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Abstract
In the physics of two-dimensional materials, notion semi-Dirac dispersion denotes elec-
tronic dispersion which is Dirac-like along one direction in the reciprocal space, and quad-
ratic along the orthogonal direction. In our earlier publication (Damljanović and Gajić in J 
Phys Condens Matter 29:185503, 2017) we have shown that certain layer groups are par-
ticularly suitable for hosting semi-Dirac dispersion in the vicinity of some points in the 
Brillouin zone (BZ). In the present paper we have considered tight-binding model up to 
seventh nearest neighbors, on a structure belonging to layer group Dg5. According to our 
theory, this group should host semi-Dirac dispersion at A and B points in the BZ. The struc-
ture has four atoms per primitive cell, and it is isostructural with sublattice occupied by 
phosphorus atoms in the layered material SnPSe

3
 . While the first order perturbation theory 

of double degenerate level gives two pairs of semi-Dirac cones and correctly reproduces 
dispersion in the Dirac-like direction, exact diagonalisation of four-by-four tight-binding 
Hamiltonian shows node lines caused by accidental degeneracy in the band structure. We 
discuss these degeneracies in the context of von Neumann–Wigner theorem, and conclude 
that although dispersion remains semi-Dirac in the exact diagonalisation method, the band 
structure does not necessarily form cones. In order to get full picture of behavior of bands 
in the vicinity of semi-Dirac points, first order perturbation theory may not be sufficient 
and one may need higher order corrections.
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1  Introduction

Two-dimensional (2D) materials are materials that are periodic in two spatial directions 
but finite in the third, orthogonal direction. These materials gain particular attention 
after discovery of graphene, a one atom thick layer of carbon atoms arranged in a honey-
comb lattice. In contrast to graphene, in which all atoms belong to a single plane, buckled 
silicene and germanene for example, occupy Wyckoff positions with unequal z-coordinates. 
Existence of massless electrons whose dynamics is described by Dirac (Weyl) equation is 
among notable properties of graphene and related, so called Dirac, materials.

Besides Dirac materials, there is another class of 2D materials in which electronic 
dispersion is Dirac-like (linear) along some direction in the 2D Brillouin zone (BZ), and 
quadratic along the orthogonal direction. Such semi-Dirac dispersion supports both mass-
less and massive electrons at the same point of the BZ, thus giving rise to highly aniso-
tropic material properties. Using density functional theory (DFT), semi-Dirac dispersion 
has been predicted in TiO2/VO2 nanostructures (Pardo and Pickett 2009, 2010), in silicene 
oxide (Zhong et al. 2017) and in square selenene and tellurene (Xian et al. 2017). A tight-
binding model show semi-Dirac dispersion in phosphorene under strain for certain critical 
values of hopping parameters (Duan et al. 2016). First experimental realization of mate-
rial with semi-Dirac dispersion was reported in 2015. It was demonstrated that few-layer 
black phosphorus doped with potassium posses semi-Dirac dispersion at the BZ center for 
certain level of doping (Kim et al. 2015). The behavior of semi-Dirac fermions in external 
magnetic field and consequences that this dispersion imposes on Klein tunneling is exam-
ined in more detail in Banerjee et al. (2009) and Banerjee and Pickett (2012). Evolution of 
Hofstadter spectrum on a square lattice with the application of an on-site uniaxial staggered 
potential shows merging of two Dirac points into a semi-Dirac one (Deplace and Montam-
baux 2010). Analysis of semi-Dirac systems based on DFT show that in some cases, spin-
orbit coupling (SOC) can open a small gap and can lead to topologically non-trivial bands, 
which contribute to non-zero total Chern number (Huang et al. 2015). Such systems are 
then suitable for demonstration of quantum Hall effect. Analogous conclusion is derived 
for semi-Dirac systems under laser light illumination (Saha 2016). On the other hand, 
Narayan (2015) concluded that for semi-Dirac semimetals circularly polarized light does 
not open a band gap. The influence of electronic correlations on semi-Dirac systems was 
also investigated. It was found by renormalization group theory, that interplay of Coulomb 
interaction between electrons and disorder can drive the semi-Dirac system to non-Fermi-
liquid behavior (Zhao et  al. 2016). Similarly, approximate solution of Schwinger–Dyson 
equation show that moderate Coulomb interaction can induce excitonic gap opening in 
semi-Dirac band structure (Wang et al. 2017). Anisotropic properties of semi-Dirac materi-
als have potential applications in electronics (Mannhart and Schlom 2010). For example, 
a p–n junction made from such material would have negative differential conductance for 
certain bias voltage (Saha et al. 2017).

