
as follows

Finally, the singular solitons solutions for the quintic derivative nonlinear Schrödinger 
equation can be alternatively written as

Figure 1 showed that the profile of the squared of module ( |q(x, t)|2 ) of Eq. (2.21) of the 
quintic derivative nonlinear Schrödinger equation.

2.2  Tanh–coth method

In the section, we introduce the new independent variable reads

where f (�) = U(�) . The derivative of Eq. (2.22) can be represented as

(2.16)
�2�2csch4(��) + �2�2csch2(��) − 4d1�

2csch
2(��)

+ 2d2�
3csch

3(��) +
4

3
d3�

4csch
4(��) + 4d4�csch(��) = 0.

(2.17)4d4� = 0, �2 − 4d1 = 0, −4d1�
2 = 0, �2 +

4

3
d3�

2 = 0.

(2.18)� = 2

√
(� + ��2)

�
, � =

√
−
3(� + ��2)

�
,

(2.19)𝜙(𝜔 + 𝜙𝜏2) > 0, 𝜐(𝜔 + 𝜙𝜏2) < 0.

(2.20)f (�) =

�
−
3(� + ��2)

�
csch

1

2

⎛⎜⎜⎝
2

�
(� + ��2)

�
(x + 2��t + x0)

⎞⎟⎟⎠
.

(2.21)q(x, t) = ei(−�x+�t+�0)

�
−
3(� + ��2)

�
csch

1

2

⎛⎜⎜⎝
2

�
(� + ��2)

�
(x + 2��t + x0)

⎞⎟⎟⎠
.

(2.22)g(�) = tanh(�),

(2.23)

dU

d�
= (1 − g2)

dU

dg
,

d2U

d�2
= −2g(1 − g2)

dU

dg
+ (1 − g2)2

d2U

dg2
,

d3U

d�3
= 2(1 − g2)(3g2 − 1)

dU

dg
− 6g(1 − g2)2

d2U

dg2
+ (1 − g2)3

d3U

dg3
,

… .
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Taking the solution of Eq. (2.9) has the following form

where ak and bk are arbitrary constant. Eq. (2.9) can be expressed in the form by substitut-
ing Eqs. (2.2) and  (2.23) into Eq. (2.9)

The parameter q of Eq. (2.25) can be derived by balancing the highest-order exponents of 
U4

1
 and ( dU1

dg
)2 , we get

Then, we obtain

Substituting Eq. (2.27) into Eq. (2.25) and collecting the coefficients of the same exponent 
of gk to zero(k = −4,−3,−2,−1, 0, 1, 2, 3, 4 ), we get a set of algebraic equations

(2.24)U(�) =

q∑
k=0

akg
k +

q∑
k=1

bkg
−k,

(2.25)(1 − g2)2
(
dU1

dg

)2

− 4d1U
2

1
+ 2d2U

3

1
+

4

3
d3U

4

1
+ 4d4U1 = 0.

(2.26)4q = (q + 1)2 ⇔ q = 1.

(2.27)
U1 = a0 + a1g + b1g

−1,

U
�

1
= a1 − b1g

−2.

Fig. 1  The squared of module of Eq. (2.21) at w = 1 , � = 1 , � = 1 , � = 1
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Solving the system above, we get

Substituting Eqs. (2.13) and (2.29) into Eq. (2.27), we have

Therefore, the solution for the quintic derivative nonlinear Schrödinger equation can be 
written as (Fig. 2)

3  The explicit power series solutions

Using assumption as follows

(2.28)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4

3
d3b

4

1
− b2

1
= 0,

16

3
d3a0b

3

1
+ 2d2b

3

1
= 0,

6d2a0b
2

1
+ 8d3a

2

0
b2
1
+

16

3
d3a1b

3

1
+ 2a1b1 − 4d1b

2

2
+ 2b2

1
= 0,

− 8d1a0b1 + 6d2a
2

0
b1 + 6d2a1b

2

1
+

16

3
d3a

3

0
b1 + 4d4b1 + 16d3a0a1b

2

1
= 0,

12d2a0a1b1 + 16d3a
2

0
a1b1 − 8d1a1b1 + 8d3a

2

1
b2
1
− 4a1b1 +

4

3
d3a

4

0
+ 4d4a0

− a2
1
− b2

1
− 4d1a

2

0
+ 2d2a

3

0
= 0,

− 8d1a0a1 + 6d2a
2

0
a1 + 6d2a

2

1
b1 +

16

3
d3a

3

0
a1 + 4d4a1 + 16d3a0a

2

1
b1 = 0,

6d2a0a
2

1
+ 8d3a

2

0
a2
1
+

16

3
d3a

3

1
b1 + 2a1b1 − 4d1a

2

1
+ 2a2

1
= 0,

16

3
d3a0a

3

1
+ 2d2a

3

1
= 0,

4

3
d3a

4

1
− a2

1
= 0.

(2.29)a0 = −

�
3

d3
, a1 = b1 = −

�
3

4d3
, d1 = −4, d2 =

8
√
3d3

3
, d4 = 0.

