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Abstract
Under investigation in this paper is a sextic nonlinear Schrödinger equation, which 
describes the pulses propagating along an optical fiber. Based on the symbolic computa-
tion, Lax pair and infinitely-many conservation laws are derived. Via the modiied Hirota 
method, bilinear forms and multi-soliton solutions are obtained. Propagation and interac-
tions of the solitons are illustrated graphically: Initial position and velocity of the soliton 
are related to the coefficient of the sixth-order dispersion, while the amplitude of the 
soliton is not affected by it. Head-on, overtaking and oscillating interactions between the 
two solitons are displayed. Through the asymptotic analysis, interaction between the two 
solitons is proved to be elastic. Based on the linear stability analysis, the modulation insta-
bility condition for the soliton solutions is obtained.

Keywords  Optical fiber · Nonlinear Schrödinger equation · Modified Hirota method · 
Solitons · Infinitely-many conservation laws · Modulation instability

1  Introduction

As a nonlinear wave, solitons have been a hot area of research in the integrable systems (Lü 
et  al. 2016; Wazwaz 2016, 2017a; Liu et  al. 2011; Lü and Ma 2016; Osman and Wazwaz 
2018). For instance, optical solitons have been extensively studied in the telecommunication 
systems because of their potential applications in the longdistance optical fiber communica-
tion and all-optical ultrafast switching devices (Wang et al. 2015a, b, 2016a, b). Optical soli-
tons have been formed in the balance between the group velocity dispersion and self-phase 
modulation (Szmytkowski 2012; Zhou et al. 2013; Guo and Zhao 2016; Liu et al. 2014, 2017; 
Lü and Lin 2016; Guo et al. 2015; Wazwaz 2016; Cai et al. 2017), so they could propagate 
over a long distance in a fiber without either attenuation or change of shape (Hasegawa and 
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Tappert 1973a, b; Dai et al. 2017, 2016). To describe the propagation of the picosecond pulses 
in an optical fiber, the nonlinear Schrödinger (NLS) equation (Nakatsuka et al. 1981; Lan and 
Gao 2017; Zhao et al. 2016, 2017),

has been proposed, where i2 = −1 , u is the slowly-varying electric field function with 
respect to the scaled space coordinate z and time coordinate � , while the subscripts mean 
the corresponding derivatives.

NLS equation has been regarded as the basic model to describe the phenomena in optical 
fibers, plasmas, cold atoms and oceans (Sun et al. 2015). Nonetheless, Eq. (1) only includes 
the basic effects such as the lowest-order dispersion and nonlinearity (Chai et al. 2015). When 
the intensity of the optical field gets stronger and the pulses get shorter in optics, one should 
consider the higher-order effects (Ankiewicz et  al. 2014; Liu et  al. 2016; Nakazawa et  al. 
2000; Lakoba and Kaup 1998; Bourkoff et al. 1987; Oliveira and Moura 1998). In fact, some 
high-order effects and dark solitons for the NLS equations have been discussed (Chowdury 
et al. 2015; Daniel et al. 1999; Guo et al. 2016; Wazwaz 2017b; Li et al. 2018; Zhang et al. 
2017; Lan et al. 2016).

In this paper, a sextic NLS equation has been proposed to model the pulses propagating 
along a fiber (Ankiewicz et al. 2016; Sun 2017), i.e.,

where x and t are respectively the scaled space and time coordinates, q(x,  t) is the enve-
lope of the waves, ∗ represents the complex conjugation, and � is a real parameter denoting 
the coefficient of the sextic-order dispersion. When � = 0 , Eq. (2) becomes the basic NLS 
equation to describe the different nonlinear waves in the Heisenberg ferromagnetic spin 
chain, Bose–Einstein condensation and nonlinear optics (Sun 2017). Equation (2) has been 
presented in Ref. Ankiewicz et al. (2016) for the first time. Some different nonlinear waves 
(Ankiewicz et al. 2016) and breather-to-soliton transitions (Sun 2017) for Eq. (2) have been 
discussed. Here, the bilinear forms and analytic solutions for Eq. (2) will be obtained by 
using the modified Hirota bilinear method and symbolic computation.

