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Abstract A formulation of Maxwell’s equations on the complex domain is presented in
this paper which is based on the extension of the nonlocal-in-time kinetic energy approach
recently introduced by Suykens. New wave equations with time-dependent source terms
are obtained in a uniform optical medium. A number of physical effects were raised and
their implications in classical electrodynamics besides to the propagation of waves in
dielectric media are analyzed and discussed accordingly.
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1 Introduction

Nonlocal effects play an important role in the description of electrodynamics of continuous
media, e.g. memory-dependent phenomena (Landau and Lifshitz 1960), vacuum electro-
dynamics of accelerated systems (Mashhoon 2003), normal and superconducting films
(Vestgarden et al. 2013; Vestgarden and Johansen 2012), superconductor with spatially
varying gap parameter (Brandt 1972), planar Josephson junctions (Boris et al. 2013),
electrodynamics of rotating systems (Mashhoon 2005) among others. Nonlocal effects
arise also in quantum electrodynamics and have important effects, e.g. EPR-like quantum
correlation (Rai Dastidar and Rai Dastidar 1998), quantum optics (Rai Dastidar 1992) and
also in quantum field electrodynamics phenomenologies (Efimov 1972; Phat 1973; Addazi
and Esposito 2015). In fact, nonlocal effects result into nonlocal conservation laws and
nonlocal symmetries which give rise to additional constants of motion not obtainable from
local conservation and symmetry laws (Anco and Bluman 1997; Pohjanpelto 1995). Since
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classical and quantum electrodynamics are primary based on Maxwell equations, we turn
our attention to these central equations in the present paper. Our main aim is to obtain
nonlocal Maxwell’s equations based on the nonlocal-in-time (NLT) framework.

In recent years, there have rapid developments in NLT theories. Time nonlocality arises
in a large number of physical phenomena including extended classical mechanics (El-
Nabulsi 2014, 2017a), nonconservative dynamics (Li et al. 2009), self-diffusion process
(Stecki 1971), noncommutative geometry (Gomis et al. 2001), discrete quantum mechanics
(El-Nabulsi 2016a), quantum field theory (El-Nabulsi 2016b, 2017b; Kamalov
2006, 2007, 2009, 2010, 2013) etc. NLT occurs as well in the theory of parabolic and
hyperbolic differential equations (Gordeziani 1989, 1991, 1994; Gordeziani and Gri-
galashvili 1993). A more recent interesting approach dealing with NLT aspect was
introduced by Suykens (2009). This innovative and trouble-free approach was motivated in
reality from Feynman’s observation of the kinetic energy functional written as =% f—x
in place of Jmvv with ¢ = ;1| — t;, i.e. particle positions are shifted backward and forward
in time (m being the mass of the body and v =4 =X its velocity) (Feynman 1948).
Suykens used the shifting-coordinates tactic and rewrite the kinetic energy as K = lmv4
where A = %(t + 1) + x(t — 7) and 1 is to some extent a relatively tiny parameter entitled
the “nonlocal time parameter”. This effortless scheme leads to a number of inspiring
properties at all scales which were discussed in a series of research papers (El-Nabulsi
2017a, ¢, 2018). Since in general A = x(r+ 1) + X(t — 1) can be expanded in Taylor
series using the series expansions x(t+ 1) =x(t) + > %x®(¢) and x(tr—1) =

x(t) + >, %x“‘)(t), higher-order derivative emerge naturally in the theory. In reality,
higher-order derivative theories were shunned in the past since they allow states of neg-
ative norms to emerge in the theory under analysis. An infinite number of higher-order
temporal derivatives of the coordinates arise in the Lagrange function which in general
disagrees with the quantum formalism (Kamalov 2006, 2007, 2009, 2010, 2013). Never-
theless, after a large number of studies, it was observed that higher-order derivatives hold a
number of generic outcomes and they constitute an indispensable mathematical tool
nowadays in theoretical physics and sciences, e.g. in Abraham—Lorentz electrodynamics
theory which describes the equation of motion for charged particles taking into account
radiative effects (Jackson 1975). There exist quite a lot of methodologies to deal with
higher-order derivative theories, e.g. the method of perturbative constraints introduced in
Simon (1990) which is used to study dynamical systems characterized by equations of
motion depending on more than one moment in time in addition to the backward and
forward shifting coordinates/positions in time. This later was used by Nelson 50 years ago
in his influential paper (Nelson 1966) which aim to derive the Schrodinger equation from
stochastic aspects, i.e. stochastic models of quantum mechanics. Moreover, shifting
coordinates motivated Laurent Nottale to construct a fractal theory of spacetime which
today is recognized as scale relativity, a theory which puts quantum mechanics and special
relativity in a single box (Nottale 1993). Shifting coordinates were more recently used in
fluid dynamics mainly in nanotubes (El-Nabulsi 2017d) where several features were
revealed. In this work, we are in particular concerned with Suykens’s methodology due to
its uncomplicated formalism. We will use this approach to construct a nonlocal version of
Maxwell’s equations. Nevertheless, in this paper we will extend Suykens’s approach by
replacing A = X(r + 7) + %(t — 7) by its complex counterpart Aj = ) ¥ i)
where i =+/—1 € C and y is a real or a complex parameter. More precisely, we will
replace all velocities components in the Lagrangian by A;, i.e. the kinetic energy K = lmv2
will be replaced by K = Im%4. In fact when y = 0, both K| = Imv2 and K, = 1m44 leads to

@ Springer



On nonlocal complex Maxwell equations and wave motion in... Page 3 of 35 170

higher-order derivatives upper than in those obtained in Suykens’s formalism, i.e. it is easy
to verify that series expansion gives K; == 4 miyr  LCDh(KED g
Ky = Imi® 4+ Im 3 Bk 42) (1) 1 O(%*). We will show in this paper that this
transition will lead to many interesting properties not found in the classical electrody-
namics theory.