Group theory is a powerful tool in predicting various types of electronic dispersions. 
In some cases mere belonging of a crystal to some space groups, leads unavoidably to 
certain dispersion. For example, Mañes (2012) has found sufficient conditions for exist-
ence of bulk chiral fermions in 3D single crystals and has provided a list of space groups 
that host such dispersion in the vicinity of given points of the BZ. The non-symmorphic 
space group P212121 (No. 19 in notation of Hahn 2005) belongs to Mañes list. Geilhufe 
et al. (2017) have searched the Organic Materials Database and have found six compounds 
that belong to this space group and in addition have only Dirac points at the Fermi level. 
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Another search was performed within reported DFT crystal structures collected in Mate-
rials Project database (Cheon et al. 2017). This search was for 3D crystal structures that 
consist of weakly interacting layers and hence, are suitable for obtaining 2D forms by e.g. 
exfoliation. Recently a list of four layer (diperiodic) groups that host semi-Dirac dispersion 
was given (Damljanović and Gajić 2017). The corresponding theory was formulated for 
non-magnetic, 2D materials with negligible SOC.

In this paper we have searched a list of layered 3D materials (Cheon et al. 2017), for 
structures that consist of layers belonging to layer group p11b (Dg5 in notation of Kopsky 
and Litvin 2002), with layers periodically repeated along the z-axis. The layer group p11b 
hosts semi-Dirac dispersion at A and B points of the BZ (Damljanović and Gajić 2017). 
In what follows, we have considered a tight-binding model from s-orbitals on a system 
isostructural to phosphorus sublattice in the single layer of material SnPSe3 that belongs to 
the list (Cheon et al. 2017).

2 � Method and results

Space group P1c1 (No. 7) is obtained by periodic repetition of layer group Dg5 along the 
axis that is perpendicular to diperiodic plane. On the other hand, diperiodic plane is per-
pendicular to the y-axis in the space group P1c1. For these reasons we have searched 3D 
layered materials given in Cheon et al. (2017), belonging to the space group P1c1, such 
that layers are parallel to the unique glide plane. We have found following five materials 
whose structures satisfy these requirements: Al2CdCl8 (Materials Project No. mp-28361 
Bergerhoff et  al. 1983; Staffel and Mayer 1987), Cr(PO3)5 (mp-705019 Bergerhoff et  al. 
1983; Jain et al. 2011; Hautier et al. 2011; El-Horr and Bagieu Beucher 1986), LiTi(PO3)5 
(mp-684059 Bergerhoff et al. 1983; Jain et al. 2011; Hautier et al. 2011; El-Horr and Bag-
ieu Beucher 1986), SnPSe3 (mp-570370 Bergerhoff et  al. 1983; Israel et  al. 1998) and 
SnPS3 (mp-13923 Bergerhoff et al. 1983; Dittmar and Schaefer 1974). If one would neglect 
SOC one would get semi-Dirac dispersion in these materials, irrespectively of the method 
used to calculate the band structure, as long as the approximation used is sufficiently fine 
(Damljanović and Gajić 2017). The inclusion of SOC would require analysis of double 
groups and it may be a topic of future research.

As an illustration, we will investigate electronic dispersion within a tight-binding model 
on a structure that belongs to layer group Dg5. In order to make the structure more real-
istic, we choose it to be isostructural with the sublattice of phosphorus ions in SnPSe3 , a 
material whose stability was confirmed by DFT calculations (Bergerhoff et al. 1983; Israel 
et al. 1998). The crystal structure and corresponding BZ is shown on Fig. 1. The lattice 
parameters are 6.996 and 12.006 Å, while the oblique angle is 124.6◦ . The Wyckoff posi-
tion 2a is occupied twice, with nuclei having (fractional) coordinates (0.12600, 0.56620, 
2.83 Å) and (0.87540, 0.43600, 1.17 Å). The positions of other nuclei are determined by 
symmetry (Kopsky and Litvin 2002). Although our system is isostructural with phospho-
rus sublattice of SnPSe3 , we do not assume that it is made from phosphorus atoms. We 
consider a tight-binding (LCAO MO) model from s-orbitals, in order to make the model 
simple. The internuclear distances and hopping integrals are given in the Table  1. The 
tight-binding Hamiltonian is ( ∗ denotes complex conjugation):
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Fig. 1   a Crystal structure belonging to Dg5 for the tight-binding model. Black parallelogram denotes prim-
itive unit cell. All nuclei are of the same type. Height of nuclei above the drawing plane is denoted by 
colors: blue + 2.83 Å, black + 1.17 Å, gray − 1.17 Å, turquoise − 2.83Å. b Corresponding Brillouin zone 
with basis vectors of the reciprocal lattice and positions of A and B points that host semi-Dirac dispersion. 
(Color figure online)

Table 1   Internuclear distances 
and corresponding hopping 
parameters for the structure from 
Fig. 1