However, to our knowledge, infinitely-many conservation laws, bilinear forms, soliton solu-
tions and linear stability analysis for Eq.  (2) have not been discussed through the modified 
Hirota method and symbolic computation. In Sect. 2, infinitely-many conservation laws for 
Eq. (2) will be constructed by virtue of the symbolic computation. In Sect. 3, bilinear forms, 
multi-soliton solutions for Eq. (2) will be obtained via the modified Hirota method. In Sect. 4, 
propagations and interactions between the solitons will be illustrated and discussed graphi-
cally. In Sect. 5, linear stability analysis will be presented. Conclusions will be given in Sect. 6.

2 � Infinitely‑many conservation laws for Eq. (2)

In this section, we will derive the Lax pair and infinitely-many conservation laws for 
Eq.  (2). Based on the Ablowitz–Kaup–Newell–Segur system (Ablowitz et al. 1973), Lax 
pair for Eq. (2) can be written into the following form,

(1)iuz + u�� + 2|u|2u = 0,

(2)

iqx +
1

2
(qtt + 2q|q|2) + �

{
qtttttt + q2[60|qt|2q∗ + 50qtt(q

∗)2

+ 2q∗
tttt
] + q[12qttttq

∗ + 8qtq
∗

ttt
+ 22|qtt|2 + 18qtttq

∗

t
+ 70q2

t
(q∗)2]

+ 20q2
t
q∗
tt
+ 10qt(5qttq

∗

t
+ 3qtttq

∗) + 20q2
tt
q∗ + 10q3[(q∗

t
)2 + 2q∗q∗

tt
] + 20q|q|6

}
= 0,
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where Φ = (�1,�2)
T is a vector eigenfunction for Lax Pair (3), �1 and �2 are both the com-

plex functions of x and t, while the superscript T signifies the vector transpose, the 2 × 2 
matrices M and N can be defined by,

where r, A, B and C are the complex functions of x and t, � is a complex eigenvalue param-
eter. Based on the compatibility condition Φtx = Φxt and Lax Pair (4), we can get the zero-
curvature equation as follows:

Substituting Matrices (4) into Eq. (5), we can get

In order to facilitate the calculation of Lax Pair (3), A, B and C are expended into the forms 
as (Chai et al. 2015; Wang et al. 2015c),

where Aj
′ s, Bj

′ s and Cj
′ s are the complex functions of x and t. Substituting Expressions (7) 

into Eqressions (6) and equating the coefficients of the same powers of � , we have

Our calculation indicates that Compatibility Condition (5) leads to Eq. (2). Thus, Eq. (2) is 
integrable in the Lax sense.

Next, based on Lax Pair (3), we will show how to derive the infinitely-many conservation 
laws for Eq. (2). Introducing three complex functions (Chai et al. 2015; Wang et al. 2015c)

and applying the compatibility condition Λ1,x = Λ2,t from Lax Pair (3), we have

Then, expanding the expansion of Λ3 with respect to � as follows:

(3)Φt = MΦ, Φx = NΦ,

(4)M = i

(
� r

q − �

)
, N = i

(
A B

C − A

)
,

(5)Mt − Nx +MN − NM = 0.

(6)At = −i q B + i r C, Bt = rx − 2 i r A + 2 i�B, Ct = qx − 2 i�C + 2 i� q A.