It was observed in Newman (1973, Newman 2004) and Gsponer (2001) that solutions of
Maxwell’s equations in the complex domain correspond to the world-lines of a charged
particle holding an intrinsic magnetic-dipole moment. An extension of electrodynamics to
the complex Lagrangian domain mainly the Finsler geometry was developed in Munteanu
(2007) and complexified electrodynamics was also studied in Friedman and Danziger
(2008). It was observed in Arbab (2013a) that complex Maxwell’s equations are more
convenient to study duality transformations. In Arbab (2014a, 2015) by assuming that both
the electric and magnetic fields for massive photons are complexified, a set of Maxwell’s
equations is obtained in free space and in a medium accordingly. This set of equations
suggests that photons are massive in a medium and massless outside. More generally,
complex electromagnetic theory based on complex vector algebra was constructed in
Muralidhar (2014, 2015) and the analysis showed that existence of spin transforms a
classical oscillator into a quantum oscillator and that the classical mechanics combined
with zero point field leads to quantum mechanics. Complex Maxwell’s equations and
complex electrodynamics were also discussed in Gordeziani and Grigalashvili (1993),
Friedman and Ostapenko (2010), Friedman (2013), Aste (2012), Arbab
(2009, 2013b, 2014b) through different contexts and outcomes showed that massive
photons may be included in Maxwell’s electromagnetic theory and that the electromagnetic
fields travel with speed of light in the presence or absence of free charges. However, most
of the theories do not take into account the nonlocality in their formulation. In Landau and
Lifshitz (1960), Mashhoon (2003), Vestgarden et al. (2013), Vestgarden and Johansen
(2012), Brandt (1972), Boris et al. (2013), Mashhoon (2005), Rai Dastidar and Rai Dastidar
(1998), Rai Dastidar (1992), Efimov (1972), Phat (1973), Addazi and Esposito (2015),
Anco and Bluman (1997), Pohjanpelto (1995), Cho (1991), nonlocal Maxwell’s equations
were constructed in the real domain and not in the complex domain. To the best of our
knowledge, this work represents the first attempt to construct “nonlocal complex Max-
well’s equations” based on Suykens’s nonlocal-in-time kinetic energy approach.

The paper is organized as follows: in Sect. 2, we introduce the basic setups of our
model: we start from the extended NLT Lagrangian of a particle moving in an electro-
magnetic field in order to derive the modified electromagnetic field tensor which will be
used to derive the NLT complex Maxwell’s equations; in Sect. 3, we derive the complex
NLT Maxwell’s equations; in Sect. 4 we derive the complex Lorentz force and discuss
some of its consequences; Sect. 5 is devoted to the implications of NLT complex Max-
well’s equations in classical and quantum electrodynamics; in Sect. 6, we explore the
propagation of electric field in dielectric medium; finally conclusions and perspectives are
given in Sect. 7. Through this work, spacetime coordinates are expressed in terms of
(ct,x'),i =1,2,3. We will refer to these variables as (xo,¥) = X. Einstein’s summation
notation is used as well. In tensor notation, we use the 4-vectors notation from special

relativity: X* = (t,X), X, = (—,X) and the four dimensional differential operators 0" =
(—0/01, 6) and 0, = (0/0x, ﬁ)(,u, v=20,1,2,3). Finally, we work in units i = ¢ = 1.
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2 Basic setups of the theory: derivation of the NLT electromagnetic field
tensor

In general, Maxwell’s equations are set of partial differential equations which describe the
evolution of electromagnetic fields on the real domain. In general, the electric field E =
(E;) and the magnetic fields B = (B;) are assumed to be functions f, g : R'"™ — R and are
expressed in terms of the 4-vector potential A’ = (¢, —A) by the following relations:
E=-V¢—0,A and B=V x A. Here ¢ is the scalar potential and A is the vector
potential (Landau and Lifschitz 1993). We consider at present a particle of mass m and
electric charge e moving in the electromagnetic field. In the standard electrodynamics
formalism, the Lagrangian is given by (Goldstein 1950; Yu 2012):

1 3 1 3
L= Smdyx-0X +e ;Aiax(,x,- = 3mv(1) V(1) +e ;Aiax(,x,-, (1)

where V() = 0,,X = 0,X = X is the velocity of the particle. In this paper, we will gener-
alize Eq. (1) by globally replacing the velocity vector in Eq. (1) by A; as follows:

1 (v(t+r)+v(t—r)+iyv(t+r) —v(t—r))'

L=3m 2 2

Vit+t)+v(r—1) . v(it+1)—Vv(E—1)

( 5 + 1y 5 )

3 )&i(l-f—‘[)-f-)éi(t—f) . )&i(l+T) —)&i(t—f)
A,‘ .

>4 - )

ez 2 ’ 2

By taking the following Taylor series expansions of X(z+71), X(f—1),
v(it+ 1) =dx(t+1)/dt =x(t+ 1), v(t—1)=dXx(t—1)/dt =x%X(t—1), %(r+7) and
)&i([ — ‘L')Z

Ki+7) = x(0) + 30 0, ®)
k=1"
- (_1)ka k
x(t —1) = x(1) + ZTx< (1), (4)
k=1 :
v(t+1) = X(1) + igx“*”m, (5)
k=1""
. - (*l)k‘fk k+1
V(t—1) =X(1)+ ) P x50 (1), (6)
k=1 :
Tt +1
5i(t+ 1) =) + ) ), 7)

k=1
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k
. ke
Bi(t —1) = (e +Z @), (8)
we can write Lagrangian as:
2
1 . 1+|'y 1 Tk (k+1) 1_|'y (k+]
Lop= Em(x(t) +— ;ﬁx Z (1)
Ten
: 1+ iy 7t L1 -1 ?)
~ . +1n T — Tk
+€ZA1' (xi(t) + : /Zﬁx§k+l) /Z ) l(k+1 (t)) ‘
i=0 k=1""
—Veu

This Lagrangian L., = L, ,(X,X, ..., XMY(N = n+ 1) contains higher-order deriva-
tives terms and takes the form £, = T ;, — V.,. The equation of motion is derived from
the following higher-order Euler—Lagrange equation by considering independent variables

X;(7) such that X; = X;_;,i =1,2,...,N — 1, Xy = x and X = X, (Suykens 2009):

oL oL oL oL ul oL
LU Wt U, Wit Y Wit A R —1)79, — =0, 10
D T ; (=100 0 (10)

which is the stationary solution to the action functional S = f s L. ,dt under the postu-
lations that the action functional is subject to given boundary conditions oxV)(zy) =
X9 (t) =0,j=0,1,2,...,N — 1 (Simon 1990). In Eq. (10) the following notations hold:
ox\? = ox;, oX!V = aX; = 9(dX; /) and so on.

