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Abstract
In this article, the first and second-order rogue wave solutions are obtained which are local-
ized in both space and time that appear from nowhere and disappear without a trace. The 
coupled NLSEs with time-dependent coefficients are considered that describe the effects of 
ultrashort optical pulse propagation in nonlinear optics and quantum physics. The similar-
ity transformation is used to investigate these rational-like (rogue wave) solutions. Moreo-
ver, the 3D graphical representations and contour plots have depicted with different param-
eters of gravity field and external magnetic field.

Keywords Rogue wave solutions · Similarity transformation · Coupled Schrödinger 
equations

1 Introduction

The study of rogue waves has become a hot and interesting topic in the field of nonlin-
ear science. The rogue wave is a giant single wave which was firstly found in the ocean 
(Muller et al. 2005; Akhmediev et al. 2009) and the amplitude of this wave is higher than 
its surrounding waves. The importance of these waves have also been observed in many 
fields like optical fibers (Solli et al. 2007; Zhang et al. 2014; Zheng-Yi and Song-Hua 
2012), Bose–Einstein condensates (BECs) (Bludov et  al. 2009), super fluids (Ganshin 
et al. 2008), and so on Younis et al. (2015), Cheemaa and Younis (2016), Geng and Lv 
(2012), Ali et al. (2015), Triki and Wazwaz (2011), Fan (2001), Ablowitz and Clarkson 
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(1991), Bekir et  al. (2012), Akhmediev et  al. (2009), Kharif and Pelinovsky (2003), 
Janssen (2003), Onorato et al. (2001), Dai et al. (2012), Wang et al. (2011, 2012), Wang 
and Dai (2012), Yan (2010a, b), Peregrine (1983), Akhmediev et al. (2009), Song et al. 
(2010), Meng et al. (2015), Cheng et al. (2014). However, it is very difficult to explain 
the rogue waves using the linear theories based on the superposition principles. These 
theories (Kharif and Pelinovsky 2003; Janssen 2003; Onorato et al. 2001), can be used 
to demonstrate, why the rogue waves can appear from nowhere. In recent years, it 
becomes an important issue for ones to study the rogue waves theoretically in the fields 
of the nonlinear science (Dai et al. 2012; Wang et al. 2011, 2012; Wang and Dai 2012; 
Yan 2010a). The Darboux transformation (Peregrine 1983; Akhmediev et al. 2009), the 
similarity transformation and the numerical simulation (Yan 2010a, b; Akhmediev et al. 
2009; Song et  al. 2010) were used to analyze the occurrence of these waves and the 
larger amplitudes. One of the important known model for the rogue waves is considered 
and called the NLSE.

The NLSE is a basic or fundamental model to describe the numerous nonlinear physi-
cal phenomena, particular in quantum mechanics and nonlinear optics. In this article, we 
investigate the 1st and 2nd order rogue wave solutions to the coupled NLSEs with time 
dependent coefficients in non-Kerr media. This coupled model is read as:

 and

The q(x, t) and r(x, t) represent the electromagnetic wave fields that propagate along two 
components named as spatial x and temporal t. The coefficients al(t) and bl(t) for l = 1, 2, 
represent the GVD and XPM, respectively.

The aim of this paper is to construct rogue wave solutions to the Eqs. (2) and (3). The 
similarity transformation tool is used to investigate the waves. The following transfor-
mation is considered to construct the solutions.

 and

where Pl(x, t) for l = 1, 2 are the amplitude components of the wave solutions and while the 
phase component �l(x, t) is given by the following equation.

In the following section, the similarity transformation has been applied to investigate the 
explicit solutions.

2  Explicit solutions

Firstly, we consider the following transformation for the envelope fields q and r, see also (You-
nis et al. 2015).

(1)iqt +
1

2
qxx + |q|2q = 0.

(2)iqt + a1(t)qxx + b1(t)|r|2q = 0

(3)irt + a2(t)rxx + b2(t)|q|2r = 0.