(7)A =

6∑

j=0

i�jAj, B =

6∑

j=0

i�jBj, C =

6∑

j=0

i�jCj,

A0 = −
1

2
|q|2 − �

{
10|q|6 + 5q2

t
(q∗)2 + qttq

∗

tt

+ 5q2[(q∗)2 + q∗q∗
tt
] − qtttq

∗

t
− qtq

∗

ttt
+ qttttq

∗ + q[10qtt(q
∗)2 + q∗

tttt
]
}
,

A1 = − 2i�
{
qttq

∗

t
+ 6q|q|2q∗

t
− qtq

∗

tt
− qtttq

∗ − q[6qt(q
∗)2 − q∗

ttt
]
}
, A3 = −8i�(qtq

∗ − qq∗),

A2 =1 + 4�(3|q|4 − |qt|2 + qttq
∗ + qq∗

tt
), A4 = −16�|q|2, A5 = 0, A6 = 32�,

B0 = −i
1

2
q∗
t
− i�

{
30|q|4q∗ + 10qttq

∗

t
q∗ + 10qt[(q

∗

t
)2 + q∗q∗

tt
] + 10q(2q∗

t
q∗
tt
+ q∗q∗

ttt
) + q∗

ttttt

}
,

B1 = q∗ + 2�
{
6|q|4q∗ + 4|qt|2q∗ + 2qtt(q

∗)2 + q[6(q∗
t
)2 + 8q∗q∗

tt
] + q∗

tttt

}
, B4 = −16i�q∗

t
,

B2 = 4i�(6|q|2q∗
t
+ q∗

ttt
), B3 = −8�(2|q|2q∗ + q∗

tt
), B5 = 32�q∗, B6 = 0, Cj = B∗

j
, r = q∗.

(8)Λ1 =
�1,t

�1

, Λ2 =
�1,x

�1

, Λ3 =
�2

�1

,

(9)Λ3,t = i q − 2 i�Λ3 − i rΛ2

3
, (� + rΛ3)x = (A + BΛ3)t.
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where �j
′ s ( j =1,2...) are all the complex functions of x and t. Substituting Expressions (7) 

and (10) into Eq. (9) and collecting the coefficients of the same powers of � to be equal to 
zero, we get

and the infinite-many conservation laws for Eq. (2) as

where Γj
� s and Θj

� s are all the complex functions of x and t, Γj
� s represent the conserved 

densities and Θj
� s represent the fluxes.

3 � Bilinear forms and soliton solutions for Eq. (2)

In order to detect the form of linearizable representation of Eq. (2), a transformation

will be introduced, where f is a real function of x and t, while g is a complex one. Substi-
tuting Expression  (13) into Eq.  (2) and letting D2

t
f ⋅ f − 2|g|2 = 0 , the bilinear forms for 

Eq. (2) will be obtained as

where the Hirota D-operator is defined as (Hirota 1991),

p(x, t) is a function of x and t, q(x�, t�) is a function of the formal variables x′ and t′ , while n1 
and n2 are all the non-negative integers.

In order to obtain the soliton solutions for Eq.  (2), f, g, h, � and � are expended with 
respect to a small parameter � as

(10)Λ3 =

∞∑

j=1

�j

�j
,

(11)�1 =
1

2
q, �2 =

i

4
qt, ⋯ , �j+1 =

i

2

(
�j,t + iq∗

j−1∑

o=1

�o�j−o

)
,

(12)
�Γj

�t
+

�Θj

�x
= 0, Γj = q�j, Θj = −i

7∑

o=0

Bo�j+o,

(13)q(x, t) =
g

f
,

(14)

D2

t
g ⋅ g − h f = 0, 30g∗(Dtg ⋅ g3t + ftht) − 15ftg

∗

t
h − f � � = 0,

D2

t
f ⋅ f − 2|g|2 = 0,

(
iDx +

1

2
D2

t
+ �D6

t

)
g ⋅ f + �(5g∗

t
ht − 10g∗

2t
+ 5g∗h2t + ��) = 0,

(15)Dn1
x
D

n2
t p ⋅ q =

(
�

�x
−

�

�x�

)n1( �

�t
−

�

�t�

)n2

p(x, y, t)q
(
x�, t�

)||x�=x,t�=t ,

(16)

f = 1 + �2f2 + �4f4 +… , g = �g1 + �3g3 + �5g5 +… ,

h = h0 + �2h2 + �4h4 +… , � = ��1 + �3�3 + �5�5 +… , � = �0 + �2�2 + �4�4 +… ,
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where f
�
 ’s ( � = 2, 4, ... ), �� ’s ( � =1,3,...), hk ’s and �� ’s ( � =0,2,...) are the real functions of x 

and t, while g� ’s are the complex ones.
Truncating Expressions (16) as

and substituting Expressions (17) into Bilinear Forms (14) with � = 1 , the one-soliton solu-
tions are obtained as

where

with � ’s as the complex constants.
Next, truncating Expressions (16) as

and substituting Expressions (19) into Bilinear Forms (14) with � = 1 , the two-soliton solu-
tions are obtained as

where

with kl and �l as the complex constants.