Remark 2.1 1t should be stressed that the Lagrangian (9) is complex valued. In fact,
recent studies proved that complexification of real Lagrangian and Hamiltonian may throw
some light in explaining a number of properties in specific dynamical systems (Bender
et al. 2007a, b; Bender 2007; Sbitnev 2009; Alber and Marsden 1996; Kaushal 2009; El-
Nabulsi 2012; El-Nabulsi et al. 2012). We can always express the Lagrangian in terms of
the complex variable z = x+iy where x =®=) apd y =00 gpd obtain a

holomorphic Lagrangian (Markushevich 1965) yet in this work we use the variables X for
convenience.

We restrict our analysis up to n = 1 since the nonlocal time parameter is tiny, i.e. the
higher derivatives (related to the terms n > 1) are small. Consequently the Lagrangian we

will admit in what follows for (Xo,X) = X is:

3
L. = %m(X + ier) : (X + ier) +e ZA[(XI» +iytX;) + O(7%), (11)
i=0

and the corresponding equation of motion is derived from the following Euler—Lagrange

equation:
6[,1 1 aLT 1 aﬁr 1
=~ —0 = ol —==1] =0. 12
¢ t(aXi)+ tt(aXi) (12)
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For the sake of simplicity, we will not repeat the written of O(z?) in the rest of
equations since our analysis is limited to n = 1 in the rest of the paper.

Remark 2.2 1t is notable that the canonical conjugate momentum in the NLT approach is

p! :mith’ +mX' +eA and is different from the canonical conjugate momentum
obtained in the standard approach. The new momentum is complexified and holds an
acceleration term.

Using Einstein’s summation notation, the following partial derivatives hold
(4,j=0,1,2,3):

aL',Tz aA
X~ Cax, L(X + iytXo), (13)
oL, : L
Gt( ;{,2) = eA; + mX; + iytmX;, (14)
oL, L
6,,( 6X,2> = iytm X +iyteA;. (15)

The equation of motion takes therefore the following form:

. 0Aj o . o LA
mX; = eaiX{ (Xj + I'))‘L'Xj) — €eA; +iyteA;. (16)

Now using the fact that:

0A; .
and
- 0 (0A; 0 [0A\ . OA;
ii=g (%) =a (o o v g % (%)
we can rewrite Eq. (16) as:
0A; aA 0 [0A;\ . 0A; .
mX; = eaX (X; + iytX;) — °3X, —X; + I/Te<a (aX)Xj—i—a—Xij). (19)

Introducing the standard covariant electromagnetic field tensor:

A O0A; 04
Pl , 20
70X, 0X; (20)
we can rewrite Eq. (19) as:
s S aA, 0 [0A;\ .
mX; = eFyX; + I/re( X, X + = o (axj))fj); (21)

or as:
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e .
where

i O [ 0A;
F,‘j + W’L’E (G_X,)
Fy = ——ear (23)
m 0X;

is the nonlocal covariant electromagnetic field tensor. Obviously when t = 0, Eq. (22) is
reduced to the standard equation of motion. Equation (22) represents the NLT complex
equation of motion for a particle in an electromagnetic field. Since in units ¢ = 1 and in
particular for < <1 the factor te/m < <1, we can simplify Eq. (23) to:

3, oA, . 0 (oA,

The following statement holds accordingly:

Statement 1 In the extended nonlocal-in-time kinetic energy approach where the clas-
sical velocity is replaced by Aj = X0 4 80229 the covariant electromagnetic
field tensor is complexified and takes up to n =1 the form:

PO LD (oA
¥ " ax e \ax

In the next section we will use Eq. (24) to construct NLT complex Maxwell’s equations
and discuss their implications in electrodynamics, classical and quantum optics.

3 NLT complex Maxwell’s equations

In tensor notation, we use the terminology A* = (¢, A) and A, = (—¢, A) (Griffiths 1999).
Therefore we can write the nonlocal complex electromagnetic field strength in terms of
covariant space—time derivatives of the four vector potential field A* as:

0AY  0A# 6 0AH
PRI = @ <axv>' (25)
Using the relations E = —V¢ — A and B =V x A, it is easy to check that:
Foi = —E; — iytd;¢h, (26)
Fio = E; + iytA,, (27)
Fyj = euBi + iyfain. (28)

Here ¢, is the Levi—Civita anti-symmetric tensor. Therefore the following matrix holds:
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—iytd —E, —iptVyep —E — ieryd) —E; —ip1V.¢
E, + iyrAl iy‘chAl Bs + iy‘chAz —B; + iy‘cVZA3
E, + i"/‘[Az —B; + i’y‘CVXAZ i'))‘L'vyAz B + iy‘L'VZAz ’
E; + |’))‘L'A3 B, + i))‘L'A.:;A’x —B, + |'}1‘CV}A3 |'))‘L'VZA3

Fo = (29)

where Vy = 0/0t,V, = 0/0x and so on.

Let us at the present evaluate the following term: 2& + %2 + % We find:

F, OoF,; 0oF, . A ’A, A
oF, 0 oFj . 0 a#+a +ah,17 (30)
0X'0X* ' OX*dXM ' dXA0XY

o oxe T oxr T 'y

O | OFy 4 O
and therefore 3% + 3¢ + 5 = 0 unless

%A, 3’A, %A,

xox: T avexe T axox (31)

or a certain constant. It is notable that if we replace A* by

- oy
Al = AH 32
X, (32)
in F*" we obtain:
B 0AH 6A“+i 0 [0AY
=~ — T—
ox, ox,  "Tar\ax,) 33)
0A* 6A"+i o0/ 0 un GV
= — [ —
ox, ox, ' "for\ax, x,))
which gives F*" = F* unless:
G
=k 4
0X,0X, (34)

where k is a certain constant, i.e. & = kX,.