(4)q(x, t) = P1(x, t)e
i�1(x,t)

(5)r(x, t) = P2(x, t)e
i�2(x,t),

(6)�l(x, t) = − klx + �lt + �l.
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 and

where qR ≡ qR(x, t) , qI ≡ qI(x, t) , rR ≡ rR(x, t) , rI ≡ rI(x, t) , q ≡ q(x, t) , r ≡ r(x, t) , 
�1 ≡ �1(x, t) , and �2 ≡ �2(x, t) . The intensity of above transformation can be given by the 
following equations.

 and

For l = 1 and phase l̄ = 3 − l , the real functions depend on the variables x (space) and t 
(time). Substitute the Eqs. (7)–(10) into Eqs. (2) and (3), which yield the following coupled 
equations.

The following set of equations can be obtained. The real parts take the form.

and imaginary parts are

(7)q = (qR + iqI)e
i�1

(8)
and

r = (rR + irI)e
i�2 ,

(9)|q|2 = |qR|2 + |qI|2 = P2
l

(10)|r|2 = |rR|2 + |rI|2 = P2

l̄
.

(11)

− qR𝜙1t − iqI𝜙1t + iqRt − qIt − a1(t)qR𝜙
2
1x
− ia1(t)qI𝜙

2
1x

+ ia1(t)qR𝜙1xx − a1(t)qI𝜙1xx + 2ia1(t)qRx𝜙1x − 2a1(t)qIx𝜙1x

+ a1(t)qRxx + ia1(t)qIxx + b1(t)P
2

l̄
qR + ib1(t)P

2

l̄
qI = 0,

(12)

− rR�2t − irI�2t + irRt − rIt − a2(t)rR�
2
2x
− ia2(t)rI�

2
2x

+ ia2(t)rR�2xx − a2(t)rI�2xx + 2ia2(t)rRx�2x − 2a2(t)rIx�2x

+ a2(t)rRxx + ia2(t)rIxx + b2(t)P
2
l
rR + ib2(t)P

2
l
rI = 0.

(13)
− qR𝜙1t − qIt − a1(t)qR𝜙

2
1x
− a1(t)qI𝜙1xx

− 2a1(t)qIx𝜙1x + a1(t)qRxx + b1(t)P
2

l̄
qR = 0,

(14)
− rR�2t − rIt − a2(t)rR�

2
2x
− a2(t)rI�2xx

− 2a2(t)rIx�2x + a2(t)rRxx + b2(t)P
2
l
rR = 0,

(15)
− qI𝜙1t + qRt − a1(t)qI𝜙

2
1x
+ a1(t)qR𝜙1xx

+ 2a1(t)qRx𝜙1x + a1(t)qIxx + b1(t)P
2

l̄
qI = 0,

(16)
− rI�2t + rRt − a2(t)rI�

2
2x
+ a2(t)rR�2xx

+ 2a2(t)rRx�2x + a2(t)rIxx + b2(t)P
2
l
rI = 0.
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For the real functions qR(x, t), qI(x, t), rR(x, t), rI(x, t) , �1(x, t) and �2(x, t) , introducing the 
new variables �(x, t) and �(t) and further utilizing the similarity transformations, we have 
the following transformation

The derivation of similarity transformation are:

(17)qR = A(t) + B(t)P(�(x, t), �(t)),

(18)qI = C(t)Q(�(x, t), �(t)),

(19)�1 = �1(x, t) + �1 �(t),

(20)rR = G(t) + H(t)M(�(x, t), �(t)),

(21)rI = N(t)S(�(x, t), �(t)),

(22)�2 = �2(x, t) + �2 �(t),

(23)qRt = At + BtP + BP��t + BP��t,

(24)qRx = BP��x,

(25)qRxx = BP���
2
x
+ BP��xx,

(26)qIt = CtQ + CQ��t + CQ��t,

(27)qIx = CQ��x,

(28)qIxx = CQ���
2
x
+ CQ��xx,

(29)�1t = �1t + �1 �t,

(30)�1x = �1x,

(31)�1xx = �1xx,

(32)rRt = Gt + HtM + HM��t + HM��t,

(33)rRx = HM��x,

(34)rRxx = HM���
2
x
+ HM��xx,

(35)rIt = NtS + NS��t + NS��t,

(36)rIx = NS��x,

(37)rIxx = NS���
2
x
+ NS��xx,

(38)�2t = �2t + �2 �t,

(39)�2x = �2x,

(40)�2xx = �2xx.



Rogue wave solutions in nonlinear optics with coupled Schrödinger…

1 3

Page 5 of 13 266

where �1 and �2 are constants. Substituting the Eqs.  (17)–(40) into Eqs.  (13)–(16), we 
obtain the following set of equations.