(2.30)U1(�) =

{
−

√
3

4d3

[
2 + tanh(x + 2��t + x0) + coth(x + 2��t + x0)

]}
1

2

.

(2.31)

q(x, t) = ei(−�x+�t+�0)

{
−

√
3

4d3

[
2 + tanh(x + 2��t + x0) + coth(x + 2��t + x0)

]}
1

2

.

(3.1)q(x, t) = p(�)ei(�1x+�t+�0),
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where p(�) = p(l1x − vt + �1) is a real-valued function. We substitute Eq. (3.1) into Eq. 
(2.1), one can get

in which G1 = �l2
1
 , G2 = −iv + 2i��1l1 , G3 = i�l1 , G4 = −�2

1
� + i� , G5 = −��1 + � . Now, 

we consider the form of solutions of Eq. (3.2)

Putting Eq. (3.3) into Eq. (3.2), we get

When n = 0 , we can derived

(3.2)G1p
��

+ G2p
�

+ G3p
2p

�

+ G4p + G5p
3 + �p5 = 0,

(3.3)p(�) = c0 + c1� + c2�
2 +⋯ =

∞∑
n=0

cn�
n.

(3.4)

2G1c2 + G1

∞∑
n=1

(n + 1)(n + 2)cn+2�
n + G2c1 + G2

∞∑
n=1

(n + 1)cn+1�
n + G3c

2

0
c1

+ G3

∞∑
n=1

n∑
i=0

(n − i + 1)cqci−qcn−i+1�
n + G4c0 + G4

∞∑
n=1

cn�
n + G5c

3

0
+ �c5

0

+ G5

∞∑
n=1

n∑
i=0

i∑
q=0

cqci−qcn−i�
n + �

∞∑
n=1

n∑
i=0

i∑
q=0

q∑
r=0

r∑
a=0

cacr−acq−rci−qcn−i�
n = 0.

(3.5)c2 =
−(G2c1 + G3c

2

0
c1 + G4c0 + G5c

3

0
+ �c5

0
)

2G1

,

Fig. 2  The squared of module of Eq. (2.31) at � = 1 , � = 1 , � = 1 , x
0
= 0
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where 2G1 ≠ 0 . When n ≥ 1 , we have

According to the Eq. (3.6), cm (m = 3, 4, 5,…) can be derived. For example

It is generally true that the power series solution has no practical significance for the Eq. 
(2.1). Therefore, it is necessary to prove the convergence of the power series solution. 
Based on the results provided in Rudin (2004), the Eq. (3.6) can be enlarged as

in which K = max{|G2|, |G3|, |G4|, |G5|, |v|} . Then we introduce a new power series as 
follows

From what has been discussed above, we have

(3.6)

cn+2 =
1

G1(n + 1)(n + 2)

[
G2(n + 1)cn+1 + G3

n∑
i=0

i∑
q=0

(n − i + 1)cqci−qcn−i+1

+G4cn + G5

n∑
i=0

i∑
q=0

cqci−qcn−i + �

n∑
i=0

i∑
q=0

q∑
r=0

r∑
a=0

cacr−acq−rci−qcn−i

]
.

(3.7)

c3 =
1

6G1

[
2G2c2 + G3(2c

2

0
c2 + 2c0c

2

1
) + G4c1 + 3G5c

2

0
c1 + 5�c4

0
c1
]

=
1

6G1

[
(2G2 + 2G3c

2

0
)

(
−(G2c1 + G3c

2

0
c1 + G4c0 + G5c

3

0
+ �c5

0
)

2G1

)

+ 2G3c0c
2

1
+ G4c1 + 3G5c

2

0
c1 + 5�c4

0
c1
]
.

(3.8)

|cn+2| ≤ K

[
|cn+1| +

n∑
i=0

i∑
q=0

|cq||ci−q||cn−i+1| + |cn| +
n∑
i=0

i∑
q=0

|cq||ci−q||cn−i|

+

n∑
i=0

i∑
q=0

q∑
r=0

r∑
a=0

|ca||cr−a||cq−r||ci−q||cn−i|
]
,

(3.9)B(�) =

∞∑
n=0

bn�
n, bi = |ci|, (i = 0, 1,…).

(3.10)

bn+2 = K

[
|cn+1| +

n∑
i=0

i∑
q=0

|cq||ci−q||cn−i+1| + |cn| +
n∑
i=0

i∑
q=0

|cq||ci−q||cn−i|

+

n∑
i=0

i∑
q=0

q∑
r=0

r∑
a=0

|ca||cr−a||cq−r||ci−q||cn−i|
]
.
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It is easy to find that |cn| ≤ bn , n = 0, 1, 2,… . Then we can say that the series B(�) is a 
majorant series of Eq. (3.3). Next, if the positive radius of convergence of the series B(�) 
exists, the proof is complete. Considering expression Eq. (3.9), we obtain

Then the implicit functional equation with respect to � can be written as

We can know that � is analytical in a neighborhood of (0, b0) . Furthermore, �(0, b0) = 0 
and �

�B
(0, b0) ≠ 0 . According to Rudin (2004), we reach the convergence (Fig. 3). Finally, 

p(�) can be changed as follows

(3.11)

B(�) = b0 + b1� + K

[
∞∑
n=0

|bn+1|�n+2 +
∞∑
n=0

n∑
i=0

i∑
q=0

|bq||bi−q||bn−i+1|�n+2

+

∞∑
n=0

n∑
i=0

i∑
q=0

|bq||bi−q||bn−i|�n+2 +
∞∑
n=0

|bn|�n+2

+

∞∑
n=0

n∑
i=0

i∑
q=0

q∑
r=0

r∑
a=0

|ba||br−a||bq−r||bi−q||bn−i|�n+2
]

= b0 + b1� + K[�B(�) + �2B(�) + �2B(�)3 + �B(�)3 + �4B(�)5 + N(�)].

(3.12)
�(�,B) = B(�) − b0 − b1� − K[�B(�) + �2B(�) + �2B(�)3 + �B(�)3 + �4B(�)5 + N(�)] = 0.

Fig. 3  The explicit power series solutions of Eq. (3.13) at n = 1 , c
0
= 1 , c

1
= 1 , c

2
= 1 , c

3
 , l

1
= 1 , �

1
= 1 , 

� = 1 , � = 1 , � = 1 , v = 2 , � = 0 , � = 0 , �
1
= 0
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4  Linear stability analysis

It is easy to know that whether some nonlinear Schrödinger equation are modulationally stable 
or not by using the modulation instability (MI) analysis. Based on the linear stability analysis, 
the constant solutions of Eq. (2.1) have the following form

Substituting Eq. (4.1) into Eq. (2.1), we get

where q0 , � , � , � and k are all real constants. In order to find the linear stability analysis of 
Eq. (2.1), the constant solutions q can be written as

where � is a disturbance parameter, and q̃ is defined as

where q1 and q2 are both the coefficients of the linear combination, k̂ and �̂� are real distur-
bance wave numbers and real disturbance frequency, respectively. Substituting Eq. (4.3) 
into Eq. (2.1), we have

where ∗ means complex conjugate, and

Then, we substitute Eq. (4.4) into Eq. (4.5) and linearize equations about q1 and q2 can be 
derived as

(3.13)

p(�) = c
0
+ c

1
� + c

2
�2 +

∞∑
n=1

cn+2�
n+2

=

{
c
0
+ c

1
(l
1
x − vt + �

1
) +

−(G
2
c
1
+ G

3
c2
0
c
1
+ G

4
c
0
+ G

5
c3
0
+ �c5

0
)

2G
1

(l
1
x − vt + �

1
)2

+

∞∑
n=1

1

G
1
(n + 1)(n + 2)

[
G

2
(n + 1)cn+1 + G

3

n∑
i=0

i∑
q=0

(n − i + 1)cqci−qcn−i+1

+ G
4
cn + G

5

n∑
i=0

i∑
q=0

cqci−qcn−i + �

n∑
i=0

i∑
q=0

q∑
r=0

r∑
a=0

cacr−acq−rci−qcn−i

]

× (l
1
x − vt + �

1
)n+2

}
ei(�1x+�t+�0).

(4.1)q = q0e
i(kx+�t).

(4.2)� = −�k2 − (�k − �)q2
0
+ �q4

0
,

(4.3)q = (q0 + 𝜗q̃)ei(kx+𝜔t),

(4.4)q̃ = q1e
i(k̂x−𝜛t) + q2e

−i(k̂x−𝜛t),

(4.5)M1q̃ + iq̃t + iM2q̃x + 𝜙q̃xx +M3q̃
∗ = 0,

(4.6)

M1 = −� − �k2 − 2�kq2
0
+ 2�q2

0
+ 3�q4

0
,

M2 = 2k� + �q2
0
,

M3 = −�kq2
0
+ �q2

0
+ 2�q4

0
.

(4.7)
�11q1 + �12q2 = 0,

�21q1 + �22q2 = 0,
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in which

Equation (4.7) have nonzero solutions if and only if the determinant

Substituting Eq. (4.8) into Eq. (4.9), we can obtain the following dispersion relation about 
�

with

If Δ ≥ 0 , � is real and it is easy to know that the steady state is stable against small pertur-
bation. Otherwise, when Δ < 0 , the � is complex and the steady state are unstable.

5  Conclusions and discussions

In this paper, we mainly studied the quintic derivative nonlinear Schrödinger equation. 
On the one hand, different types of solutions of Eq. (2.1) which include singular soli-
tons and dark solitons have derived by using the ansatz method. What is more, we also 
provide the explicit power series solutions for the equation by employing power series 
method. These solutions are presented via 3-dimensional plots and density plots with 
choosing some special parameters. On the other hand, we investigate the modulation 
instability (MI) analysis. In future, symmetries and conservation laws of the quintic 
derivative nonlinear Schrödinger equation are worth exploring.
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