Consider first (u, v, 4) = (0,4,/): Eq. (30) gives for the case of a source free region:
Q0Fy + 0:Fjp + 8jFq; = iyt (9,040 + O/A; + 0i;), (35)
and using Egs. (26)—(28), we find:
o (el-jkBk + iyrajA,-) +0; (Ej + iyrAj) + 6j<—E,» — iyr@i(j}) =iyt (Gi@jAo + Oin + G,A'j).
(36)
After simple arrangements, we can write Eq. (36) as:

sijkBk + 6,~Ej - ajE,' =+ i'))‘L' (GJA, -+ 6,»A, + aja,qb - 6,61(15 - 6in - 6,A/> =0. (37)

Contracting by ¢;; and using &;j,éxm = 20 Where d; is the Kronecker symbol, we can
reduce this equation after some algebra to:
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This is just the standard equation:
V x E=-B. (39)

O=A-0 / 0> = 90, the d’Alembertian operator and A is the Laplacian operator.
Now for (u,v, ) = (i,j, k), Eq. (30) gives:

0iFji + 0jF i + OFy = iyt (000A; + 0;0kA; + 0:0/A). (40)
Contracting by ¢ we find using Eq. (28):
eei0iBy + iyTe0i0A; = iyte0:0;Ay, (41)
which is equivalent to 9;B; = 0 or
V-B=0. (42)

The NLT electromagnetic theory is therefore free from magnetic monopoles. Physi-
cally, for p = 0, we can write:

aVHIOV = _6 -E— in (Vxxd) + vyy(]'5 + sz(pb - ¢)7

. . (43)
= -V -E-iyrOé.

Since in the absence of a source 0'Fy, = 0 (Kok 2016), we obtain from Eq. (43):
V-E = —iprd, (44)

which is the NLT complex Gauss’ law. Moreover, one may check from a“[Fw' =
3oFY + 8;F¥ = 0 that the following relation holds:

V x B+iyt0A = E. (45)

The subsequent 2nd statement then holds:

Statement 2 In the extended nonlocal-in-time kinetic energy approach, the set of NLT
complex Maxwell’s equations is the following:

NLT complexified Gauss’s law ¥ - E = —iyt¢,

NLT complexified Maxwell’s law V x B+ iyrl:IA =E,
No magnetic charge law V-B=0,

NLT complexified Faraday’s law V x E = -B.

In the presence of the volume charge density p and the current density J, one may check
that the NLT complex Maxwell’s equations take the following general form:

NLT complexified Gauss’s law V - E = top — iyte,

NLT complexified Maxwell’s law V x B + iytlJA = E + ,uOJ_f,

No magnetic charge law V-B=0,

NLT complexified Faraday’s law V x E=-B.

Recall that the vector A is the spatial part of the 4-vector A’ = (¢, —A).
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We can also write these equations in terms of the displacement field D = ¢E and the
magnetizing field H = ;!B where ¢ is the permittivity of the vacuum and g is the
permeability constant. We obtain accordingly:

VD = —iyte,0, (46)
eottyV X H + iyregTIA = D, (47)
V-H=0, (48)
VxD= —souoH. (49)

Here guy = 1 in unit ¢ = 1. Some consequences of these equations are the followings:
First, we can write Eq. (39) as VxE=— ,uOH and taking the curl of both sides gives:

-

@xVxE:—,ano(§><H>:—E. (50)
equation(47)
Since V x V x E = V(V - E) — AE, we find using Eq. (44):
OE =0, (51)

which is the wave equation describing the propagation of the electric field in a medium.
Besides, one can write:

VxVxH=VY H-VH=-VH="C (VxD) - iy ¥ x OA,
—— ot ——
=0 =0 (52)
o /= .
_sog(v x E) — _H,
and therefore the wave equation of motion for the field H is:
OH=0. (53)

Moreover, we can write:

1V XxH=VXxB=VxVxA=VV-A—VA=E_ixDA,

L ) (54)
=—-V¢—A—iytdA,
and as a result we have:
OA =Vé + VV - AtiyrA. (55)
Let us at the end evaluate V - E as follows:
ﬁ-Ezﬁ-(—%—A):—Aqb—ﬁ-A:—iyquS. (56)
However, in order that ¢ obeys a wave equation, we need to set V - A = —¢ which is

the well-known Lorentz gauge condition and therefore we can write Eq. (56) as:
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O¢ = iyrde, (57)

which is reduced after simple integration to [l¢p = /7. The following 3" statement
consequently holds:

Statement 3 In the extended nonlocal-in-time kinetic energy approach, the wave
equations for (E,H, A,¢) take respectively the following forms:

E =0, (58)
OH =0, (59)
OA = e7/7, (60)
Q¢ = e/, (61)

All these equations are reduced to their standard forms when ¢ — oo. One may interpret
these equations as wave equations with time-dependent source terms, i.e. the propagation
of electromagnetic waves upon a time-dependent complex force although these equations
were obtained in the case of p = 0 and in the absence of the current. In fact, one may check
that if we choose the following NLT complexified gauge condition V-A= —(i) + iy,
we find O¢ = 0 and OA = iptOA.

Let us at the end of this section calculate the following product:

V- (ExB)=B-(VxE)-E- (VxB) ,
—— ———

equation (39) equation (45)
in the presence of J (62)
-B. (fB) —E. (E—iyrDA) — uE - I
However since E - JA — 0 at very large time, then:
V- (ExB)=-B-B-—E-E—yE-J. (63)
Introducing the usual Poynting vector S = (E x B)/u, we can write Eq. (63) as:
- 10 : :
- E-J+——(B-B+E-E)=0. 64
V-S+ + N ( + ) (64)

One can integrate this equation over an arbitrary volume V bounded by a surface S and
prove that the Poynting’s theorem of conservation of energy is not violated at very large
time in the NLT complex approach to Maxwell’s equations (Peatross and Ware 2015).

Remark 3.1 In materials, molecules become polarized in response to an applied electric
field. The associated current is usually given by Jp = P where P(r) is the dipole distri-

bution function or the polarization and the resulting charge density is p = —-V-P. Phys-
ically, an effective current density occurs when the dipoles change their direction as a
function of time in some coordinated way (Field 2006). Therefore, the NLT complex
Maxwell’s equations become:

NLT complexified Gauss’s law V-E= —iyqu'S -V-P,
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NLT complexified Maxwell’s law V x B 4 iytlJA = E + 1P + uoj,
No magnetic charge law V-B=0,

NLT complexified Faraday’s law V x E = -B.