Other distances (higher neighbors of �
1
 or �

3
 ) are bigger than 7.8 Å

Pair of nuclei Internuclear distance (Å) Hopping 
integral

�
1
 , �

1
0 �

11

�
3
 , �

3
0 �

33

�
1
 , �

3
− � − � 2.2677 �

13

�
1
 , �

4
6.0619 �

14

�
3
 , �

4
6.4446 �

34

�
3
 , �

4
+ � 6.4446 �

34

�
1
 , �

3
− � 6.4794 �

′
13

�
3
 , �

4
− � 6.5389 �

′
34

�
3
 , �

4
+ � + � 6.5389 �

′
34

�
1
 , �

4
− � 6.9012 �

′
14

�
1
 , �

1
+ � 6.9960 �

′
11

�
1
 , �

1
− � 6.9960 �

′
11

�
3
 , �

3
+ � 6.9960 �

′
33

�
3
 , �

3
− � 6.9960 �

′
33
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We are interested in the electronic band structure in the vicinity of points 
�A = (−�

�
+ �

�
)∕2 and �B = �

�
∕2 . The band structure for certain ratios of hopping inte-

grals is shown on Fig. 2. We can see in the vicinity of point (0, 0) the presence of disper-
sion which is Dirac-like along one direction in the BZ and quadratic along the perpendicu-
lar direction. In addition, we see that the band structure contains double spinless degenerate 
line (one line per each pair of bands) which is not caused by the TRS nor crystal symmetry. 

To determine more precisely the exact type of dispersion in the vicinity of given BZ 
points, we calculate analytically the band structure, first by the perturbation theory of 
degenerate energy level and later exactly, by solving quartic equation. In order to simplify 
calculations we assume � �

11
= �

�
33

= �
�
13

= �
�
14

= �
�
34

= 0 and, although not required by sym-
metry, �11 = �33(= �1) . The energies at both A and B points are E0 = �1 −

√
�
2

13
+ �

2

14
 and 

E�
0
= �1 +

√
�
2

13
+ �

2

14
 . Both E0 and E′

0
 are doubly degenerate. For the A-point we write 

�(�A + �) = �(�A) + �
� and apply first order perturbation theory of degenerate levels E0 

(1)�(�) =

⎛⎜⎜⎜⎜⎝

�11 + 2� �
11
cos(� ⋅ �) 0 �13e

−i�⋅(�+�) + �
�
13
e
−i�⋅�

�14 + �
�
14
e
−i�⋅�

0 �11 + 2� �
11
cos(� ⋅ �) �14 + �

�
14
e
−i�⋅�

�
�
13
+ �13e

−i�⋅�

�13e
i�⋅(�+�) + �

�
13
e
i�⋅�

�14 + �
�
14
e
i�⋅�

�33 + 2� �
33
cos(� ⋅ �) h34

�14 + �
�
14
e
i�⋅�

�
�
13
+ �13e

i�⋅�
h
∗
34

�33 + 2� �
33
cos(� ⋅ �)

⎞⎟⎟⎟⎟⎠
,

(2)h34 = �34

(
1 + ei�⋅�

)
+ �

�
34

(
e−i�⋅� + ei�⋅(�+�)

)
.

Fig. 2   The electronic band structure in the vicinity of A (a) and B (b) points of the BZ for �
13
∕� �

11
= 18 , 

�
14
∕� �

11
= 10.5 , �

34
∕� �

11
= 8 , �

�
13
∕� �

11
= 6.5 , �

�
34
∕� �

11
= 4.5 , �

�
14
∕� �

11
= 2.5 , �

�
33
∕� �

11
= 0.5 and 

(�
33
− �

11
)∕� �

11
= −0.5 . � is in units 1 / b in the direction parallel to �∕b , and in units 1∕(acos(34.6◦)) in the 

direction perpendicular to �∕b . Coordinates of the A point in panel a, i.e. B point in panel b, are (0, 0)
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and E′
0
 , with �� = �(�A + �) − �(�A) being perturbation. We do the same for the B-point. 

The final result for the B-point is:

while for the A-point we obtain:

Here � is a vector of small modulus, q1 , q2 , q′1 and q′
2
 are the projections of � along vectors 

�1 , �2 , �3 and �4 , respectively. In addition:

Since u1 , u2 , v1 and v2 are all greater than zero, the obtained dispersion is of semi-Dirac 
type as predicted by Damljanović and Gajić (2017), but the accidental double degeneracy 
is missed.

(3)E1,2 ≈ E�
0
−

1

2
C2q

�2
2
±

1

2

√
u2q

�2
1
+ v2q

�4
2
,

(4)E3,4 ≈ E0 +
1

2
C1q

2

2
±

1

2

√
u1q

2

1
+ v1q

4

2
,

(5)E1,2 ≈ E�
0
−

1

2
C1q

2

2
±

1

2

√
u1q

2

1
+ v1q

4

2
,

(6)E3,4 ≈ E0 +
1

2
C2q

�2
2
±

1

2

√
u2q

�2
1
+ v2q

�4
2
.