4 � Discussions on the soliton solutions

In this section, the solitons for Eq. (2) will be analyzed. From One-Soliton Solutions (18), q 
could be rewritten as,

(17)f = 1 + �2f2, g = �g1, � = ��1, h = h0 + �2h2, � = �0 + �2�2,

(18)q =
g1

1 + f2
,

f2 = Ae�+�
∗

, g1 = e� , � =
i

2
�2(1 + 2��4)x + �t, A =

1

(� + �∗)2
, h0 = h2 = �0 = �2 = 0,

(19)
f = 1 + �2f2 + �4f4, g = �g1 + �3g3,

� = ��1 + �3�3, h = h0 + �2h2 + �4h4, � = �0 + �2�2 + �4�4,

(20)q =
g1 + g3

1 + f2 + f4
,

g1 = e�1 + e�2 , g3 = A123e
�1+�2+�

∗
1 + A124e

�1+�2+�
∗
2 , h2 = 2A12e

�1+�2 ,

f2 = A13e
�1+�

∗
1 + A23e

�2+�
∗
1 + A14e

�1+�
∗
2 + A24e

�2+�
∗
2 , f4 = A1234e

�1+�
∗
1
+�2+�

∗
2 ,

�2 = B12e
�1+�2 , �1 = B34(e

�∗
1 + e�

∗
2 ), �3 = B134e

�1+�
∗
1
+�∗

2 + B234e
�2+�

∗
1
+�∗

2 , �j = kjx + �jt,

kj =
i

2
�2

j
(1 + 2��4

j
), A12 = �1 − �2, A34 = �∗

1
− �∗

2
, Aj,l+2 =

1

(�j + �∗
j
)2
, (j = 1, 2),

A123 = A12A13A23, A124 = A12A14A24, A1234 = A12A13A14A23A24A34 (l = 1, 2),

(21)|q| = |�R|sech
(
�R +

1

2
lnA

)
,



	 Z.-Z. Lan, B.-L. Guo 

1 3

340  Page 6 of 12

where the subscripts I and R are the imaginary and real parts, respectively. Here, the con-
cept of characteristic line for the solitons’ propagation (Yang et al. 2016) will be introduced 
to determine the velocity. Letting � = am + ibm with am and bm being the real constants 
(m = 1, 2,⋯) , the soliton amplitude Δ = am will be derived. Through the method in Ref. 
Yang et al. (2016), the characteristic-line equation for each soliton is deduced to

Then differentiating it on both sides with respect to x, the velocity of each soliton is

Based on the above analysis, we find that the initial position and velocity of the soliton 
are related to the parameter � , but the soliton’s amplitude is not affected by it. As seen in 
Fig. 1, we find that the one solitons propagate stably with the same amplitude and shape 
but different velocities and a certain degree of broadening or compressing.

Based on the asymptotic analysis, the two solitons will be analyzed as follows: When 
x → −∞ (before the interaction),

where q1− and q2− denote the two solitons before the interaction. When t → +∞ (after the 
interaction),

−ambm
[
1 + 2�(3a4

m
− 10a2

m
b2
m
+ 3b4

m
)
]
x + amt +

lnA

2
= constant.

(22)v =
1

bm
[
1 + 2�(3a4

m
− 10a2

m
b2
m
+ 3b4

m
)
] .

