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Abstract
New possibilities for determining anisotropic properties of the dielectric constants of two-
dimensional materials by ellipsometry are developed. Graphene-like 2D materials are con-
sidered within the framework of macroscopic electrodynamics as ultrathin absorbing ani-
sotropic films where the optical axis is perpendicular to the film surface. The ellipsometric 
inversion problem is resolved analytically. The resulting inversion formulas are very fast 
because they allow you to directly calculate the complex anisotropic dielectric constants 
without the use of sophisticated regression analysis or iterative root-finding procedures. In 
particular, the method offers an interest in graphene and related 2D materials because the 
anisotropic properties of such materials have not been studied to date.
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1 Introduction

Graphene and related two-dimensional materials have gained most interesting due to 
their extraordinary properties (Novoselov et al. 2012; Li et al. 2017; Duong et al. 2017). 
Although the parameters of such materials have been thoroughly investigated, the problem 
of their anisotropic properties is still unresolved. At the same time, it is well known that 
the multi-layer graphene (highly oriented pyrolithic graphite) is anisotropic material with 
uniaxial anisotropy (the optical axis is perpendicular to the graphene sheets) (Jellison et al. 
2007). Thus, it is reasonable to suppose that mono- and few-layer graphene are also aniso-
tropic materials (Kravets et al. 2010; Song et al. 2018).

On the other hand, since a two-dimensional material is extremely thin, the effect its 
possible anisotropy on the measured quantities is small and, therefore, it is clear that 
the evaluation of anisotropic features of 2D materials requires a highly sensitive optical 
method. Two widely used high-sensitivity optical methods for studying the ultrathin sur-
face layers are the surface differential reflectance (Lazzari et  al. 2009; Zaglmayr et  al. 
2014; Adamson 2011) and ellipsometry (Tompkins and Irene 2005; Losurdo et al. 2009; 
Oates et  al. 2011a; Garcia-Caurel et  al. 2013; Gilliot 2017). The ability of differential 
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reflectance to determine the anisotropic properties of graphene-like 2D materials was 
recently addressed in Adamson (2017). But when talking about ellipsometric measure-
ments, it should be noted that for optical modelling of graphene and graphene-like 2D 
materials, in most cases, the isotropic model has been used (Nelson et al. 2010; Wurst-
bauer et  al. 2010; Weber et  al. 2010; Nelson et  al. 2012; Matkovic et  al. 2013; Cheon 
et al. 2014; Ochoa-Martínez et al. 2015; Li et al. 2016). Moreover, some authors argue 
that the error of the ellipsometers used by them in measuring ellipsometric angles �  and 
Δ is greater than the change in these ellipsometric angles caused by the anisotropy of the 
2D material compared to the isotropic material and therefore the determination of anisot-
ropy is not possible (Song et al. 2018; Nelson et al. 2012). Nevertheless, nowadays the 
properly aligned ellipsometer with high quality optics is capable of precision of about a 
few hundredths of a degree in �  and Δ (Losurdo et al. 2009). Although the contribution 
of the anisotropy of dielectric constants of 2D materials to the ellipsometric angles is 
indeed very small, the given measurement accuracy is also quite high and therefore the 
question remains whether there really is not any way to determine the anisotropic dielec-
tric constants of 2D materials on the basis of ellipsometry.

The aim of this work is to analyze this issue in substance. Firstly, we consider the effect of 
anisotropy to the ellipsometric angles depending on the thickness d and wavelength � (more 
precisely, on the ratio d∕� ) and also on the strength of anisotropy of 2D materials. In other 
words, the question is how much the introduction of anisotropy changes the value of ellipso-
metric angles � and Δ compared to isotropic 2D materials and when this change is greater 
than the measurement error in � and Δ.

Secondly, we will analyze how it is possible to identify unknown parameters of anisotropy 
of 2D materials. We show that the determination of all anisotropic dielectric constants can be 
simply carried out by the measurements of two ellipsometric angles for two different transpar-
ent substrate materials. But if we assume that in the first approximation, the ordinary refractive 
index can be considered equal to the refractive index obtained from the isotropic model, the 
extraordinary refractive index of 2D materials can be determined only on the basis of ellipso-
metric angle Δ for single substrate material.

It should be pointed out that, in general, an unknown parameter is also the thickness 
of 2D materials. However, with a view to graphene-like 2D materials, it can be said that 
generally the thickness of their monolayers is well known and there are several methods 
that allow you to determine the number of layers in a few layer sheet of such materials 
(Ferrari 2007; Tan et  al. 2012; Lui et  al. 2012; Wang et  al. 2012; Shearer et  al. 2016). 
Therefore, in this work it has been assumed that the thickness of the 2D material is known 
in advance.