(7)u1,2 =

⎡
⎢⎢⎢⎣
2

�13�14�
�
2

13
+ �

2

14

� +

⎛
⎜⎜⎜⎝

�13�14�
�
2

13
+ �

2

14

∓ �34

⎞
⎟⎟⎟⎠
�

⎤
⎥⎥⎥⎦

2

,

(8)v1,2 = 4
(� × �)4�6

13
�
2

14
�
2

34

u2
1,2
(�2

13
+ �

2

14
)2

,

(9)C1,2 =
(� × �)2�2

13

u1,2

√
�
2

13
+ �

2

14

(
�
2

13
�
2

14

�
2

13
+ �

2

14

+ �
2

34

)
,

(10)�1 =
2√
u1

�13�14�
�
2

13
+ �

2

14

� +
1√
u1

⎛⎜⎜⎜⎝

�13�14�
�
2

13
+ �

2

14

− �34

⎞⎟⎟⎟⎠
�,

(11)�3 =
2√
u2

�13�14�
�
2

13
+ �

2

14

� +
1√
u2

⎛
⎜⎜⎜⎝

�13�14�
�
2

13
+ �

2

14

+ �34

⎞⎟⎟⎟⎠
�,

(12)�2,4 =
�1,3 × (� × �)

|� × �| .
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Exact solution, based on solving quartic characteristic equation, gives the following condi-
tion for double degeneracy:

which has solution for sufficiently small |�| , irrespectively of relations between �13 , �14 and 
�34 . The Taylor expansion of the exact energy around � = 0 (B-point) gives 
E1,2 ≈ E�

0
± (1∕2)

√
u2
���q�1

��� , in the direction �3 , and E1,2 ≈ E�
0
± (1∕2)w2

|||q�2
|||
3

 , in the direc-

tion perpendicular to �3 . Similarly, E3,4 ≈ E0 ± (1∕2)
√
u1
��q1�� in the direction �1 and 

E3,4 ≈ E0 ± (1∕2)w1
||q2||3 , in the direction perpendicular to �1 . Here:

For the A-point we make substitution �13 → −�13 in the above formulas. It follows that the 
first order perturbation theory gives correct BZ-direction of Dirac-like dispersion and cor-
rect behavior of band structure in this direction. For the orthogonal direction as well as 
behavior of bands in complete vicinity of A, B-points the first order perturbation theory is 
not sufficient and higher order corrections are needed.

Regarding line of accidental spinless degeneracy found in exact solution of four-com-
ponent Hamiltonian, one has to note that similar degeneracy occurs in the tight-binding 
example for layer group Dg48 of Damljanović and Gajić (2017). In this case the degen-
eracy is a consequence of the fact that model Hamiltonian is two-component and that third 
order polynomial has at least one real zero. By studding the compatibility relations of all 
four layer single groups found in Damljanović and Gajić (2017) in the vicinity of �0 we get 
that two-dimensional irrep decomposes into two nonequivalent, one-dimensional irreps: 
�2D(G(�0)) = �1D(G(�0 + �)) + �

�
1D
(G(�0 + �)) , where � is small, jet non-zero wave vec-

tor. According to von Neumann–Wigner theorem, two bands touching at �0 do not repel 
each other at nearby points and may cross there too (Landau and Lifshitz 1981).

3 � Conclusions

In summary, we have investigated electronic dispersion on a structure belonging to layer 
group Dg5, using tight-binding model from s-orbitals. We applied two methods for obtain-
ing electronic dispersion: the first order perturbation theory of doubly degenerate level 
and exact diagonalization based on solving quartic equation. The first order perturbation 
method gives correct behavior in the Dirac-dispersion direction, while for other directions 
one needs higher order corrections. Accidental node line present in the exact method does 
not appear in the first order perturbation method. Further investigation should show if e.g. 
band topology cause these lines to always appear in four groups from Damljanović and 
Gajić (2017).

In addition, we have pointed out that in the literature there have already been reported 
numerically stable 3D structures, which consist of weakly interacting layers belonging to 
Dg5. Closer ab initio electronic band structure investigations of single layers of these struc-
tures, could give more insight into the particular types of semi-Dirac dispersion that are 
expected to appear.

(13)
(
�
2

13
+ �

2

14

)
�
2

34
sin2(� ⋅ �∕2) = �

2

13
�
2

14
sin2(� ⋅ � + � ⋅ �∕2),

(14)w1,2 =
|� × �|3
3u

3∕2

1,2

�13�14�34√
�
2

13
+ �

2

14

(
�
2

13
�
2

14

�
2

13
+ �

2

14

− �
2

34

)
.
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