Using the similar methodology used previously, the resulting wave equation for E is
given by:

OE = poP + pod — iytOA — iprOV — 6(6 : P).

The wave equations for (H, A,¢) may also be obtained using the same method. The 1st,
2nd and 5th terms on the RHS of the previous wave equation describe respectively dipole
oscillations, electric currents and polarization currents. The 3rd and 4th terms arise from
the extended NLT approach and describe new currents connected respectively to the
variations of the vector and scalar potentials. In Sect. 6, we will use this extended wave
equation to derive the modified index of refraction in dielectrics.

4 Complex Lorentz force

For a particle of charge g and vector velocity v, the NLT complex Lorentz force is obtained
as follows: we first introduce the NLT complex electric field E' = 0'/A% — 0°A? + ip1dPA’
and then derive the force from the generalized Newton’s 2nd law of motion F = dP/dt, F
being the 4-vector force, P the 4-vector momentum and t = ¢ is the proper time in a frame

R’ moving with respect to the rest frame R with velocity v such that dr = ypdt =

dr/\/l — B* with § = v (in units ¢ = 1). Accordingly using U() = (y;78,0,0) we find
(Field 2006):

Fi - q(éle — oA’ + I’yfayAl) U(ﬁ)xv
- yq(aiA(’ — °A" + iprd’Al - B; (aiAj — AT+ inain) — B <6iAk ot + i"/takAi)>a
= q(E'+ BB — piB* — iyt (BO/A" + p3A")),

- q(Ef + (B x B’)i—ZivrﬁVZi)

and therefore we obtain:
F:q(E—I—ﬁXB—Zith-ﬁA), (66)
where we have used the fact BY = —g;;(9'A7 — 9/AT) = (V x A)\.

One direct consequence of the NLT complex Lorentz force is the following: consider a
continuous charge distribution in motion. We can write the NLT complex Lorentz force as:

dF :dq(E+v x B—ziyrvﬁA), (67)

where dF is the force acting on the elementary charge dg. If we denote by f = dF/dV the
force density per unit volume and the current density by J= pV, Eq. (67) takes the form:
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f=pE+JxB—2iytJ- VA, (68)

Using the first two NLT complex Maxwell equations in the presence of p and J which
may be written respectively as:

iyt

1 - .
p=—% . E+ 2704, (69)
Ho Ho
I ' ]
J=—VxB+ DA —E (70)
Ho Ko Ho

we can write Eq. (68) and in particular for very large time as:

f— (ie.e)a (ivx B_LE) « B_zm<iex B_LE'> TA(71)
Ho Ho Ho Ho Ho

Making use of the following vector calculus identities:

ExB:a%(ExB)—ExB, (72)
(VxB)xB=(B-¥)B+ (ﬁB)B-%@BZ, (73)

together with V-B=0and gty = 1 we can reduce Eq. (71) after some algebra to:

fm:so((ﬁ-E)H (Eﬁ)E)+ﬂio((€-B)B+ (Bﬁ)B) —@(MLOB‘BJrsOE-E)

5 gipe(E+E) A+ 2l (E-TA),

ot ot
:so((ﬁ-E)H (Eﬁ)E)+ﬂiO((ﬁB)B+ (Bﬁ)B) —ﬁ(uiOB~B+s()E4E)
os

3 Ziyr(E + E) VA,
(74)

where S=(ExB)/y, is the wusual Poynting vector (Griffiths 1999) and
S=S—2iyz(E-VA). In tensor notation, we can write this equation as:

)yj 1 ij j
£=20 (80 (E,»Ej - %Ez) +M—0 <BiBj —%BZ)) —%,

Ty (75)

0S;
=0Ty —aftj7

where

. 1 (OE; .
fj = f]' + 2|“/‘C'u—0 < 6t + El) . aiAjy (76)

T;; is the Maxwell stress tensor and f; is the complexified force due to NLT and higher-
order derivative effects. Equation (75) is thus the extended NLT complex Lorentz force
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Table 1 The main outcomes of complex NLT Maxwell’s equations

Extended NLT approach

. 3
Lagrangians L= %m% +e Zi:O A i%
Ai — .\—(r+r)42r.r(r—r) + Wr(/ﬁ);x(/—r)
Covariant electromagnetic field tensor up to n = 1 L0 0A 0 (oA
g p Fy~ad—a + it (&
NLT complex Maxwell’s equations in the absence of the NLT complexified Gauss’s law
volume charge density p and the current density J V-E=-iytd¢

NLT complexified Maxwell’s law
V x B+i“,'1:I:|A: E

No magnetic charge law V-B=0

NLT complexified Faraday’s law
VxE=-B

NLT complex Maxwell’s equations in the presence of the NLT complexified Gauss’s law
volume charge density p and the current density J V-E= Hop — iyqu3

NLT complexified Maxwell’s law
V x B+i}'r\:|A: EJrqu

No magnetic charge law V-B=0

NLT complexified Faraday’s law

VxE=-B
Wave equations for (E,H,A,¢) OE = 0,0H = 0,0A = ¢ /7" (¢p = ¢/
NLT complex Lorentz force f=pE+JxB-2iyrd- VA
NLT complex Lorentz force in tensor notation f;=1+ Zi}'rﬂia (% 4 Ei) -0 A,

that is associated with the NLT complex Maxwell’s equations. The consequences of the
NLT complex Lorentz force in classical and quantum electrodynamics will be discussed in
detail in an upcoming paper. We summarize in Table 1 the main outcomes of the extended
nonlocal-in-time kinetic energy approach.