In addition to the above, it is also important to note that there is another interesting group 
of anisotropic 2D materials, namely, nanoparticle films (Bedeaux and Vlieger 2001; Oates 
et al. 2011b; Gwo et al. 2016). Using an effective medium theory (Humlicek 2013; Toudert 
et al. 2012) which approximates a nanocomposite film as a homogeneous medium (through 
the second average) we can describe the response of the nanoparticle layer by effective dielec-
tric function as in the case of graphene-like 2D materials. This approach also opens up new 
interesting opportunities for optical diagnostics of anisotropic ultrathin nanoparticle layers 
because one can obtain the macroscopic polarization (dielectric function) as a function of the 
factors, which are linked to such parameters of nanoparticles as their shape, orientation, and 
size (Battie et al. 2016, 2017).
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2  Method

We will consider 2D materials phenomenologically within the framework of macro-
scopic electrodynamics as absorbing ultrathin films with uniaxial anisotropy, where 
the optical axis is perpendicular to the film surface. The ordinary dielectric con-
stant �o = ��

o
+ i���

o
= n2

o
= (n�

o
+ in��

o
)2 and the extraordinary dielectric constant 

�e = ��
e
+ i���

e
= n2

e
= (n�

e
+ in��

e
)2 are complex quantities. The incident light in a transpar-

ent ambient medium with dielectric constant �a = n2
a
 makes an angle �a with the substrate 

normal and the substrate is a semi-infinite isotropic and transparent material with real 
dielectric constant �s = n2

s
 . Note that since in practice the thickness of a real substrate, of 

course, is not infinite, but final, then the light reflected from the back surface of the sub-
strate must be suppressed. This is usually done by roughening the back surface or using a 
wedge substrate.

The analysis is based on the electromagnetic 4 × 4 matrix theory for anisotropic layered 
media with complex dielectric constants (Azzam and Bashara 1977; Yeh 2005). It is, how-
ever, appropriate to mention that, if the optical axis is perpendicular to the surface of the 
film, the reflection matrix (Jones matrix) is diagonal (i.e., rps = rsp = 0 ) and general formu-
las for the amplitude reflection coefficients rpp and rss can also be obtained from a simple 
model based on geometrical optics (Fujiwara 2007). However, strictly speaking, geometric 
optics is not applicable, if d ≤ � , although the formulas obtained for rpp and rss remain for-
mally valid for this simple asymmetry. Only an analysis on the basis of general electromag-
netic theory proves this fact.

Within the framework of the long-wavelength limit (the film thickness d is much less 
than an optical wavelength � ) we obtain in the first order with respect to the small param-
eter d∕� the following expressions for the differential ellipsometric angles (in radians) if 
�a ≠ �B = arctan (ns∕na) ∶

where ||�e||
2
= (��

e
)2 + (���

e
)2 , �s is the angle of refraction ( cos2 �s = 1 − �a�

−1
s

sin
2 �a ), Δ 

and � are the ellipsometric angles of a tri-layer (ambient-film-substrate) structure, �0 and 
Δ0 are the ellipsometric angles of the bare substrate ( d = 0 ), i.e., of the two-layer (ambient-
substrate) system. Note that we can take Δ0 = 0 for the transparent substrates (of course, 
one should keep in mind that at the Brewster angle Δ0 changes by �∕2).

The accuracy of the first-order approximate Eqs.  (1) and (2) for a given wavelength 
depends primarily on the film thickness. Comparison between the calculations that have 
been made on the basis of rigorous ellipsometric theory and by approximate Eqs. (1) and 
(2) shows that the accuracy of such formulas is good if d∕� ≤ 10−3 (Fig. 1). The condition 
d∕� ≤ 10−3 is always satisfied for 2D materials in the infrared spectral region. In the visible 
spectral region the accuracy of the first-order Eqs. (1) and (2) depends heavily on the thick-
ness d and generally is no longer good. For example, for three-layer graphene (d ≈ 1 nm) 
the errors of �� and �Δ are approximately 6.1% and 3.6%, respectively, if λ = 500  nm, 

(1)�� = � − �0 = sin 2�0 F(�a, �a, �s) (�a�s �
��
e
||�e||

−2
− ���

o
)
d

�
,

(2)�Δ = Δ − Δ0 = 2F(�a, �a, �s) (�
�
o
+ �a�s �

�
e
||�e||

−2
− �a − �s)
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�
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2� na cos�a sin
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2 �s − �s cos