The following similarity reduction can be obtained, after the simplification of above 
equations.

(41)

− (A + BP)(𝜁1t + 𝜆1𝜏t) − (CtQ + CQ𝜂𝜂t + CQ𝜏𝜏t)

− a1(t)(A + BP)𝜁2
1x
− a1(t)CQ𝜁1xx − 2a1(t)(CQ𝜂𝜂x)𝜁1x

+ a1(t)BP𝜂𝜂𝜂
2
x
+ a1(t)BP𝜂𝜂xx + b1(t)P

2

l̄
(A + BP) = 0,

(42)

− CQ(𝜁1t + 𝜆1𝜏t) + At + BtP + BP𝜂𝜂t + BP𝜏𝜏t

− a1(t)CQ𝜁
2
1x
+ a1(t)(A + BP)𝜁1xx + 2a1(t)BP𝜂𝜂x𝜁1x

+ a1(t)CQ𝜂𝜂𝜂
2
x
+ a1(t)CQ𝜂𝜂xx + b1(t)P

2

l̄
CQ = 0,

(43)

− (G + HM)(�2t + �2�t) − (NtS + NS��t + NS��t)

− a2(t)(G + HM)�2
2x
− a2(t)NS�2xx − 2a2(t)(NS��x)�2x

+ a2(t)HM���
2
x
+ a2(t)HM��xx + b2(t)P

2
l
(G + HM) = 0,

(44)

− NS(�2t + �2�t) + Gt + HtM + HM��t + HM��t

− a2(t)NS�
2
2x
+ a2(t)(G + HM)�2xx + 2a2(t)HM��x�2x

+ a2(t)NS���
2
x
+ a2(t)NS��xx + b2(t)P

2
l
NS = 0.

(45)�xx = 0,

(46)�t + 2a1(t)�x�1x = 0,

(47)�t + a1(t)��1xx = 0 , (� = A,B,C),

(48)𝜁1t + a1(t)𝜁
2
1x
− b1(t)P

2

l̄
= 0,

(49)− (A + BP)�1�t − CQ��t + a1(t)BP���
2
x
= 0,

(50)− CQ�1�t + BP��t + a1(t)CQ���
2
x
= 0,

(51)�t + 2a2(t)�x�2x = 0,

(52)�t + a2(t)��2xx = 0 , (� = G,H,N),

(53)�2t + a2(t)�
2
2x
− b2(t)P

2
l
= 0,

(54)− (G + HM)�2�t − NS��t + a2(t)HM���
2
x
= 0,

(55)− NS�2�t + HM��t + a2(t)NS���
2
x
= 0,
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where �(x, t), �1(x, t), �2(x, t), A(t), B(t),  C(t),  G(t),  H(t),  P(�, �), N(t),  M(�, �), S(�, �) and 
Q(�, �) are unknown functions which will be determined later. It may also be noted that 
bl(t)P

2

l̄
≠ 0 , because bl(t) is the coupling co-efficient. If it is zero, then there will be no cou-

pling exist. So, it does not hold. After performing some algebra computation, it is followed 
from the above equations.

where a0, b0, b and d are constants, �(t) is the inverse of the wave width, and −�(t)∕�(t) is 
the position of its center of mass. The �(t), �(t) and �l(t) for l = 1, 2 are all free functions 
with respect to time t. The Eqs. (49), (50), (54), (55) have further reduced to the following 
equations.

Using the method given in Akhmediev et  al. (2009), Peregrine (1983), we obtain the 
rational solutions of first-order:

where R1 = 1 + 2�2 + 4�2.
Now the solutions of second order take the forms:

(56)� = �(t)x + �(t),

(57)�1(x,t) = −
�tx

2

4a1(t)�(t)
−

�tx

2a1(t)�(t)
− �0(t),

(58)�2(x,t) = −
�tx

2

4a2(t)�(t)
−

�tx

2a2(t)�(t)
− �0(t),

(59)A(t) = a0

√
���, B(t) = bA, C(t) = dA,

(60)G(t) = b0

√
���, H(t) = bG, N(t) = dG,

(61)�(t) =
1

2 ∫
t

0

�2(s)ds, �2 = 2A2 or �2 = 2G2,

(62)(1 + bP)�1 + dq� + bP�� = 0,

(63)dQ�1 − bP� − 2dQ�� = 0,

(64)(1 + bM)�2 + dr� + bM�� = 0,

(65)dS�2 − bP� − 2dM�� = 0.