There exists one observation that deserves to be mentioned at the end of this sec-
tion. Although the present formalism is based on the extended nonlocal-in-time kinetic
energy approach which is characterized by the emergence of higher-order derivatives, the
entire equations obtained are extended to include new terms added to the standard ones,
e.g. an extra force —2iyrj VA emerged in NLT complex Lorentz force. Since the dot

product of two vectors is a scalar, then we denote S2].VA by the corresponding scalar
which affects the field and force equations and accordingly the complex Lorentz force may
be written as f = pE + J x B —2iyS. It is remarkable to see that for a constant A, the
complex Lorenz force is reduced to its standard form. We expect that these outcomes may
have interesting impacts in quantum theory and quantum electronics.
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5 Consequences and applications of the NLT complexified Maxwell
equations in electrodynamics

5.1 Classical electrodynamics

As a first implication of the previous results we discuss the plane wave problem. We
choose z to define direction of propagation, i.e. (0/0x,0/0y = 0). The plane waves are

transverse therefore from V - E = —iyrll¢ and (¢ = e /7" we find:

OE, it/y

i " 77

e, ()

and from V - B = 0 we find:
0B,
=0, 7
0z 0 (78)
From V x E = —B we obtain:

0B,
—=0 7
%o, (79)

and from V x B + iyt0A = E and A = ¢ /7% we get:

T e i/, (80)

Equations (79) and (80) give B. = ¢, — iyte "/7* and E, = ¢, + iyre /7" where ¢;,i =
1,2,... are constants of integration. These show that B, is constant, yet E, is time-
dependent and tend toward a constant at very large time. The (x,y) components of V x
E=-B— ¢/ are:

0E, OB, i

=y T 1

% o ¢ (81)
aEX aBy —it/"'

— _ T 2

oz a ¢ (82)

whereas the (x,y) components of V x B + iytJA = E are:

0B, . 0 (O°A, A, A, O*A)\ OE,
i (S =) == (83)
0z or\ ox2  y? o2 o ot
—e-it/7t
OB, 0 (%A, O*A. DA, A OE,
i et e — = | = 2. (84)
0z or\ ox2  0yr 02 o2 ot

—emitfe

Assuming solutions of the forms E(z,1) = Eoe!@ ¥ 4 g(z)e "/ and B(z,t) =
B! FK) 4 f£(7)e~"/7* with frequency « and wave number k along x-direction with g(z)
and f(z) are arbitrary functions of z, Eq. (82) gives:
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$ikE0€i<“)t:Fk‘7‘) + Z_ge—it/yr _ IB we i(wrFkz) fe—n/wz o e—it/yr_ (85)
Z
A possible solution is obtained if @ = —1/y7 and therefore following partial differential

equation holds:

—+;f—|( By + kEg)e™  — 1. (86)

From Eq. (84) we get consequently:

o

tLg= i(wEy & kBo)e™ — 1. (87)
oz YT

Differentiating Eq. (86) and using Eq. (87) we find the following 2nd order differential
equation:
?f 1

Bow | kE ; i
o et = (kom0 224 TR )

T

The solution of Eq. (88) is given by:

f(z) = c3sin <i> + ¢4 cOS (i)
7’ yT

et (ikwEo + k2B, — B2 4 1@) e SR 4 ipded
Tz 89)
+ 1 — k29272 : (

~0

From Eq. (87) we find:
B, ) ) i t t
g(z) = + 209 ik T Epe™™ — 7 - — (63 sin (—) + ¢4 08 <—> )z + cs, (90)
k 7T YT T
and therefore the electric and magnetic fields along x-direction are respectively given by:

) B . - i . t t it/
E(z,t) = (E()ﬁ'kz 209 ik FEjete 7 — (C3 sin <—> + c4cos (—) ) 7+ C5> e it
k VT VT yT

o1

B(z,t) = (BoemZ + c¢3 sin <y_7:> + ¢4 cos (ﬁ) ) e, (92)

For illustration purpose, we assume the initial conditions E(0,0) =0, £(0,0) = 0,
E'(0,0) =0, E(1,0) =0, B(0,0) =0 and B(0,0) = 0. Equations (91) and (92) are
reduced respectively for the case of waves traveling towards the positive direction to:

B . ; , -
E(z1) = (%w (e —1) —z+cos <ﬂ>z +iBow cos(/r) z) e e (93)
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Fig. 2 Variations of the magnetic field for 1 =1 and y = —1/2

B(z,t) = By (e’"‘z — cos (yir) > e 1, (94)

We plot in Figs. 1, 2,3,4,5,6,7,8,9, 10, 11, 12, 13 and 14 the variations of the real
parts of the electric and magnetic fields for k = w = 1 = By = Ey = 1 (for illustrations
purpose) and for different values of y and .

We observe that for lower values of 7 the electrical and magnetic fields oscillate in a
disordered way, i.e. strongly disordered electromagnetic dynamics. Disordered/chaotic
magnetic and electrical fields were observed in fusion physics, astrophysics, relaxors and
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Fig. 4 Variations of the magnetic field for t = 0.1 and y = —1/2

periodically driven superlattices (Portela et al. 2003; Viana 2000; Ram and Dasgupta 2007,
Phelan et al. 2014; Bulashenko et al. 1996).

5.2 Quantum electrodynamics
As a second implication of the NLT complex Maxwell equations, we consider the

Lagrangian of a charge particle moving in an electromagnetic field. The NLT complex
Lagrangian in our approach is given by Eq. (1) which may be written as:
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Fig. 6 Variations of the magnetic field for 1= 0.1 and y = 1/2
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Fig. 8 Variations of the magnetic field for t = 0.1 and y = 1 +1i

Len=3m 2 2

<V(t+'£)—|—v(t—f)+i V(t—i—'c)—v(t—'c))

1 (v(t+r)+v(r—r) +i”/v(t+f) —v(t—r)).

2 / 2
7€<¢7 (v(t+r)+v(t—r)+iyv(t+r)—v(z—r)> -A>,

2 2

- %m(v ipra) - (v ipea) — e(d — (v + iyra) - A),
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Fig. 10 Variations of the magnetic field for t =0.1 and y =1 —1i

From Remark 2.1, the extended complex momentum conjugate is given by p =
miyta + mv + eA with a being the acceleration of the particle and therefore the velocity is
given by:

p — iytam — eA
p” .