2 �a )
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�a = 70◦ , n
o
= 2.7 + i 1.4 , n

e
= 1.5 + i 0.2 , and n

s
= 1.5 . Note that the ambient refractive 

index na = 1 in all Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 and 13.           
Of course, the accuracy of Eqs. (1) and (2) also depends on the dielectric constants of 

the materials. If the dependence on the refractive index of 2D materials is not very notice-
able (Fig. 1), then for the substrate material, two moments must be taken into account. First 
of all, Eqs. (1) and (2) are not applicable at the Brewster angle �B = arctan (ns∕na) , i.e., the 
angle of incidence �a must satisfy the condition 𝜑a < 𝜑B or 𝜑a > 𝜑B (Fig. 2). Second, as 
follows from Eqs. (1) and (2), �� becomes zero if

and �Δ becomes zero if

For example, if na = 1 , no = 2.7 + i 1.4 , and ne = 1.5 + i 0.5 , then �Δ ≈ 0 at ns = 2.52 
(see also Fig.  2b) and �� ≈ 0 at ns = 5.61 , but if na = 1 , no = 2 + i , and ne = 1.5 + i , 

(4)ns = [ ���
o
∕���

e
]1∕2||�e

||∕na,

(5)ns = [ (��
o
− �a) (1 − �a�

�
e
||�e

||
−2
)−1 ]1∕2.

(a)

(b)

Fig. 1  Relative errors a of �� and b of �Δ as functions of d∕� for anisotropic layers with n
o
= 2.7 + i 1.4 

and n
e
= 1.5 (solid curves), 1.5 + i 0.2 (dashed curves), 2.0 (dash-dotted curve), 2.0 + i 0.2 (dash-dot-dotted 

curves), and 2.5 (dotted curves) at n
s
= 1.5 and �

a
= 70◦
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then �� ≈ 0 at ns = 2.75 . Note that in this paper in numerical estimates we often use for 
no the values, measured for the graphene refractive index n according to the isotropic 
model. But, generally, we use different values for no because there is considerable disa-
greement among the published values for n (Cheon et  al. 2014). For ne we also apply 
the different values, including those that are measured for graphite (Jellison et al. 2007; 
Song et al. 2018).

It is clear that around the zero points (4) and (5) first-order formulas do not work 
(Fig. 2b) because in this case it is not enough to take into account in a power series in 
the small parameter d∕� only the terms with first powers of d∕�.

In relation to the accuracy of approximate formulas, it is also important to note that 
it strongly depends on the angle of incidence �a , especially in the case of Eq. (2), the 
error of which is smaller for large incidence angles, for example, in the vicinity of 70◦ 
(Fig. 3).

(a)

(b)

Fig. 2  Relative errors a of �� and b of �Δ as functions of n
s
 for anisotropic layers with n

o
= 2.7 + i 1.4 and 

n
e
= 1.5 (solid curves), 1.5 + i 0.5 (dashed curves), 1.5 + i 1.0 (dash-dotted curves), and 2.0 + i 0.5 (dash-

dot-dotted curves) at d∕� = 5.583 ⋅ 10−4 and �
a
= 70◦
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3  Results and discussion

The above analytic Eqs. (1) and (2) are of interest not only because they allow you to sim-
ply calculate the values of the ellipsometric angles �� and �Δ , but above all because it 
is easy to solve the inversion problem on their basis, i.e., to determine the values of the 
dielectric constants of 2D materials by measuring the quantities �� and �Δ.

Let us look at when and how it can be done on the basis of these relationships. The first 
question that arises immediately—what is at all an anisotropic effect on ellipsometric angles 
in the case of very small d∕� values where approximate formulas are applicable. The problem 
can also be formulated differently: what should be the accuracy of measuring ellipsometric 
angles in order to distinguish an anisotropic film from an isotropic. Nowadays it is safe to 
assume that properly aligned ellipsometer with high-quality optics is capable of precision of 
about 0.01°–0.02° in ellipsometric angles (Losurdo et al. 2009). Exact calculations, not based 
on the approximate Eqs. (1) and (2), show that ellipsometric angles �� and �Δ are measurable 
if d∕� ≥ 10−4 (Fig. 4). However, measurement of �� differences caused by anisotropy with 
this measurement error is not possible if d∕� ≤ 10−3 . At the same time, ellipsometric angle �Δ 

(a)

(b)

Fig. 3  Relative errors a of �� and b of �Δ as functions of �
a
 for different anisotropic layers at 

d∕� = 2 ⋅ 10−3 . The other parameters are the same as in Fig. 1
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is sufficiently sensitive to the real part of the extraordinary refractive index n
e
 if d∕� ≤ 10−3 

but measuring the effects of small imaginary parts of n
e
 is also not possible (Fig. 4b).