(66)P(�, �) = −
4

R1(�, �)b
, Q(�, �) = −

8�

R1(�, �)d
,

(67)M(�, �) = −
4

R1(�, �)b
, S(�, �) = −

8�

R1(�, �)d
.

(68)P(�, �) =
P1(�, �)

R2(�, �)b
, Q(�, �) =

Q1(�, �)�

R2(�, �)d
,

(69)P1(�, �) =
3

8
− 9�2 −

3�2

2
− 6�2�2 − 10�4 −

�4

2
,
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Thus, the following solutions can be obtained:

 and

where �1(x, t), �2(x, t),A(t),G(t), �(t),P(�, �),Q(�, �),M(�, �), S(�, �) are expressed by the 
Eqs. (57)–(61), (66)–(68) and (71), respectively. In the following section, the rogue wave 
solutions are constructed.

3  Rogue wave solutions

For the first-order solution, we focus to construct the rogue wave structures to NLSEs with 
time-dependent coefficients. After substituting the Eq. (66) into Eq. (75) and also Eq. (67) into 
Eq. (76), we have the following first-order rational-like solution to the Eqs. (2) and (3):

 and

whose amplitudes are given by

(70)Q1(�, �) = −
15

4
+ 2�2 − 3�2 + 4�2�2 + 4�4 + �4,

(71)M(�, �) =
M1(�, �)

R2(�, �)b
, S(�, �) =

S1(�, �)�

R2(�, �)d
,

(72)M1(�, �) =
3

8
− 9�2 −

3�2

2
− 6�2�2 − 10�4 −

�4

2
,

(73)S1(�, �) = −
15

4
+ 2�2 − 3�2 + 4�2�2 + 4�4 + �4,

(74)
R2(�, �) =

3

32
+

33

8
�2 + 9

9�2

16
−

3�2�2

2
+

9�4

2
+

�4

8

2�6

3
�2�6 + �2�6 +

�4�2

2
+

�6

12
.

(75)q = A(1 + bP + idQ)ei(�1+�),

(76)r = G(1 + bM + idS)ei(�2+�),

(77)q = a0

√
���

�
1 −

4 + 8i�

1 + 2�2 + 4�2

�
ei(�1,�)

(78)r = b0

√
���

�
1 −

4 + 8i�

1 + 2�2 + 4�2

�
ei(�2,�),

(79)|q|2 = a2
0
|�| [2(�(t)x + �(t))2 + 4�2 − 3]2 + 64�2(t)

[1 + 2(�(t)x + �(t))2 + 4�2(t)]2
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 and

respectively. Let us choose the function �(t) = b + l cos(�t) to exhibit the nonlinear 
dynamical behavior of the rogue waves which change the gravity field b = �mg (where � is 
a constant) and the time-dependent external magnetic field l cos(�t).

Two cases are under consideration for the nonlinear dynamical behavior of the rogue waves 
in the presence of gravity field (when l = 0 and l ≠ 0).

The nonlinear dynamical behavior of the rogue waves is studied when there is only the 
gravity field; namely, l = 0. The value of �(t) = b only, then amplitudes corresponding to the 
above solutions are given by

 and

The Figs.  1, 2, and 3 have depicted for the amplitude given in Eqs.  (63) and (64) at 
a0 = b0 = 1 along with different values of b and �. It can be noted that the amplitude is 
maximum at b = 0.61 and � = 0.5 . Its graphical representation is given in Fig. 2.

The nonlinear dynamical behaviour of the rouge waves is also studied, when there exists 
the gravity field and the external magnetic field l ≠ 0. We suppose �(t) = 0.86 + 1.2 cos(0.1t) 
and �(t) = 0.35t2, then the nonlinear dynamic behaviour of the rational solution is shown in 
the Fig. 4.

For the second-order solution, we focus to construct the rogue wave structures to NLSEs 
with time-dependent coefficients. After substituting the Eq.  (68) into Eq.  (75) and Eq.  (71) 
into Eq. (76), we obtain the rational-like solution to Eqs. (2) and (3).