V= (96)

Substituting of Eq. (96) into the Hamiltonian H(p,X) = p - v — L gives for n = I:
H(p.X) = 50— eA)(p — cA) — yzap + e, (97)

Passing now from the classical to the quantum mechanics we are led to the NLT

complex Schrédinger equation HY =¥ where ¥ is the wave function. Using the
momentum operator p = iV /i (Shankar 1994), we can write Eq. (97) as:
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i
e 1. ) -
e, Ll

z 1'1" |'|
; at ‘.£cl"ll d
200 e
100 \'F'u?"|,"*'lf"j"- f/
. Jﬁ"l”f'taﬁg

ih
.v

Fig. 12 Variations of the magnetic field for 7 = 0.01 and y =2 —i

- % (V — igA)(V — igA)¥ + ipraV¥ = i @ + ig¢) v, (98)

which is the NLT complex Schrodinger equation with g = e/h. The term aV'¥ violates the
gauge covariance of the quantum theory. However, the theory is free from violation unless
the velocity of the particle is constant. To prove this, we multiply Eq. (89) by e~¢* and we
use the “shift-rule” which states that ¢ /(") 2e = (2 + Z)e/(We (Wheeler 2002) we find:
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-0.1

0.010

Fig. 13 Variations of the electrical field for t = 0.001 and y = 1

Fig. 14 Variations of the magnetic field for t = 0.001 and y = 1
1 . . . . io . . i
™ (V +igVy —igA)(V +igVy —igA)e MW + iyta(V +igVy)e “*W¥

0 —igx
(at +ig— a Ig(j)) V.

If we let the usual transformation A=A — Vy, @ = ¢ + % and = e **¥ hold, we
find:

(99)
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- ﬁ (V — igh)(V — igh)¥ + iyra(V + igVy)¥ =i (% + igq)) ¥, (100)

which is not gauge-covariant. However, if define new space coordinates such that
V =V +igVy, we obtain a gauge-covariant NLT complex quantum mechanics.

Let us make two quick comments concerning Eq. (100): first in the absence of the
electromagnetic field, one observes the presence of the gradient term which indicates that
the energy—momentum of the particle is deformed and takes the form E = ap? + fip, «, f8
are constants; second we can write Eq. (98) as:

- ﬁ (V—igh)(V—igA¥ +iyra(V —igA)¥ = I<§ +ig(e — yraA))‘l’. (101)

For the case of a constant acceleration, we can define a new scalar potential ¢ =
¢ — ytaA and rewrite Eq. (101) as:

- ﬁ (V—igA)(V —igA)Y + iyra(V —igA)¥Y = I(g + igd)) v (102)

After multiplying Eq. (102) by ¢~'8% and using the usual transformation A = A — Vy,
¢ = ¢+ Zand |y = e %W, a gauge-covariant NLT complex quantum mechanics hold in
a umformly accelerated reference frame. It is notable that the deformed energy—momentum
equation E = ap® + p deforms as well the Heisenberg’s uncertainty principle and may
lead to new insights in quantum theory. We summarize in Table 2 the main outcomes of
the implications of NLT complex Maxwell equations in electrodynamics.

Remark 5.1 Based on nonlocal-in-time kinetic energy approach and on maximal accel-
eration argument, an acceleratum operator of the form & = 2.V is obtained in El-Nabulsi

(2017b). Here p = —iV is the quantum momentum operator and o is a real parameter.
Therefore, we can write Eq. (98) as:

—ﬁ(v —igA)(V —IgA)¥ — iyt v3\v = |( Ig¢)

which is a higher-order derivatives NLT Schrodinger equation. The common feature of
this equation is the presence of higher degrees higher than two. This equation will be

Table 2 Implications of complex NLT Maxwell equations in electrodynamics

Classical electrodynamics Quantum electrodynamics

Dynamics Complexified + strongly Complexified
disordered electromagnetic
dynamics for lower values of ©

Nonlocality Strongly affected by nonlocality  Strongly affected by nonlocality

Velocity Classical Complexified and quantized
__ p—iyram—eA
V= Tm €

Equations of  Governed by extended complex Governed by the modified Schrodinger equation
motion NLT Maxwell equations =5 (V —igA)(V — igA)¥ + iyraV¥ = i(Z +igp) ¥
+ deformed energy—momentum relation
E=ap’ + fip
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useful to explore the propagation of ultrashort femtosecond pulses in optical fibers (Cao
2013).

6 Extended index of refraction in dielectric media

Let us in this section study how in the complex NLT approach plane waves behave in
dielectric media, e.g. glass in particular assumed to be isotropic, homogeneous and non-
conducting (Jf =0andV-P= 0) (Griffiths 1999). We set in this section gy = & =c =1
for convenience. In the absence of charge, the wave equation for E may be approximated to
(Remark 3.1):

OE =P —iyptDA. (103)

We assume solutions of the form (E, P, A, ¢) = (Eq, Py, Ao, ¢y )e' ™=, Substitution of
these trial sinusoidal solutions in Eq. (103) gives:

(—k* + 0*) (Eo (@) — iyte*Ag(w)) = —Po(w)w?’. (104)

In a linear medium, e.g. basically any material characterized by reasonable electric field
strength, the polarization amplitude Py(w) is proportional to the strength of the electric
field applied to the medium. In other words: Py(w)2y, (w)Eo(w), ¥, (®) = a; + ib; being
the susceptibility associated with the polarization (which in general is complex). However,
in our formalism, we introduce the following extended polarization amplitude
Po(w)2(a; + ib;)Eo(w) + (az + iby)Ao(w) where z,(w) = ay + iby is the complex sus-
ceptibility associated with the vector potential. Here (a;,a;) represent the real parts of
susceptibilities and (b;,b,) represent the imaginary parts. With these, we can write
Eq. (104) as:

(Eo(w) — iyt Ag(w))k* = o* (a1 + 1)Eo(w) + a2Ao(w) +i(by — y10*) Ao () + ib1Eo ().

(105)
The corresponding dispersion relation is therefore given by:
. (a1 + 1)E()(CO) =+ aon(w) + I((b2 — ”/TCL)Z)A()((U) + blE()(a)))
k=ow - . (106)
Eo(w) — iyta?Ap ()

Obviously, the speed of the sinusoidal wave in the dielectric material is therefore given
by:

b Eo(w) — iytaw?Ag(w) (107)
- (a] + 1)E0(CO) + aon(w) + I((bz - '})‘L'U)z)A()(CO) + b]Eo(CU))
The index of refraction takes accordingly the following form:
(a1 + 1Eg(w) + a2A¢(w) + i((by — yt?)Ag(w) + b1Eo(w))
= . 1
(@) \/ Eo(w) — iyta?Ag () (108)

We can reduce this equation by setting (a1, by) = (—1,y70?) to:
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I

n(w) = (az — y10?b1)Ep(0)Ag (@) + i(blEg(w) + y‘chazAé(w))
Ei (o) + y22w*Ad(w)
N \/(a2 — 370%b1)Eo(@)Ag(0) + i(b1E3 () + p1e?a: Al ()
Eo(w) '