In order to obtain a slightly more accurate picture of the anisotropic effect on the values 
of �� and �Δ (i.e., what are the differences �� − ��S and �Δ − �ΔS , where ��S and �ΔS 
are the ellipsometric angles corresponding to the isotropic case no =  ne) we use Eqs. (1) 
and (2). Since in particular we are interested in the anisotropic characteristics of graphene, 
we focus on them. The theoretical analysis (Klintenberg et al. 2009) shows that for mon-
olayer graphene ���

e
= n��

e
= 0 and for few-layer graphene the values of imaginary part of �

e
 

are very small, therefore, for few-layer graphene in the first approximation we can also take 
���
e
≈ 0 . In this case, we get from Eqs. (1) and (2) that

(6)�� − ��S ≈ − sin 2�0 2F(�a, �a, �s) �a�s
n�
o
n��
o

(n�2
o
+ n��2

o
)2

d

�
,

(a)

(b)

Fig. 4  Ellipsometric angles a �� and b �Δ as functions of d∕� for an isotropic layer with 
n
o
≡ n

e
= 2.7 + i 1.4 (solid curves) and for different anisotropic layers with n

o
= 2.7 + i 1.4 and n

e
= 1.5 

(dotted curves), 1.5 + i 0.1 (dash-dotted curves), 2.0 (dashed curves), and 2.0 + i 0.2 (dash-dot-dotted 
curves) at n

s
= 2.0 and �

a
= 55◦
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Using the calculated values of sin 2�0 and F(�a, �a, �s) (Fig.  5), it is easy to 
evaluate changes in the ellipsometric parameters �� and �Δ caused by anisot-
ropy. For example, taking na = 1, ns = 1.5, no = 2.7 + i1.4, ne = 1.5, and �a = 65◦ 
we get that �� − ��S ≈ −48◦ (d∕�) and �Δ − �ΔS ≈ 920◦ (d∕�) or taking ns = 2.5 
and leaving the other parameters the same we get that �� − ��S ≈ 50◦ (d∕�) and 
�Δ − �ΔS ≈ −2410◦ (d∕�) . In the visible spectral region, for graphene d∕𝜆 < 10−3 , so 
𝛿𝛹 − 𝛿𝛹S < 0.05◦ , and measurement with even the best ellipsometers (expected measure-
ment error 0.01◦ − 0.02◦ ) is not possible. But for a three-layer graphene d∕� ≈ 2.7 ⋅ 10−3 
at � = 500 nm and �� − ��S ≈ 0.1◦ , and measuring such a difference is already possible, 
albeit with a big error.

The anisotropic effect, of course, also depends on the refractive index of the 2D mate-
rial. However, it is interesting to note that in the case of graphene ( n��

e
= 0 ), the effect of 

(7)�Δ − �ΔS ≈ 2F(�a, �a, �s) �a�s

(
1

n�2
e

−
(n�2

o
− n��2

o
)

(n�2
o
+ n��2

o
)2

)
d

�
.

(a)

(b)

Fig. 5  a sin 2�0 and b F(�
a
, �

a
, �

s
) as functions of �

a
 for different substrates with n

s
= 1.5 (solid curves), 

1.8 (dash-dotted curves), 2.0 (dashed curves), 2.2 (dash-dot-dotted curves), and 2.5 (dotted curves)
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the anisotropy on the ellipsometric angle �� , i.e., the value of �� − ��S , does not depend 
on the value of the extraordinary refractive index ( n′

e
 ) in the first approximation (see for-

mula (6)). This fact is well illustrated by Fig.  6, which shows the dependencies of the 
ellipsometric angles �� and �Δ on the parameter n′

e
 for monolayer, bi-layer, and 3-layer 

graphene (this is also illustrated in Fig.  4a, where dotted and dashed curves practically 
merge together). Therefore, for graphene ( n��

e
= 0 ), the quantiy �� − ��S depends only on 

the ordinary refractive index no . For example, taking na = 1, ns = 1.5 , and �a = 65◦ we get 
that �� − ��S ≈ −87◦ (d∕�) for no = 2 + i and �� − ��S ≈ −39◦ (d∕�) for no = 3 + i 2 . 
At the same time, �Δ − �ΔS depends not only on the ordinary refractive index no , but also 
on the extraordinary refractive index ne = n�

e
 (Eq. (7)).