(80)|r|2 = b2
0
|�| [2(�(t)x + �(t))2 + 4�2 − 3]2 + 64�2(t)

[1 + 2(�(t)x + �(t))2 + 4�2(t)]2
,

(81)|q|2 = a2
0
b2

[4(bx + �(t))2 + 4�2 − 3]2 + 64�2(t)

[1 + 4(bx + �(t))2 + 4�2(t)]2

(82)|r|2 = b2
0
b2

[4(bx + �(t))2 + 4�2 − 3]2 + 64�2(t)

[1 + 4(bx + �(t))2 + 4�2(t)]2
.

(83)q = a0

√
���

�
1 +

P1

R2

+ i
Q1�

R2

�
ei(�1+�)
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Fig. 1  The 3D graph and contour plot of the first order rogue wave propagation for the intensity |q|2 = |r|2 
with � = 0.5 and the gravity field b = 0.5
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Fig. 2  The 3D graph and contour plot of the first order rogue wave propagation for the intensity |q|2 = |r|2 
with � = 0.5 and the gravity field b = 0.61
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Fig. 3  The 3D graph and contour plot of the first order rogue wave propagation for the intensity |q|2 = |r|2 
with � = 0.5 and the gravity field b = 0.3
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Fig. 4  The 3D graph and contour plot of the first order rogue wave propagation for the intensity |q|2 = |r|2 
with �(t) = 0.86 + 1.2 cos(0.1t) and �(t) = 0.35t2
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 and

whose intensities are given by

 and

respectively. Where P1(�, �),Q1(�, �), M1(�, �), S1(�, �) and R2(�, �) are expressed by the 
Eqs. (69)–(70) and (72)–(74), respectively.

It is also noted that the effect of the gravity field on the second order rogue wave is 
similar to the first order rogue wave. We suppose that b = 0.5 and � = 0.2, then non-
linear dynamical behaviour of the second order rogue wave depicted in the Fig. 5. We 
compare it with the first order rogue wave solution, it is found that there are six small 
peaks around the one high peak in the second order rogue waves and maximum energy 
of the wave is focus on the high peak and amplitude of the second order rational like 
solution is larger than the first order solution.

If � = 0.5 and �(t) = 0.5 exp(
1

cosh(0.2t3)
), then the second order rogue wave pattern 

shown in the Fig. 6. Suppose that � = 0.5 and �(t) = 0.5 exp(
1

cosh(0.2t2)
), then the second 

order rogue wave pattern has shown in the Fig.  7. Suppose that � = 0.5 and 
�(t) = 0.5 exp(

1

cosh(0.2t)
), then the second order rogue wave pattern has shown in the 

Fig. 8.
We also study the behaviour of the second order rogue waves when the gravity field 

and magnetic field exist. Suppose that � = 0.5 + 1.2 cos(8t) and �(t) = 0.2t, then the 
wave pattern has shown in the Fig. 9.

(84)r = b0

√
���

�
1 +

M1

R2

+ i
S1�

R2

�
ei(�2+�),

(85)|q|2 = a2
0
|�|

((
1 +

P1

R2

)2

+

(
Q1�

R2

)2)

(86)|r|2 = b2
0
|�|

((
1 +

M1

R2

)2

+

(
S1�

R2

)2)
,

-4
-2

0
2

4
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0
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4
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Fig. 5  The 3D graph and contour plot of the second order rogue wave propagation for the intensity 
|q|2 = |r|2 with b = 0.5 and � = 0.2.
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Fig. 7  The 3D graph and contour plot of the second order rogue wave propagation for the intensity 
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Fig. 8  The 3D graph and contour plot of the second order rogue wave propagation for the intensity 
|q|2 = |r|2 with � = 0.5 and �(t) = 0.5 exp
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4  Conclusion

In this article, we constructed the two forms of rogue wave solutions in a selected case 
of coupled NLSEs with variable coefficients. This coupled system is considered with 
GVD and XPM that describes the dynamics of waves in nonlinear optics and quan-
tum physics. The similarity transformation is used to construct the explicit rogue wave 
solutions (rational-like solutions) of first and second order. It is also noted that the 3D 
graphical representations and corresponding contour plots have depicted with different 
values of gravity field and external magnetic field.
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