(109)

It is easy to check that by setting a, = ytw?bh; = yw, the index of refraction (linearly
polarized light) is simplified to:

n(w) = \/bl (EO(“’);FEZ::)MAO(“’))U +i) ~ \/b;l(l +i)=N+ik. (110)
0

The magnitude of the wave function may be written as: k = \/%(1 +i)w = V(L +
i) = \/Z(1 4 i) and hence:

E(r,1) = Ege VAT (VEro),
- Eoe_\/%_zr‘i'r<cos<1 /;—;ﬁ r— wt) + isin(, /;—;ﬁ = wt>), (111)
= Ege V¥ cos Dir— ot +isin Zir—wt)).
2 27

Here i is a real unit vector identifying the direction of the wave vector. Then the real

part of Eq. (111) is:
RE(r, 1)) = Ee vF#" cos(, [2a ¢ wt). (112)
T

Fig. 15 Variations of Eq. (112) for 1 = 0.01
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Fig. 17 Variations of Eq. (112) for 7 = 0.001

We plot in Figs. 15, 16, 17, 18, 19, 20, 21, 22, 23 and 24 for different values of t the
variations of Eq. (112) at different scales after assuming that the direction of propagation is
in the z-direction and after fixing Egy = w = 1.

We observe that the variations of the real part of the electric field exhibits some kind of
disordered motion in particular for tiny values of the nonlocal time parameter t. The
associated wavelength is given by:

;L’ CUU 2 B

A= e = —Avacuum = V 2‘Ew/lvacuum- (1 13)
N V by

and depends on the nonlocal time parameter. The real part of the index of refraction is here

N = - and the extended polarization amplitude is:
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Fig. 19 Variations of Eq. (112) for 1 = 0.5
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Fig. 21 Variations of Eq. (112) for 7 = 0.01 and tiny scales
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Fig. 23 Variations of Eq. (112) for t = 0.5 and tiny scales
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Fig. 24 Variations of Eq. (112) for 1 = 0.1 and tiny scales

Pyo(w) = (—1 + %) Eo(®) + yo(1 + itw)A¢(w), (114)

and depends on the amplitudes of both the electric field and the vector potential. More
generally, we can write Eq. (109) as:

n(e) = (a2 — y1?b1)Eo(w)Ao(w) + i(blEé(w) + ym}zazAé(w))
- Eo (o)

1 \/a%A%(w)er%Ef)(w) (as — 7702b;)Ag(0)

~ 5 -
V2 E3() Eo(e) (115)
Q
. isign{ agAg(w) + b%Eé(w) B (az — yt?by)Ap(w)
V2 £2(o) Eolo)
Q
where

(= biE}(0) + yrararAd (o) . (116)

E()

Only terms a, and b, are raised in the solutions. The magnitude of the wave function is
then given by: k = (Q +iQ,)w and the electrical field takes the form:

E(r,1) = Ege™®"el@iren, (117)

and its real part is therefore:
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RAE(r, 1)} = Ege 2" cos(Qqit - 1 — ot). (118)
The wavelength is consequently given by:

AV{JCMMIVL 2
i — ~ == f /Ivacuum7 (1 19)

Ql A2A2 (w)+b2E> 2
A (0)+D1Ej (@) + (a2 —ye?bi)Ao(w)
EZ(w) Eo(w)

and the extended polarization amplitude is:

Po(w) = (al + Ibl)Eo(w) + (az + Ibz)Ao((}J) = Oibl E()((JJ) + aon(w). (120)

ay=b,=

From these calculations, we can deduce that the polarization effect is modified since
Po(w) = f(Eo(w), Ag(w)) whereas in the standard approach Py(w) = f(E¢(w)). This is
interesting since polarization in this case refers to orientation of the electric field but it is
affected by Ag(w). Together with the electric potential, the magnetic vector potential is
used to specify the polarization amplitude within the nonlocal-in-time kinetic energy
approach. One is able mathematically to reduce Py(w) = f(Eo(®), Ao(®)) — f(Eo(w)) by
means of Maxwell’s equations yet the resulting polarization amplitude will be nonlinear,
e.g. in general if a strong light (laser) acts on the nonlinear medium, then Py(w) =
f(Eo(w)) is nonlinear (Li et al. 2017). It will be of interest to explore in a future work the
implications of these outcomes in radiation theory and photonics theory.

7 Conclusions and perspectives

In the present paper we have constructed complex NLT Maxwell equations by extending
the nonlocal-in-time kinetic energy approach recently introduced by Suykens. It was
observed that these equations provide new features like the occurrence of a NLT complex
electromagnetic tensor; the emergence of electromagnetic wave equations with time-de-
pendent source terms even though the current and density are absent; the occurrence of
disordered electric and magnetic fields; the emergence of a gauge-covariant NLT com-
plexified quantum mechanics characterized by a higher-order derivatives Schrodinger
equation and the emergence of a new polarization amplitude Py(w) = f(Eo(w), Ag(®)) in
dielectrics with linearly polarized light and characterized by a disordered electric field and
a wavelength which depends on Eo(w), Ao(®) and the nonlocal time parameter. In fact, all
scenarios illustrated in this work show that equations and solutions are affected by the
value of the nonlocal time parameter. The disorder of fields increases as the values of the
nonlocal time parameter decreases. It is very plausible that these modifications could
describe phenomena that cannot be captured by the standard Maxwell’s electrodynamics
theory. We believe that the models constructed in this paper require more analytical
analysis in addition to its connection with experimental results obtained in different fields
like quantum optics and quantum electronics. Nevertheless the consequences obtained in
this work prove the importance of nonlocality-in-time in theoretical physics and real-world
applications. A number of applications are under construction and in particular the sig-
nificance of the NLT complexified electromagnetic potential in the quantum theory and its
connection to the Aharonov—Bohm effect (Aharonov 1959), massive photons in super-
conductivity (de Bruyn 2017) besides their impacts in quantum optics, materials science
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and biology (electromagnetic modeling of biological cells (Fear and Stuchly 1998)) and in
glass science (Nemilov 2014) deserve to be explored in details.
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