It must be pointed out, however, that the values of the anisotropy constants taken in the 
calculations are the same for graphenes with different number of layers, i.e., the values 
of no and ne do not depend on the thickness of the graphene sheet. Of course, the ques-
tion arises as to whether and to what extent the optical constants of the graphene sheet 

(a)

(b)

Fig. 6  Ellipsometric angles a �� and b �Δ as functions of n′
e
 for anisotropic monographene (1), bi-

layer graphene (2), and 3-layer graphene (3) with thicknesses d = 0.335 nm , d = 2 × 0.335 nm , and 
d = 3 × 0.335  nm, respectively, if n

o
= 2.7 + i 1.4 , n��

e
= 0 , λ = 500  nm, n

s
= 1.5 , and �

a
= 70◦ . Dashed 

curves are calculated by the approximate Eqs.  (1) and (2), solid curves by exact ellipsometric equations. 
Preceding numbers in parentheses are curve labels
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depend on the number of layers in it. As there is no experimental data on the anisotropic 
dielectric constants of mono- and few-layer graphene, only theoretical works can be relied 
upon. Calculations show (Klintenberg et al. 2009) that anisotropic dielectric constants are 
quite independent of the number of graphene layers (the modification due to an increase in 
the number of layers is within a few per cent). The results are close to graphite, for which 
there are also experimental measurements (Jellison et al. 2007), which quite well coincide 
with theoretical calculations (Klintenberg et al. 2009) (note that the values of the single-
layer graphene dielectric constant obtained on the basis of an isotropic model also fall in 
the first approximation with those of a few-layer graphene (Isic et al. 2011)). Physically, 
this is well understood, since dielectric constants are dominated by the electronic response 
and the energy scale at which the monographene and multilayer graphene band structures 
differ is determined by the energy of the interlayer coupling which is only a few hundreds 
of millielectronvolts (Min and MacDonald 2009). This is also the reason why we use the 
values of anisotropic dielectric constants measured for graphite in our computer simula-
tions for graphene. It should be noted that, from the anisotropic point of view, graphenes 

(a)

(b)

Fig. 7  Ellipsometric angles a �� and b �Δ as functions of n′
e
 for anisotropic layers with n

o
= 2.7 + i 1.4 

and n��
e
= 1.4 (solid curves), 0.2 (dotted curves), and 0 (dashed curves) at d/λ = 5.583 × 10−4, n

s
= 2.0 , and 

�
a
= 55◦
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are interesting materials, since the difference between no and ne is quite large compared to 
conventional anisotropic materials.

In summary, the effect of anisotropy on the ellipsometric angle ��  is considerably 
weaker than on the angle �Δ . If d < 1 nm , then measuring �� − ��S is not practically 

Fig. 8  Relative error of n′
e
 deter-

mined by Eq. (8) as a function of 
� for anisotropic monographene 
( n��

e
= 0 ) with d = 0.335 nm, 

n
o
= 2.7 + i 1.4 , and n�

e
= 1.5 . 

Instrumental error vΔ = 0 (solid 
curve), 1% (dashed curve), 2% 
(dotted curve), − 1% (dash-dotted 
curve), and − 2% (dash-dot-
dotted curve) at n

s
= 1.5 and 

�
a
= 68◦
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n
o
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possible. At the same time, �Δ − �ΔS measurement is well implemented in the visible 
spectral region. This is also illustrated by numerical calculations based on exact ellip-
sometric formulas (Fig. 7). In this figure it is clearly seen that the changes in the ellip-
sometric angle ��  caused by anisotropy are in the order of a few hundredths of degrees, 
while corresponding to �Δ changes are in the order of a few tenths of degrees (the val-
ues for the isotropic case are located on solid curves at n�

e
= 2.7).

Since �Δ is a well measurable quantity for monographene ( ���
e
= 0 ), assuming that in 

the first approximation n
o
= n�

o
+ in��

o
 can be taken to be equal to the graphene refractive 

index n measured in accordance with the isotropic model, we can simply evaluate the 
value of �′

e
 only by measuring �Δ . Namely, from Eq. (2) it follows that

(8)��
e
= n�2

e
=

�a�s

(�Δ∕2F(�a, �a, �s)) (�∕d) − ��
o
+ �s + �a

.