(23)
q → q1− = |�1R|ei�1I sech

(
�1R +

1

2
lnA11

)
, (�1 + �∗

1
→ 0, �2 + �∗

2
→ −∞),

q → q2− = |�2R|ei�2I sech
(
�2R +

1

2
ln

A1234

A11

)
, (�2 + �∗

2
→ 0, �1 + �∗

1
→ +∞),

(a) (b) (c)

15 0 15
x

0.8

1
q

t 2
t 0
t 2

5 0 5 x

0.8

1
q

t 2
t 0
t 2

3 0 3 x

0.8

1
q

t 2
t 0
t 2

(d) (e) (f)

Fig. 1   One soliton via solutions (18) with � = 0.8 + 0.7i : a � = 0.1 ; b � = 1 ; c � = 2 . d–f Trajectories of 
a–c at t = −2 , t = 0 and t = 2 , respectively
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where q1+ and q2+ denote the two solitons after the interaction. Through the asymptotic 
analysis, we find that the interaction between the two solitons is elastic, which means that 
their amplitudes and shapes keep invariant after each interaction except for certain phase 
shifts, and this phenomenon can be confirmed in Figs. 2, 3, 4.

As shown in Fig.  2a, when the velocities for the two solitons satisfy the different 
signs, the head-on interaction happens. While the velocities of them are the same sign, 
the overtaking interaction is observed in Fig. 3a, where the soliton with a smaller ampli-
tude moves faster and overtakes the larger one. Comparing Figs.  4a with 2a, we find 

(24)
q → q1+ = |�1R|ei�1I sech

(
�1R +

1

2
ln

A1234

A22

)
, (�1 + �∗

1
→ 0, �2 + �∗

2
→ +∞),

q → q2+ = |�2R|ei�2I sech
(
�2R +

1

2
lnA22

)
, (�1 + �∗

1
→ 0, �1 + �∗

1
→ −∞),

15 0 15 x

1
q

t 8

t 0

t 8

(a) (b)

Fig. 2   a Head-on interaction between the two solitons via solutions  (20) with �
1
= 0.8 + 0.7i , 

�
2
= 0.9 + 0.4i and � = 1 . b Trajectories of (a) at t = − 8 , 0 and 8

55 0 45 x

1
q

t 8

t 0

t 8

(a) (b)

Fig. 3   a Overtaking interaction between the two solitons via solutions  (20) with �
1
= 0.8 + 0.1i , 

�
2
= 1.0 + 0.3i and � = 1 . b Trajectories of a at t = − 8 , 0 and 8
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that the two solitons present oscillation interaction when the distance between them 
decreases to a certain value, and the oscillation phenomenon is especially obvious at 
t = 0 . Meanwhile, as seen in Figs. 2b–4b, we notice that those interactions are elastic. 
Bound state for the two solitons is formed as they have the equal velocity, and they 
attract and repulse each other periodically in Fig. 5.

5 � Modulation instability

Based on the linear stability analysis (Zhao et al. 2016), we will investigate the Modulation 
instability (MI) of the stationary solutions for Eq. (2). The stationary solution for Eq. (2) 
has the following form,

(25)q = q0e
i(�t+�x),

35 0 35 x

2
q

t 8

t 0

t 8

(a)
(b)

Fig. 4   a Oscillation interaction between the two solitons via solutions  (20) with �
1
= 1.2 − 0.731i , 

�
2
= 0.8 + 0.532i and � = 1∕2 . b Trajectories of a at t = − 8 , 0 and 8

50 0 50 x

2
q

t 8

t 0

t 8

(a) (b)

Fig. 5   a Bound state via solutions (20) with �
1
= 1.2 + 0.0124i , �

2
= 0.8 + 0.0486i and � = 1 . b Trajecto-

ries of a at t = − 8 , 0 and 8
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where � = q2
0
+ 20�q6

0
− �2(

1

2
+ 90�q4

0
) + 30��4q2

0
− ��6 , q0 and � are the real constants. 