(a)

(b)

Fig. 10  Relative errors a of �′
o
 and b of �′

e
 determined by Eqs. (9) and (11), respectively, as functions of vΔ 

at v� = 0 (dotted curve), 10% (dashed curves), and − 10% (solid curves), d/λ = 5 × 10−4 (1) and 2 × 10−3 (2), 
n
o
= 2.7 + i 1.4 , n

e
= 1.5 , n(1)

s
= 1.5 , n(2)

s
= 2.0 , and �

a
= 70◦ . Preceding numbers in parentheses are curve 

labels
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But here we have to keep in mind that, although, on the one hand, the presumption no ≈ n 
is indeed justified, since the anisotropic effect is small and the values of the ellipsometric 
angles of anisotropic graphene are mainly determined by the ordinary refractive index no , 
on the other hand, however, the refractive index n values given in the literature are quite 
different, depending on the particular object to be measured.

Fig. 11  Relative error of �′′
o
 

determined by Eq. (10) as a 
function of v� at d/λ = 5 × 10−4 
(1), 1 × 10−3 (2), 2 × 10−3 (3), and 
4 × 10−3 (4), n

o
= 2.7 + i 1.4 , 

n
e
= 1.5 , n(1)

s
= 1.5 , n(2)

s
= 2.0 , 

and �
a
= 70◦ . Preceding num-

bers in parentheses are curve 
labels

Fig. 12  Relative error of �′′
e
 

determined by Eq. (12) as a 
function of d∕� for anisotropic 
layers with n

o
= 2.7 + i 1.4 and 

n
e
= 1.5 + i 0.3 (solid curve), 

1.5 + i 0.6 (dashed curve), 
1.5 + i 1.2 (dotted curve), and 
2.0 + i 1.2 (dash-dotted curve) at 
n
(1)
s

= 1.5 , n(2)
s

= 2.0 , �
a
= 70◦ , 

and vΔ = v� = 0
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The following problems can significantly affect the accuracy of ellipsometric meas-
urements (regardless of which model—isotropic or anisotropic—we use in interpreting 
the results). First, it is clear that the diameter of the measured graphene flake must be 
larger than the diameter of the light spot. This is a problem in the case of graphene 
obtained from micromechanical cleavage of graphite since such a method makes it diffi-
cult to obtain sufficiently large graphene flakes. To a certain extent helps strong focusing 
of light, but this can lead to a noticeable increase in noise levels (Kravets et al. 2010) 
and a reduction in the accuracy of ellipsometric measurements. Note that if the area 
below the light spot also contains voids, then a certain averaged (effective) refractive 
index is measured, the value of which may be substantially lower than that of the con-
tinuous graphene layer. This value can be estimated on the basis of an effective medium 
approximation (EMA) theory (Humlicek 2013). For example, if there is 80% graphene 
in the area under the light spot and 20% voids, then according to the Bruggeman for-
mula (Aspnes et  al. 1979), we get n = 2.35 + i 1.14 , and if the graphene is only 50%, 
then n = 1.79 + i 0.628 (assuming that the refractive index of the continuous graphene 
layer n = 2.7 + i 1.4 ). But it should be borne in mind that strictly speaking, the EMA 
method applies if the characteristic size of the homogeneous regions is much smaller 
than the wavelength of radiation, i.e., in the case of visible light, the graphene flakes 
and voids should have a diameter ≤ 1�m.

Further, sufficiently large graphene sheets can be prepared by another, widely used 
CVD method (Nelson et al. 2010). However, the problem here is that the number of gra-
phene layers throughout the entire sheet is often not stable, it can change. But it is worth 
noting that an area with an unchanged number of layers (e.g., a monolayer) can be found 
by Raman spectroscopy, which relatively easily makes it possible to distinguish mon-
olayer from a few-layer graphene. Of course, the contaminating layers on the surface of 
graphene or between the graphene and the substrate also have a significant effect on the 
measurements, but their effect will be analyzed in more detail below.

Therefore, it is advisable to pre-determine the value of n on the basis of the isotropic 
model, compare the obtained result with literature data, and only then use it in Eq. (8) for 
parameter no . Note that in the following computer simulation to evaluate the accuracy of 
formula (8) it is assumed that no is a known parameter whose approximate values no ≈ n 
are taken from the literature (Cheon et al. 2014).

In order to determine the error of Eq.  (8), we give certain values for ordinary and 
extraordinary dielectric constants �

o
= ��

o
+ i���

o
 and �e = ��

e
 , for thickness d , and for inci-

dent angle �
a
 . Then we calculate by rigorous electromagnetic theory the exact values of �Δ 

for these given values of parameters. Next we use this calculated �Δ value as a “measured” 
quantity in the form of �Δ (1 − vΔ) ( vΔ represent the relative “instrumental” error of �Δ ) in 
Eq. (8) for calculating the approximate value ��(ap)e  ( n�(ap)e  ) for the unknown extraordinary 
dielectric constant (refractive index). The relative error of Eq. (8) can then be determined 
by the formula: (��

e
− �

�(ap)
e )∕��

e
 or n�

e
− n

�(ap)
e )∕n�

e
.

Calculations show (Fig. 8) that for monographene the error of the extraordinary refrac-
tive index n′

e
 calculated by Eq. (8) is basically determined by an instrumental error which 

plays a decisive role when the thickness d is very small and the error of the approximate 
Eq. (8) itself is virtually irrelevant.

In general, however, the possibilities for determining all four dielectric constants �′
o
, �′′

o
 , 

�′
e
 , and �′

e
 are of greater interest. It is clear that by measuring only single wavelength ellip-

sometric parameters ( �� and �Δ ) for one particular structure, four unknown ( �′
o
, �′′

o
 , �′

e
 , 

and �′′
e
 ) cannot be determined because from Eqs.  (1) and (2) it follows directly that the 
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change in the angle of incidence does not give anything because the measurements made 
under different angles are not independent values.

On the other hand, given the fact that it is relatively easy to transfer the graphene to var-
ious dielectric materials, it is worth analyzing the determination of anisotropic dielectric 
constants by a method in which measurements are made for two different structures where 
the 2D material is the same, but the substrate is different. Using Eqs. (1) and (2), one can 
obtain the following relationships:

where i = 1, 2-indexes of two different incident angles �(1)
a

 and �(2)
a

 of light beams onto two 
samples with the same 2D material and different substrates with dielectric constants �(1)

s
 

and �(2)
s

 , respectively; �Δ(1) , �� (1) and �Δ(2) , �� (2) are the ellipsometric angles of samples 
1 and 2.

The accuracy of Eqs.  (9)–(12) can be estimated using computer simulations as was 
done in determining the precision of the previous Eq.  (8). For example, in the case of 
graphene ( ���

e
= 0 ) the errors in calculations of parameters �′

o
, �′′

o
 , and �′

e
 on the basis of 

(9)��
o
= �a +

P
(1)

Δ
�(2)
s

− P
(2)

Δ
�(1)
s

�
(2)
s − �

(1)
s

,

(10)���
o
=

P
(1)

�
�(2)
s

− P
(2)

�
�(1)
s

�
(1)
s − �

(2)
s

,

(11)��
e
=

��
en

(��
en
)2 + (���

en
)2
,

(12)���
e
=

���
en

(��
en
)2 + (���

en
)2
,

(13)��
en
=

��
e

||�e
||
2
=

1

�a

(

1 +
P
(1)

Δ
− P

(2)

Δ

�
(1)
s − �

(2)
s

)

,

(14)���
en
=

���
e

||�e||
2
=

1

�a

(
P
(1)

�
− P

(2)

�

�
(1)
s − �

(2)
s

)

,

(15)P
(i)

Δ
=

�

d

(�a cos
2 �(i)

s
− �(i)

s
cos2 �(i)

a
)

4� na cos�
(i)
a sin

2 �
(i)
a

�Δ(i),

(16)P
(i)

�
=

�

d

(�a cos
2 �(i)

s
− �(i)

s
cos2 �(i)

a
)

2� na cos�
(i)
a sin

2 �
(i)
a sin 2�

(i)

0

�� (i),
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Eqs.  (9)–(11), depending on the ratio d∕� , are shown in Fig.  8. It should be noted that 
the error of parameter �′

e
 is considerably greater than the error of parameters �′

o
 and �′′

o
 if 

vΔ = v� = 0, where v� is the relative “instrumental” error of �� . Nevertheless, in the current 
region  (10−3 ≤ d/λ ≤ 2 × 10−3), the method is still applicable to the determination of param-
eter �′

e
 (error is about 15–20%).

However, in addition to the error caused by the inaccuracy of approximate formulas, 
there is always an instrumental error. It follows from Eq. (9) that the error of �′

o
 depends 

only on the error of the ellipsometric angle �Δ (this dependence is demonstrated by 
Fig.  10a). The computer simulation also shows that, in determining �′

e
 , the effect of the 

error v� in the measurement of the ellipsometric angle �� is practically absent, only an 
error in the measurement of the ellipsometric angle �Δ plays an important role (Fig. 10b).

At the same time, the accuracy of the determination of parameter �′′
o
 depends only 

on the error v� (Fig. 11), since �′′
o
 is determined only with the ellipsometric angle �� 

(Eq. (10)). This dependence is analogous to the dependence of �′
o
 on the error vΔ.