In order to perform the linear stability analysis, we set Solutions (25) with a small pertur-
bation term as follows (Zhao et al. 2016; Chai et al. 2015; Wang et al. 2015c):

where � is a perturbation parameter, q̃ is a function of x and t. In general, q̃ can be set as 
(Chai et al. 2015; Wang et al. 2015c)

where q1 and q2 are both the coefficients of the linear combination, �1 is a real disturbance 
wave numbers, while � is a real disturbance frequency. Substituting Eqs. (26) and (27) into 
Eq. (2), we have linear equations about q1 and q2 as follows:

with

Equation (28) have a nontrivial solutions if and only if the determinant

Based on the above expression, we get the following dispersion relation as

with

If Λ ⩾ 0 , � is always a real number. Based on the case, the intensity of the small perturba-
tion q̃ will keep invariable along the fiber, which implies that the envelopes for Eq. (2) are 

(26)q = (q0 + 𝜒 q̃)ei(𝜅t+𝜛x),

(27)q̃ = q1e
i(𝜅1t−𝜃x) + q2e

−i(𝜅1t−𝜃x),

(28)
Δ11q1 + Δ12q2 = 0,

Δ21q1 + Δ22q2 = 0,

Δ11 = − 2q2
0

{
1 + 2�

[
�4

1
− 5�2

1
(2q2

0
− 3�2) + 15(2q4

0
− 6q2

0
�2 +�4)

]}
,

Δ12 =�
2

1
+ 2��6

1
− 24�4

1
q2
0
� + 100�2

1
q4
0
� − 160q6

0
�

+ 2�1[1 + 6��(�4

1
− 10�2

1
q2
0
+ 30q4

0
)] +�2[1 + 30�(�4

1
− 8�2

1
q2
0
+ 18q4

0
)]

+ 40��1�
3(�2

1
− 6q2

0
) + 30��4(�2

1
− 4q2

0
) + 12��1�

5 + 2��6 − 2(2q2
0
+ �) + 2�,

Δ21 =�
2

1
− 4q2

0
+ 2��6

1
− 24�4

1
q2
0
� + 100�2

1
q4
0
� − 160q6

0
�

− 2�1[1 + 6��(�4

1
− 10�2

1
q2
0
+ 30q4

0
)] +�2[1 + 30�(�4

1
− 8�2

1
q2
0
+ 18q4

0
)]

− 40��1�
3(�2

1
− 6q2

0
) + 30��4(�2

1
− 4q2

0
) − 12��1�

5 + 2��6 + 2� + 2�,

Δ22 = − 2q2
0

{
1 + 2�

[
�4

1
− 5�2

1
(2q2

0
− 3�2) + 15(2q4

0
− 6q2

0
�2 +�4)

]}
.

(29)
||||
Δ11 Δ12

Δ21 Δ22

||||
= 0.

(30)� = �1�[1 + 6��4

1
− 20��2

1
(3q2

o
−�2) + 6�(30q4

0
− 20q2

0
�2 +�4)] ±

1

2

√
Λ,

Λ =
{
�2

1
− 6q2

0
+ 2��6
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stable against the disturbance of small perturbation. On the contrary, if Λ < 0 , the � will 
be a complex one. Then the q̃ will exponentially increase along the fiber, causing that the 
modulation instability will take place.

6 � Conclusions

In this paper, Eq. (2) has been focused, which describes the pulses propagating along an 
optical fiber. With the help of the symbolic computation, we have derived Infinite-Many 
Conservation Laws (12) for Eq. (2). By virtue of the Hirota method and three auxiliary 
functions, we have obtained Bilinear Forms (14), One-Soliton Solutions (18) and Two-
Soliton Solutions (20). From Expressions (21) and (22), we have found that the initial 
position and velocity of the soliton are related to the parameter � in Eq.  (2), but the 
soliton’s amplitude is not affected by it. In Fig. 1, with the different values of � , we have 
found that the one solitons propagate stably with the same amplitude and shape but dif-
ferent velocities and a certain degree of broadening or compressing. Figures 2, 3, 4 and 
5 have illustrated the interactions between the two solitons: Head-on, overtaking, oscil-
lating interactions and the bound state, respectively. Through the asymptotic analysis, 
interaction between the two solitons has been proved to be elastic. Based on the Linear 
stability analysis, we have derived the modulation instability condition for the soliton 
solutions.
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