Note that the method can, in principle, evaluate the value of parameter �′′
e
 , but only if 

the absorbance of the 2D material is very high. Formula (12) loses thought (error goes 
great), if n��

e
∕n�e ≤ 0.3 (Fig. 12). Adding an instrumental error only makes the situation 

worse, so in this case the instrumental errors vΔ and v� cannot be higher than a few 
percent.

Finally, we will address another important issue. Namely, when transferring graphene 
onto the substrate material, a contamination layer may appear on the graphene surface, 
or between the graphene and the substrate material. For example, very often this is due 
to readily adsorbed water (Kravets et al. 2010; Novoselov et al. 2004) or PMMA if we 
are dealing with a graphene grown by the chemical vapor deposition method (Matkovic 
et al. 2013). It should be noted that the effect of such contaminating dielectric layers on 
ellipsometric angles of isotropic graphene-like 2D materials is analyzed in Ref. (Adam-
son 2018). Since the effects of anisotropy are not high, the main conclusions from the 
isotropic model on the effect of the contaminating layers remain valid for anisotropic 2D 
material. The most important conclusion about the contamination layers derived from 
the isotropic model lies in the fact that their effect is considerably weaker on the ellipso-
metric angle ��  than the angle �Δ (Adamson 2018). As the calculations show (Fig. 13), 
this conclusion holds true for anisotropic 2D materials as well. Indeed, if the thick-
ness of the contamination layer ( dC ) is about two nanometers or less, its effect on the 
angle ��  is in the order of a few thousandths of a degree. At the same time, the effect 
of anisotropy is in the order of a few hundredths of a degree. Thus, in the case of very 
thin contamination layers ( dC ≤ 2 nm ), we can, in the first approximation, ignore their 
effect on the ellipsometric angle ��  . The situation, however, is significantly different for 
ellipsometric angle �Δ . Indeed, as shown in Fig. 13, the influence of the contamination 
layers is in the same order of magnitude as the anisotropic effect (approximately a few 
tenths of a degree).

Notice that the effect of the contamination layer, of course, depends on its refractive 
index ( nC ). When nC ≈ ns , of course, there is practically no effect of the contamination 
layer on the ellipsometric angles (Fig. 13, dotted curves). If, however, nC < ns , then, in the 
case of isotropic 2D material, the effect on the angle �Δ is maximal if nC =

√
ns (Adamson 

2018). This result may also be used in the first approximation for anisotropic materials 
(Fig.  13). Consequently, if we are dealing, for example, with quartz or glass substrates, 
the effect of the continuous PMMA layer ( nC = 1.49 ) is practically absent, but when the 
contamination layer contains 50% PMMA and 50% voids, then nC = 1.237 (calculation is 
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made according to Bruggemann’s formula (Aspnes et al. 1979)) and the effect of such a 
layer on the angle �Δ is already large (Fig. 13).

Therefore, in summary, it can be said that, according to the method presented in this 
paper, the determination of the anisotropic constants of 2D materials is possible only in the 
case of a very pure technological process in which the transfer of graphene to the substrates 
does not create contaminating layers.

4  Conclusion

An efficient approach for diagnostics of the anisotropic dielectric constants of 2D materi-
als by ellipsometry is proposed. It is based on the analytical solution of the ellipsomet-
ric inversion problem. As a result the data handling to determine the dielectric function 
does not require (1) knowledge of the dispersion law for the dielectric function and (2) the 
use of complex numerical methods. The method allows the application of a point-by-point 

(a)

(b)

Fig. 13  Ellipsometric angles a �� and b �Δ as functions of thickness of dielectric contamination layers 
between anisotropic monographene ( n

o
= 2.7 + i 1.4 , n

e
= 1.5 , and d = 0.335 nm) and substrate ( n

s
= 1.5 ) 

with different refractive indexes  nC = 1.161 (dashed curves), 1.237 (dash-dotted curves), 1.33 (solid 
curves), 1.49 (dotted curves), and 1.6 (dash-dot-dotted curves) at �

a
= 70◦ and λ = 500 nm
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technique, i.e. an independent treatment the points of the spectrum. It also makes possible 
to specify the unknown anisotropic constants without knowledge of their initial guesses. 
The method is well suited for studying the anisotropic optical properties of graphene and 
graphene-like 2D materials. But this method also offers an interest in 2D materials whose 
optical properties have complexity and which cannot be described by standard dielectric 
function models as various nanoparticle films.
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